Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans
ABSTRACT Background Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. Objectives We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, m...
Uloženo v:
| Vydáno v: | The American journal of clinical nutrition Ročník 112; číslo 2; s. 413 - 426 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Oxford University Press
01.08.2020
|
| Témata: | |
| ISSN: | 0002-9165, 1938-3207, 1938-3207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Background
Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation.
Objectives
We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers.
Methods
A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism.
Results
Markers of increased NAD+ synthesis—nicotinic acid adenine dinucleotide and methyl nicotinamide—were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism.
Conclusions
NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.
This trial was registered at clinicaltrials.gov as NCT02835664 |
|---|---|
| AbstractList | Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation.
We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers.
A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism.
Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism.
NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664. ABSTRACT Background Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. Objectives We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. Methods A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. Results Markers of increased NAD+ synthesis—nicotinic acid adenine dinucleotide and methyl nicotinamide—were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. Conclusions NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed. This trial was registered at clinicaltrials.gov as NCT02835664 Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation.BACKGROUNDNicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation.We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers.OBJECTIVESWe aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers.A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism.METHODSA randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism.Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism.RESULTSMarkers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism.NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.CONCLUSIONSNR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664. |
| Author | Aarts, Suzanne A B M Roumans, Kay H M Schrauwen, Patrick Havekes, Bas Auwerx, Johan de Wit, Vera H W Hoeks, Joris Moonen, Michiel P B Remie, Carlijn M E Lutgens, Esther Elfrink, Hyung L Schomakers, Bauke V van de Weijer, Tineke Phielix, Esther Connell, Niels J Lindeboom, Lucas Schrauwen-Hinderling, Vera B Zapata-Pérez, Rubén Mevenkamp, Julian Houtkooper, Riekelt H |
| Author_xml | – sequence: 1 givenname: Carlijn M E surname: Remie fullname: Remie, Carlijn M E – sequence: 2 givenname: Kay H M surname: Roumans fullname: Roumans, Kay H M – sequence: 3 givenname: Michiel P B surname: Moonen fullname: Moonen, Michiel P B – sequence: 4 givenname: Niels J surname: Connell fullname: Connell, Niels J – sequence: 5 givenname: Bas surname: Havekes fullname: Havekes, Bas – sequence: 6 givenname: Julian surname: Mevenkamp fullname: Mevenkamp, Julian – sequence: 7 givenname: Lucas surname: Lindeboom fullname: Lindeboom, Lucas – sequence: 8 givenname: Vera H W surname: de Wit fullname: de Wit, Vera H W – sequence: 9 givenname: Tineke surname: van de Weijer fullname: van de Weijer, Tineke – sequence: 10 givenname: Suzanne A B M surname: Aarts fullname: Aarts, Suzanne A B M – sequence: 11 givenname: Esther surname: Lutgens fullname: Lutgens, Esther – sequence: 12 givenname: Bauke V surname: Schomakers fullname: Schomakers, Bauke V – sequence: 13 givenname: Hyung L surname: Elfrink fullname: Elfrink, Hyung L – sequence: 14 givenname: Rubén surname: Zapata-Pérez fullname: Zapata-Pérez, Rubén – sequence: 15 givenname: Riekelt H surname: Houtkooper fullname: Houtkooper, Riekelt H – sequence: 16 givenname: Johan surname: Auwerx fullname: Auwerx, Johan – sequence: 17 givenname: Joris surname: Hoeks fullname: Hoeks, Joris – sequence: 18 givenname: Vera B surname: Schrauwen-Hinderling fullname: Schrauwen-Hinderling, Vera B – sequence: 19 givenname: Esther surname: Phielix fullname: Phielix, Esther – sequence: 20 givenname: Patrick surname: Schrauwen fullname: Schrauwen, Patrick email: p.schrauwen@maastrichtuniversity.nl |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32320006$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kbtOwzAUhi1URC-wMSNvsIT6UsfNiCpuUgULzNGJc6KmOHYaJ0PfgMfGpYXp3D59w_mnZOS8Q0KuObvnLJNz2Bo3dzsApsUZmfBMLhMpmB6RCWNMJBlP1ZhMQ9gyxsVimV6QsRSRYCydkO-32vi-dtDUJdKuLnw4NGFoW4sNuh762jsKtscu0MKXe2p800bquHclDV9osQdLmyEYixQM9ntroHORcRh5Z6Ko-zUFWju6wejb7KkvMCDdDA24cEnOK7ABr051Rj6fHj9WL8n6_fl19bBOjFK6T6pKSZlKpZQpMi6LRWyMBoUV19qkvEwrlupSHmZYaCYq4BmISmJWCa2MnJG7o7ft_G7A0OdNHQxaCw79EHIhM6n0QnMZ0ZsTOhQNlnnb1Q10-_zvexG4PQJ-aP-vnOWHXPJDLvkpF_kD-9eFSg |
| CitedBy_id | crossref_primary_10_14814_phy2_70242 crossref_primary_10_1007_s40256_024_00711_y crossref_primary_10_1002_crt2_56 crossref_primary_10_1038_s41467_024_53292_4 crossref_primary_10_26508_lsa_202302505 crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_1038_s42255_023_00930_8 crossref_primary_10_3389_fnut_2021_758058 crossref_primary_10_1113_JP280825 crossref_primary_10_1016_j_bbalip_2021_159094 crossref_primary_10_1002_pbc_31369 crossref_primary_10_1093_jn_nxab193 crossref_primary_10_1126_science_abe9985 crossref_primary_10_3390_antiox11091637 crossref_primary_10_1038_s43587_022_00192_1 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_1111_dom_16298 crossref_primary_10_3390_cells13100870 crossref_primary_10_1016_j_exger_2020_111123 crossref_primary_10_3390_ijms24032959 crossref_primary_10_1016_j_lfs_2023_122137 crossref_primary_10_1007_s40279_024_02072_7 crossref_primary_10_3390_cells13211799 crossref_primary_10_1038_s41392_022_01211_8 crossref_primary_10_1186_s12979_023_00398_w crossref_primary_10_1016_j_cmet_2021_04_003 crossref_primary_10_1242_dmm_049279 crossref_primary_10_1126_science_abj1696 crossref_primary_10_1055_a_2382_6829 crossref_primary_10_1016_j_phrs_2025_107820 crossref_primary_10_1016_j_biopha_2022_113071 crossref_primary_10_3390_molecules28166078 crossref_primary_10_1161_CIRCULATIONAHA_121_056589 crossref_primary_10_3389_fnut_2023_1208734 crossref_primary_10_3389_fnut_2022_868640 crossref_primary_10_1007_s11892_024_01557_z crossref_primary_10_1186_s13578_023_01031_5 crossref_primary_10_1016_j_bbadis_2024_167038 crossref_primary_10_1016_j_biopha_2024_116701 crossref_primary_10_1111_acel_70093 crossref_primary_10_1016_j_jnutbio_2023_109310 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_1016_j_isci_2024_109174 crossref_primary_10_1002_jcsm_13799 crossref_primary_10_1093_ajcn_nqaa109 crossref_primary_10_1007_s11357_023_00999_9 crossref_primary_10_1038_s43587_025_00947_6 crossref_primary_10_1016_j_molmet_2022_101560 crossref_primary_10_2131_fts_12_67 crossref_primary_10_1113_JP288453 crossref_primary_10_1155_2020_8819627 crossref_primary_10_1093_nutrit_nuad084 crossref_primary_10_1089_ars_2023_0354 crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_1007_s11357_025_01815_2 crossref_primary_10_1038_s44324_025_00067_0 crossref_primary_10_1016_j_cmet_2022_11_004 crossref_primary_10_1016_j_phymed_2023_154768 crossref_primary_10_1096_fj_202001826R crossref_primary_10_1016_j_isci_2021_103635 crossref_primary_10_1515_teb_2024_0030 crossref_primary_10_1038_s41467_023_39392_7 crossref_primary_10_15252_emmm_202113943 crossref_primary_10_1038_s41420_025_02672_w crossref_primary_10_1007_s00018_022_04499_5 crossref_primary_10_1038_s41467_021_27080_3 crossref_primary_10_1038_s41392_022_01251_0 crossref_primary_10_1128_msystems_01223_21 crossref_primary_10_1016_j_advnut_2023_08_008 crossref_primary_10_31146_1682_8658_ecg_206_10_111_125 crossref_primary_10_1002_trc2_70023 crossref_primary_10_1016_j_lfs_2020_118596 crossref_primary_10_3390_nu16152565 crossref_primary_10_2903_j_efsa_2021_6843 crossref_primary_10_1016_j_arr_2023_102106 crossref_primary_10_1113_JP280908 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1083_jcb_202111137 crossref_primary_10_1038_s43587_024_00758_1 crossref_primary_10_3390_nu14112259 crossref_primary_10_1016_j_foodres_2023_112560 crossref_primary_10_1016_j_bbi_2024_11_004 crossref_primary_10_3390_nu17121982 crossref_primary_10_1007_s11897_022_00550_5 crossref_primary_10_1080_19476337_2025_2458753 crossref_primary_10_3390_metabo12070630 crossref_primary_10_1007_s12015_024_10747_x crossref_primary_10_1016_j_cmet_2024_06_003 crossref_primary_10_3390_antiox14080911 crossref_primary_10_1038_s41514_022_00084_z crossref_primary_10_3389_fendo_2021_815565 crossref_primary_10_3389_fnut_2021_648893 crossref_primary_10_1007_s11033_022_07459_1 crossref_primary_10_1210_clinem_dgaa960 crossref_primary_10_1038_s43587_022_00174_3 crossref_primary_10_1016_j_bcp_2022_114946 crossref_primary_10_1016_j_tem_2025_07_005 crossref_primary_10_1016_j_freeradbiomed_2023_05_032 crossref_primary_10_1186_s12970_021_00442_4 crossref_primary_10_3390_cells12202494 crossref_primary_10_1093_cvr_cvab212 crossref_primary_10_1038_s41467_023_43514_6 crossref_primary_10_3390_nu15061494 crossref_primary_10_3390_cells11040710 |
| ContentType | Journal Article |
| Copyright | Copyright © The Author(s) on behalf of the American Society for Nutrition 2020. 2020 Copyright © The Author(s) on behalf of the American Society for Nutrition 2020. |
| Copyright_xml | – notice: Copyright © The Author(s) on behalf of the American Society for Nutrition 2020. 2020 – notice: Copyright © The Author(s) on behalf of the American Society for Nutrition 2020. |
| DBID | TOX CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/ajcn/nqaa072 |
| DatabaseName | Oxford Journals Open Access Collection Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Diet & Clinical Nutrition |
| EISSN | 1938-3207 |
| EndPage | 426 |
| ExternalDocumentID | 32320006 10.1093/ajcn/nqaa072 |
| Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -ET -~X ..I .55 0R~ 0SF 1HT 23M 2FS 2WC 4.4 476 48X 53G 5GY 5RE 5VS 6J9 85S A8Z AABZA AACZT AAHBH AAIKC AALRI AAMNW AAPQZ AAUQX AAVAP AAWTL AAXUO ABDNZ ABJNI ABLJU ABOCM ABPTD ABSAR ABWST ACGFO ACGFS ACGOD ACNCT ACPRK ACUFI ACUTJ ADBBV ADGZP ADRTK ADUKH ADVEK ADVLN AEGXH AENEX AETBJ AFFZL AFOFC AFRAH AFRQD AFXAL AGINJ AGNAY AGQXC AGUTN AHMBA AIAGR AITUG AJEEA AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BAYMD BCRHZ BKOMP BTRTY CDBKE DAKXR DIK E3Z EBS EJD ENERS F5P F9R FDB FECEO FLUFQ FOEOM FOTVD FQBLK FRP GAUVT GJXCC GX1 H13 HF~ HZ~ I4R IH2 KBUDW KOP KQ8 KSI KSN L7B MHKGH MV1 NHCRO NOMLY NOYVH O9- ODMLO OK1 OVD P2P P6G PQQKQ R0Z RHF RHI RNS ROL ROX SJN SV3 TEORI TMA TNT TOX TR2 TWZ UBH UHB UKR W2D W8F WH7 WOQ WOW X7M XSW YBU YHG YOJ YSK YZZ ZCA ZCG ZUP ~KM AAGQS CGR CUY CVF ECM EIF NPM YR5 7X8 ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP EFKBS NU- |
| ID | FETCH-LOGICAL-c557t-ff53363555cb913b455cc7a5ef177c61d6f067d3ef17a4702fa19a2f3e9f275c3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561751100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0002-9165 1938-3207 |
| IngestDate | Sun Sep 28 08:02:38 EDT 2025 Thu Apr 03 07:03:36 EDT 2025 Wed Aug 28 03:18:38 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | NAD insulin sensitivity metabolic health mitochondrial function body composition acetylcarnitine nicotinamide riboside human obesity |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Copyright © The Author(s) on behalf of the American Society for Nutrition 2020. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-ff53363555cb913b455cc7a5ef177c61d6f067d3ef17a4702fa19a2f3e9f275c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://dx.doi.org/10.1093/ajcn/nqaa072 |
| PMID | 32320006 |
| PQID | 2393574713 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2393574713 pubmed_primary_32320006 oup_primary_10_1093_ajcn_nqaa072 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The American journal of clinical nutrition |
| PublicationTitleAlternate | Am J Clin Nutr |
| PublicationYear | 2020 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | 32412605 - Am J Clin Nutr. 2020 Aug 1;112(2):243-244. doi: 10.1093/ajcn/nqaa109 |
| References_xml | – reference: 32412605 - Am J Clin Nutr. 2020 Aug 1;112(2):243-244. doi: 10.1093/ajcn/nqaa109 |
| SSID | ssj0012486 |
| Score | 2.6284504 |
| Snippet | ABSTRACT
Background
Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic... Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects... |
| SourceID | proquest pubmed oup |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 413 |
| SubjectTerms | Acetylcarnitine - metabolism Aged Body Composition - drug effects Dietary Supplements - analysis Female Humans Male Middle Aged Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism NAD - biosynthesis Niacinamide - administration & dosage Niacinamide - analogs & derivatives Obesity - drug therapy Obesity - metabolism Obesity - physiopathology Overweight - drug therapy Overweight - metabolism Overweight - physiopathology Pyridinium Compounds |
| Title | Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32320006 https://www.proquest.com/docview/2393574713 |
| Volume | 112 |
| WOSCitedRecordID | wos000561751100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VqkJcKJTXFqgGCXGLurHjdXKsgIpLtz200t4iP6VAcWCdRdp_wM-ux0l7KEhwiRwptiOP7fnGM54P4H1trNJVk4ycWmo6urGFYloXyvOqNpV3FVOZbEIul_Vq1VxMSZLiX1z4DT9WX004Dj-Vmkvaa0tRE1PB5fnqzlvAqszomFd3gjtiCnC_X_neHbY_oGRWKaf7__0zT-DxhBrxZBTzU9hx4QBmnzo34AecUnte4_I2s_4BPDybfObP4DcJe-iIeN46XHe6J4ZOjETnOYaOUxXMbvOIurdbpDjzKZgLVbAYvyXllFA6ft_E1D8q44bttaFDldSwS9-HMcgzT2LsAo7XK7fYaxcdZiLA-ByuTj9ffvxSTPwLhRFCDoX3CQsSIBFGNyXXVSoYqYTzpZRmUdqFT7rOcnpXlZwzr8pGMc9d45kUhr-A3dAH9wrQJ1xo5szZkgy4haoTkBDMeM-sFYb5GWASTftjzLDRjp5x3tJot9Noz-DdrdzatATIr6GC6zexzVncyLjmM3g5CvSuJZ4QI6nkw3938BoeMTKmc3TfG9gd1hv3FvbMr6GL6yN4IFd1ei4vzo7y7LsBrg3Z5g |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nicotinamide+riboside+supplementation+alters+body+composition+and+skeletal+muscle+acetylcarnitine+concentrations+in+healthy+obese+humans&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Remie%2C+Carlijn+M+E&rft.au=Roumans%2C+Kay+H+M&rft.au=Moonen%2C+Michiel+P+B&rft.au=Connell%2C+Niels+J&rft.date=2020-08-01&rft.pub=Oxford+University+Press&rft.issn=0002-9165&rft.eissn=1938-3207&rft.volume=112&rft.issue=2&rft.spage=413&rft.epage=426&rft_id=info:doi/10.1093%2Fajcn%2Fnqaa072&rft.externalDocID=10.1093%2Fajcn%2Fnqaa072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon |