Stochastic model predictive control approaches applied to drinking water networks

Summary Control of drinking water networks is an arduous task, given their size and the presence of uncertainty in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in the most economic and safe ways. To cope with uncertainty in system disturbances du...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimal control applications & methods Ročník 38; číslo 4; s. 541 - 558
Hlavní autoři: Grosso, Juan M., Velarde, Pablo, Ocampo‐Martinez, Carlos, Maestre, José M., Puig, Vicenç
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Glasgow Wiley Subscription Services, Inc 01.07.2017
Témata:
ISSN:0143-2087, 1099-1514
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary Control of drinking water networks is an arduous task, given their size and the presence of uncertainty in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in the most economic and safe ways. To cope with uncertainty in system disturbances due to the stochastic water demand/consumption and optimize operational costs, this paper proposes three stochastic model predictive control (MPC) approaches, namely, chance‐constrained MPC, tree‐based MPC, and multiple‐scenario MPC. A comparative assessment of these approaches is performed when they are applied to real case studies, specifically, a sector and an aggregate version of the Barcelona drinking water network in Spain. Copyright © 2016 John Wiley & Sons, Ltd.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-2087
1099-1514
DOI:10.1002/oca.2269