A Dedicated Population for Reward Coding in the Hippocampus
The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingen...
Uloženo v:
| Vydáno v: | Neuron (Cambridge, Mass.) Ročník 99; číslo 1; s. 179 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
11.07.2018
|
| Témata: | |
| ISSN: | 1097-4199, 1097-4199 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus. |
|---|---|
| AbstractList | The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus. The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus. |
| Author | Tank, David W Gauthier, Jeffrey L |
| Author_xml | – sequence: 1 givenname: Jeffrey L surname: Gauthier fullname: Gauthier, Jeffrey L email: jeff.l.gauthier@gmail.com organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address: jeff.l.gauthier@gmail.com – sequence: 2 givenname: David W surname: Tank fullname: Tank, David W email: dwtank@princeton.edu organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address: dwtank@princeton.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30008297$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj11LwzAYhYNM3If-A5FcetP6JluTBq_Gpk4YKKLXJR_vNKNNatMi_nsHTvDqnIuH53CmZBRiQEIuGeQMmLjZ5wGHLoacAytzEDlAeUImDJTMFkyp0b8-JtOU9gBsUSh2RsZzOMBcyQm5XdI1Om91j44-x3aode9joLvY0Rf80p2jq-h8eKc-0P4D6ca3bbS6aYd0Tk53uk54ccwZebu_e11tsu3Tw-Nquc1sUcg-cwIMn1s8TBaaKWbKkoNZOKmFQ2dYsUMrgTtjDIKUkpcamUWuSiFQlsBn5PrX23bxc8DUV41PFutaB4xDqjhIkIozoQ7o1REdTIOuajvf6O67-jvMfwCdtlpy |
| CitedBy_id | crossref_primary_10_1523_JNEUROSCI_1717_21_2022 crossref_primary_10_1038_s41467_021_22559_5 crossref_primary_10_1016_j_cub_2019_08_040 crossref_primary_10_7554_eLife_47611 crossref_primary_10_1371_journal_pbio_3001530 crossref_primary_10_1016_j_neuron_2024_08_007 crossref_primary_10_1038_s41598_022_11567_0 crossref_primary_10_1016_j_nlm_2022_107589 crossref_primary_10_1016_j_cell_2020_09_061 crossref_primary_10_1038_d41586_025_01716_6 crossref_primary_10_1038_s41467_023_38338_3 crossref_primary_10_1093_cercor_bhae002 crossref_primary_10_3390_e22090928 crossref_primary_10_1038_s41467_024_49895_6 crossref_primary_10_1016_j_cub_2022_08_050 crossref_primary_10_1002_hipo_23623 crossref_primary_10_1103_PhysRevE_111_054411 crossref_primary_10_1103_PhysRevLett_126_118302 crossref_primary_10_1002_hipo_23188 crossref_primary_10_3389_fnbeh_2022_1082158 crossref_primary_10_1007_s11571_025_10282_6 crossref_primary_10_1016_j_pneurobio_2025_102776 crossref_primary_10_1523_JNEUROSCI_0100_24_2024 crossref_primary_10_1016_j_neuron_2024_05_024 crossref_primary_10_1038_s41592_022_01422_5 crossref_primary_10_1016_j_neuron_2019_01_009 crossref_primary_10_1523_JNEUROSCI_0719_18_2018 crossref_primary_10_1523_JNEUROSCI_1615_20_2020 crossref_primary_10_7554_eLife_83600 crossref_primary_10_1038_s41593_022_01050_4 crossref_primary_10_1007_s00429_023_02637_8 crossref_primary_10_1038_s41593_025_01928_z crossref_primary_10_1038_d41586_024_01500_y crossref_primary_10_1038_s41377_019_0219_x crossref_primary_10_1073_pnas_2122141119 crossref_primary_10_1038_s41598_024_71931_0 crossref_primary_10_1038_s41593_020_0646_2 crossref_primary_10_1007_s00422_020_00830_0 crossref_primary_10_1038_s41593_022_01226_y crossref_primary_10_1016_j_cub_2020_01_063 crossref_primary_10_3389_fnmol_2020_572312 crossref_primary_10_1016_j_cub_2021_07_061 crossref_primary_10_1126_science_aav4837 crossref_primary_10_1371_journal_pbio_3003296 crossref_primary_10_1038_s41586_024_08397_7 crossref_primary_10_1038_s42003_022_03906_8 crossref_primary_10_1073_pnas_2011266118 crossref_primary_10_1038_s41467_022_28854_z crossref_primary_10_1016_j_bbr_2019_112112 crossref_primary_10_1007_s10462_025_11270_2 crossref_primary_10_1016_j_neuron_2023_09_013 crossref_primary_10_1038_s41593_018_0241_y crossref_primary_10_1523_JNEUROSCI_1450_22_2022 crossref_primary_10_1016_j_cell_2024_02_032 crossref_primary_10_1016_j_isci_2023_108536 crossref_primary_10_7554_eLife_97114 crossref_primary_10_1523_JNEUROSCI_2250_22_2023 crossref_primary_10_1523_JNEUROSCI_1619_23_2024 crossref_primary_10_1016_j_neunet_2022_09_033 crossref_primary_10_1002_mco2_148 crossref_primary_10_1101_lm_046748_117 crossref_primary_10_1016_j_conb_2020_08_014 crossref_primary_10_3389_fncir_2022_878046 crossref_primary_10_3390_ijms25116088 crossref_primary_10_1007_s11571_025_10254_w crossref_primary_10_3389_fncom_2023_1053097 crossref_primary_10_1016_j_neuron_2018_06_037 crossref_primary_10_1038_s41586_025_08868_5 crossref_primary_10_1002_hipo_23300 crossref_primary_10_1017_S0140525X22002990 crossref_primary_10_1016_j_neunet_2020_01_014 crossref_primary_10_1038_s41586_022_05378_6 crossref_primary_10_1038_s41593_020_0614_x crossref_primary_10_7554_eLife_73046 crossref_primary_10_1515_revneuro_2022_0137 crossref_primary_10_1523_JNEUROSCI_0741_19_2019 crossref_primary_10_1016_j_jad_2022_06_062 crossref_primary_10_1007_s42113_024_00234_4 crossref_primary_10_1038_s41586_021_03989_z crossref_primary_10_7554_eLife_97114_3 crossref_primary_10_1371_journal_pone_0251480 crossref_primary_10_1038_s41583_022_00620_6 crossref_primary_10_1038_s41583_024_00817_x crossref_primary_10_1117_1_NPh_11_3_033406 crossref_primary_10_1007_s42113_020_00095_7 crossref_primary_10_1016_j_celrep_2024_114980 crossref_primary_10_1016_j_neuron_2021_12_003 crossref_primary_10_1038_s41593_021_00804_w crossref_primary_10_1177_2398212820975634 crossref_primary_10_1038_s41593_019_0548_3 crossref_primary_10_1038_s41583_018_0042_z crossref_primary_10_1073_pnas_2416214122 crossref_primary_10_1073_pnas_2107337119 crossref_primary_10_1016_j_neuron_2023_11_019 crossref_primary_10_1002_hipo_23448 crossref_primary_10_1038_s41593_023_01296_6 crossref_primary_10_1038_s41467_022_34114_x crossref_primary_10_1038_s41586_022_04913_9 crossref_primary_10_1038_s41467_022_31254_y crossref_primary_10_1038_s41562_024_01855_2 crossref_primary_10_7554_eLife_100666 crossref_primary_10_1038_s41467_022_34465_5 crossref_primary_10_1016_j_neuron_2021_12_012 crossref_primary_10_1007_s00422_020_00829_7 crossref_primary_10_1073_pnas_2410101122 crossref_primary_10_1016_j_neuron_2021_12_017 crossref_primary_10_3389_fnins_2020_615337 crossref_primary_10_1016_j_isci_2025_113009 crossref_primary_10_1176_appi_ajp_2019_19020212 crossref_primary_10_1038_s41583_021_00479_z crossref_primary_10_1016_j_neuron_2022_03_026 crossref_primary_10_1126_science_adk9385 crossref_primary_10_1038_s41593_021_00841_5 crossref_primary_10_1038_s42003_020_01129_3 crossref_primary_10_1371_journal_pcbi_1011101 crossref_primary_10_1016_j_tins_2023_08_003 crossref_primary_10_7554_eLife_85646_3 crossref_primary_10_1186_s13041_023_01042_w crossref_primary_10_1186_s12888_023_05001_6 crossref_primary_10_7554_eLife_51140 crossref_primary_10_1016_j_conb_2023_102800 crossref_primary_10_1038_s41586_022_05113_1 crossref_primary_10_1073_pnas_2404169121 crossref_primary_10_7554_eLife_95213_4 crossref_primary_10_1103_PhysRevResearch_7_L022039 crossref_primary_10_1038_s41586_022_05146_6 crossref_primary_10_7554_eLife_80280 crossref_primary_10_1038_s42255_024_01194_6 crossref_primary_10_1111_gbb_12686 crossref_primary_10_7554_eLife_52466 crossref_primary_10_1016_j_cub_2021_12_024 crossref_primary_10_1038_s41586_018_0740_8 crossref_primary_10_1038_s41593_025_01908_3 crossref_primary_10_1016_j_conb_2022_102604 crossref_primary_10_1038_s41467_024_47361_x crossref_primary_10_1016_j_neuron_2023_08_021 crossref_primary_10_1016_j_jad_2021_12_085 crossref_primary_10_1016_j_neubiorev_2024_105574 crossref_primary_10_1016_j_bbr_2022_113790 crossref_primary_10_1038_s41593_025_01985_4 crossref_primary_10_1002_hipo_23489 crossref_primary_10_1016_j_cobeha_2020_02_017 crossref_primary_10_7554_eLife_75391 crossref_primary_10_1038_s41586_025_09245_y crossref_primary_10_1007_s00429_019_02001_9 crossref_primary_10_1016_j_neubiorev_2019_11_007 crossref_primary_10_1038_s41586_021_03652_7 crossref_primary_10_1038_s41467_023_41526_w crossref_primary_10_1016_j_bbr_2024_115384 crossref_primary_10_1016_j_neuron_2024_10_027 crossref_primary_10_1371_journal_pbio_3002706 crossref_primary_10_1038_s41593_022_01051_3 crossref_primary_10_1016_j_cub_2021_07_058 crossref_primary_10_7554_eLife_95213 crossref_primary_10_7554_eLife_85646 crossref_primary_10_1371_journal_pcbi_1012085 crossref_primary_10_1038_s12276_021_00587_x crossref_primary_10_1016_j_snr_2024_100274 crossref_primary_10_1016_j_neuroscience_2023_08_012 crossref_primary_10_1038_s41593_022_01201_7 crossref_primary_10_1523_JNEUROSCI_2479_21_2022 crossref_primary_10_1038_s41467_024_45853_4 crossref_primary_10_1016_j_cell_2020_09_024 crossref_primary_10_1016_j_cophys_2020_04_003 crossref_primary_10_1146_annurev_psych_020821_111311 crossref_primary_10_1002_hipo_70014 crossref_primary_10_1016_j_neuron_2019_12_029 crossref_primary_10_1002_hipo_23143 crossref_primary_10_1038_s41593_025_01986_3 crossref_primary_10_1038_s41593_019_0523_z crossref_primary_10_1038_s41467_024_47570_4 crossref_primary_10_3389_fnsys_2021_718619 crossref_primary_10_1016_j_neuron_2018_10_002 crossref_primary_10_1016_j_neuron_2018_10_006 crossref_primary_10_1038_s41467_023_42611_w crossref_primary_10_1038_s41593_025_01930_5 crossref_primary_10_1152_jn_00339_2021 crossref_primary_10_1016_j_neuron_2021_10_003 crossref_primary_10_1038_s41593_022_01153_y crossref_primary_10_3390_brainsci13020322 crossref_primary_10_1016_j_cub_2019_11_048 crossref_primary_10_7554_eLife_55252 crossref_primary_10_7554_eLife_45333 crossref_primary_10_1007_s42113_024_00230_8 crossref_primary_10_1093_scan_nsac017 crossref_primary_10_1371_journal_pcbi_1008835 crossref_primary_10_7554_eLife_100666_3 crossref_primary_10_1038_s41598_021_93721_8 crossref_primary_10_1038_s41467_020_17270_w crossref_primary_10_1371_journal_pcbi_1007875 crossref_primary_10_1038_s41586_024_07867_2 crossref_primary_10_1016_j_conb_2023_102803 crossref_primary_10_7554_eLife_43140 crossref_primary_10_1038_s41467_023_35967_6 crossref_primary_10_7554_eLife_51458 crossref_primary_10_7554_eLife_80663 crossref_primary_10_1111_mila_12522 crossref_primary_10_1016_j_neubiorev_2021_11_038 crossref_primary_10_1016_j_bbi_2020_07_028 crossref_primary_10_1093_scan_nsac006 crossref_primary_10_1016_j_celrep_2025_116033 crossref_primary_10_3389_fnins_2023_1200842 crossref_primary_10_1080_15230406_2023_2264758 crossref_primary_10_7554_eLife_44487 crossref_primary_10_1016_j_cub_2021_04_073 crossref_primary_10_3390_electronics12204212 crossref_primary_10_7554_eLife_83012 crossref_primary_10_1016_j_psyneuen_2020_105097 crossref_primary_10_1038_s41593_023_01557_4 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2018.06.008 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 30008297 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F32 NS077840 – fundername: NIMH NIH HHS grantid: R01 MH083686 – fundername: NINDS NIH HHS grantid: R37 NS081242 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 4.4 457 4G. 53G 5RE 62- 7-5 8FE 8FH AAEDT AAEDW AAFWJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACIWK ACNCT ACPRK ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGKMS AHHHB AHMBA AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AQUVI ASPBG AVWKF AZFZN BAWUL BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M3Z M41 N9A NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 |
| ID | FETCH-LOGICAL-c557t-d60b23ce0085a191b8820b4d7a6dedb15fec702dbbbe077728ae1ce29866e7802 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438378100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Sun Sep 28 07:39:14 EDT 2025 Mon Jul 21 05:59:52 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | place fields reward CA1 navigation virtual reality hippocampus place cells subiculum |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-d60b23ce0085a191b8820b4d7a6dedb15fec702dbbbe077728ae1ce29866e7802 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0896627318304768/pdf |
| PMID | 30008297 |
| PQID | 2070792169 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2070792169 pubmed_primary_30008297 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-11 |
| PublicationDateYYYYMMDD | 2018-07-11 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2018 |
| References | 29991694 - Nat Rev Neurosci. 2018 Aug;19(8):443 30001513 - Neuron. 2018 Jul 11;99(1):7-10 |
| References_xml | – reference: 30001513 - Neuron. 2018 Jul 11;99(1):7-10 – reference: 29991694 - Nat Rev Neurosci. 2018 Aug;19(8):443 |
| SSID | ssj0014591 |
| Score | 2.6601996 |
| Snippet | The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 179 |
| SubjectTerms | Animals CA1 Region, Hippocampal - cytology CA1 Region, Hippocampal - diagnostic imaging CA1 Region, Hippocampal - physiology Hippocampus - cytology Hippocampus - diagnostic imaging Hippocampus - physiology Mice Motivation Neurons - cytology Neurons - physiology Optical Imaging Reward Spatial Navigation - physiology Task Performance and Analysis Virtual Reality |
| Title | A Dedicated Population for Reward Coding in the Hippocampus |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30008297 https://www.proquest.com/docview/2070792169 |
| Volume | 99 |
| WOSCitedRecordID | wos000438378100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UKnjx0fqoL1YQb4G8d4MHKdXSi6WIQm9lszuBHppE0wr99-5sUnsSBC-BPYQss5Odb-ebnQ_gLiQFawyUg1kmnNCXgSNVqB1fUjMxriUKacUm-GgkJpNk3CTcqqascr0n2o1aF4py5JQJcXnie3HyWH44pBpF7GojobENrcBAGfJqPtmwCGFkFfOIZCW2M1lfnbP1XbZfJHVA9eoOnq74HWTaYDM4_O80j-CggZmsV_vFMWxh3oZOLzdH7PmK3TNb-Gkz6m3Yq_UoVx146LEnS9wYGMrGP9JezABb9opUX8v6BQU7NsuZQY5sOCtLEwzn5bI6gffB81t_6DTqCo6KIr5wdOymfqCQQBctTGqwtpuGmstYo069KEPFXV-naYouNyBcSPQU-omIY-TC9U9hJy9yPAdGksUYqVAJc7gLMmkG3HwkNHYQqBLZhdu1sabGe4mSkDkWy2q6MVcXzmqLT8u6zcY0aC7-Xvzh7UvYp4WkpKvnXUErM_8uXsOu-lrMqs8b6xbmORq_fANDEcD4 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dedicated+Population+for+Reward+Coding+in+the+Hippocampus&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Gauthier%2C+Jeffrey+L&rft.au=Tank%2C+David+W&rft.date=2018-07-11&rft.eissn=1097-4199&rft.volume=99&rft.issue=1&rft.spage=179&rft_id=info:doi/10.1016%2Fj.neuron.2018.06.008&rft_id=info%3Apmid%2F30008297&rft_id=info%3Apmid%2F30008297&rft.externalDocID=30008297 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |