A Dedicated Population for Reward Coding in the Hippocampus

The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Jg. 99; H. 1; S. 179
Hauptverfasser: Gauthier, Jeffrey L, Tank, David W
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 11.07.2018
Schlagworte:
ISSN:1097-4199, 1097-4199
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.
AbstractList The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.
The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.
Author Tank, David W
Gauthier, Jeffrey L
Author_xml – sequence: 1
  givenname: Jeffrey L
  surname: Gauthier
  fullname: Gauthier, Jeffrey L
  email: jeff.l.gauthier@gmail.com
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address: jeff.l.gauthier@gmail.com
– sequence: 2
  givenname: David W
  surname: Tank
  fullname: Tank, David W
  email: dwtank@princeton.edu
  organization: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address: dwtank@princeton.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30008297$$D View this record in MEDLINE/PubMed
BookMark eNpNj11LwzAYhYNM3If-A5FcetP6JluTBq_Gpk4YKKLXJR_vNKNNatMi_nsHTvDqnIuH53CmZBRiQEIuGeQMmLjZ5wGHLoacAytzEDlAeUImDJTMFkyp0b8-JtOU9gBsUSh2RsZzOMBcyQm5XdI1Om91j44-x3aode9joLvY0Rf80p2jq-h8eKc-0P4D6ca3bbS6aYd0Tk53uk54ccwZebu_e11tsu3Tw-Nquc1sUcg-cwIMn1s8TBaaKWbKkoNZOKmFQ2dYsUMrgTtjDIKUkpcamUWuSiFQlsBn5PrX23bxc8DUV41PFutaB4xDqjhIkIozoQ7o1REdTIOuajvf6O67-jvMfwCdtlpy
CitedBy_id crossref_primary_10_1523_JNEUROSCI_1717_21_2022
crossref_primary_10_1038_s41467_021_22559_5
crossref_primary_10_1016_j_cub_2019_08_040
crossref_primary_10_7554_eLife_47611
crossref_primary_10_1371_journal_pbio_3001530
crossref_primary_10_1016_j_neuron_2024_08_007
crossref_primary_10_1038_s41598_022_11567_0
crossref_primary_10_1016_j_nlm_2022_107589
crossref_primary_10_1016_j_cell_2020_09_061
crossref_primary_10_1038_d41586_025_01716_6
crossref_primary_10_1038_s41467_023_38338_3
crossref_primary_10_1093_cercor_bhae002
crossref_primary_10_3390_e22090928
crossref_primary_10_1038_s41467_024_49895_6
crossref_primary_10_1016_j_cub_2022_08_050
crossref_primary_10_1002_hipo_23623
crossref_primary_10_1103_PhysRevE_111_054411
crossref_primary_10_1103_PhysRevLett_126_118302
crossref_primary_10_1002_hipo_23188
crossref_primary_10_3389_fnbeh_2022_1082158
crossref_primary_10_1007_s11571_025_10282_6
crossref_primary_10_1016_j_pneurobio_2025_102776
crossref_primary_10_1523_JNEUROSCI_0100_24_2024
crossref_primary_10_1016_j_neuron_2024_05_024
crossref_primary_10_1038_s41592_022_01422_5
crossref_primary_10_1016_j_neuron_2019_01_009
crossref_primary_10_1523_JNEUROSCI_0719_18_2018
crossref_primary_10_1523_JNEUROSCI_1615_20_2020
crossref_primary_10_7554_eLife_83600
crossref_primary_10_1038_s41593_022_01050_4
crossref_primary_10_1007_s00429_023_02637_8
crossref_primary_10_1038_s41593_025_01928_z
crossref_primary_10_1038_d41586_024_01500_y
crossref_primary_10_1038_s41377_019_0219_x
crossref_primary_10_1073_pnas_2122141119
crossref_primary_10_1038_s41598_024_71931_0
crossref_primary_10_1038_s41593_020_0646_2
crossref_primary_10_1007_s00422_020_00830_0
crossref_primary_10_1038_s41593_022_01226_y
crossref_primary_10_1016_j_cub_2020_01_063
crossref_primary_10_3389_fnmol_2020_572312
crossref_primary_10_1016_j_cub_2021_07_061
crossref_primary_10_1126_science_aav4837
crossref_primary_10_1371_journal_pbio_3003296
crossref_primary_10_1038_s41586_024_08397_7
crossref_primary_10_1038_s42003_022_03906_8
crossref_primary_10_1073_pnas_2011266118
crossref_primary_10_1038_s41467_022_28854_z
crossref_primary_10_1016_j_bbr_2019_112112
crossref_primary_10_1007_s10462_025_11270_2
crossref_primary_10_1016_j_neuron_2023_09_013
crossref_primary_10_1038_s41593_018_0241_y
crossref_primary_10_1523_JNEUROSCI_1450_22_2022
crossref_primary_10_1016_j_cell_2024_02_032
crossref_primary_10_1016_j_isci_2023_108536
crossref_primary_10_7554_eLife_97114
crossref_primary_10_1523_JNEUROSCI_2250_22_2023
crossref_primary_10_1523_JNEUROSCI_1619_23_2024
crossref_primary_10_1016_j_neunet_2022_09_033
crossref_primary_10_1002_mco2_148
crossref_primary_10_1101_lm_046748_117
crossref_primary_10_1016_j_conb_2020_08_014
crossref_primary_10_3389_fncir_2022_878046
crossref_primary_10_3390_ijms25116088
crossref_primary_10_1007_s11571_025_10254_w
crossref_primary_10_3389_fncom_2023_1053097
crossref_primary_10_1016_j_neuron_2018_06_037
crossref_primary_10_1038_s41586_025_08868_5
crossref_primary_10_1002_hipo_23300
crossref_primary_10_1017_S0140525X22002990
crossref_primary_10_1016_j_neunet_2020_01_014
crossref_primary_10_1038_s41586_022_05378_6
crossref_primary_10_1038_s41593_020_0614_x
crossref_primary_10_7554_eLife_73046
crossref_primary_10_1515_revneuro_2022_0137
crossref_primary_10_1523_JNEUROSCI_0741_19_2019
crossref_primary_10_1016_j_jad_2022_06_062
crossref_primary_10_1007_s42113_024_00234_4
crossref_primary_10_1038_s41586_021_03989_z
crossref_primary_10_7554_eLife_97114_3
crossref_primary_10_1371_journal_pone_0251480
crossref_primary_10_1038_s41583_022_00620_6
crossref_primary_10_1038_s41583_024_00817_x
crossref_primary_10_1117_1_NPh_11_3_033406
crossref_primary_10_1007_s42113_020_00095_7
crossref_primary_10_1016_j_celrep_2024_114980
crossref_primary_10_1016_j_neuron_2021_12_003
crossref_primary_10_1038_s41593_021_00804_w
crossref_primary_10_1177_2398212820975634
crossref_primary_10_1038_s41593_019_0548_3
crossref_primary_10_1038_s41583_018_0042_z
crossref_primary_10_1073_pnas_2416214122
crossref_primary_10_1073_pnas_2107337119
crossref_primary_10_1016_j_neuron_2023_11_019
crossref_primary_10_1002_hipo_23448
crossref_primary_10_1038_s41593_023_01296_6
crossref_primary_10_1038_s41467_022_34114_x
crossref_primary_10_1038_s41586_022_04913_9
crossref_primary_10_1038_s41467_022_31254_y
crossref_primary_10_1038_s41562_024_01855_2
crossref_primary_10_7554_eLife_100666
crossref_primary_10_1038_s41467_022_34465_5
crossref_primary_10_1016_j_neuron_2021_12_012
crossref_primary_10_1007_s00422_020_00829_7
crossref_primary_10_1073_pnas_2410101122
crossref_primary_10_1016_j_neuron_2021_12_017
crossref_primary_10_3389_fnins_2020_615337
crossref_primary_10_1016_j_isci_2025_113009
crossref_primary_10_1176_appi_ajp_2019_19020212
crossref_primary_10_1038_s41583_021_00479_z
crossref_primary_10_1016_j_neuron_2022_03_026
crossref_primary_10_1126_science_adk9385
crossref_primary_10_1038_s41593_021_00841_5
crossref_primary_10_1038_s42003_020_01129_3
crossref_primary_10_1371_journal_pcbi_1011101
crossref_primary_10_1016_j_tins_2023_08_003
crossref_primary_10_7554_eLife_85646_3
crossref_primary_10_1186_s13041_023_01042_w
crossref_primary_10_1186_s12888_023_05001_6
crossref_primary_10_7554_eLife_51140
crossref_primary_10_1016_j_conb_2023_102800
crossref_primary_10_1038_s41586_022_05113_1
crossref_primary_10_1073_pnas_2404169121
crossref_primary_10_7554_eLife_95213_4
crossref_primary_10_1103_PhysRevResearch_7_L022039
crossref_primary_10_1038_s41586_022_05146_6
crossref_primary_10_7554_eLife_80280
crossref_primary_10_1038_s42255_024_01194_6
crossref_primary_10_1111_gbb_12686
crossref_primary_10_7554_eLife_52466
crossref_primary_10_1016_j_cub_2021_12_024
crossref_primary_10_1038_s41586_018_0740_8
crossref_primary_10_1038_s41593_025_01908_3
crossref_primary_10_1016_j_conb_2022_102604
crossref_primary_10_1038_s41467_024_47361_x
crossref_primary_10_1016_j_neuron_2023_08_021
crossref_primary_10_1016_j_jad_2021_12_085
crossref_primary_10_1016_j_neubiorev_2024_105574
crossref_primary_10_1016_j_bbr_2022_113790
crossref_primary_10_1038_s41593_025_01985_4
crossref_primary_10_1002_hipo_23489
crossref_primary_10_1016_j_cobeha_2020_02_017
crossref_primary_10_7554_eLife_75391
crossref_primary_10_1038_s41586_025_09245_y
crossref_primary_10_1007_s00429_019_02001_9
crossref_primary_10_1016_j_neubiorev_2019_11_007
crossref_primary_10_1038_s41586_021_03652_7
crossref_primary_10_1038_s41467_023_41526_w
crossref_primary_10_1016_j_bbr_2024_115384
crossref_primary_10_1016_j_neuron_2024_10_027
crossref_primary_10_1371_journal_pbio_3002706
crossref_primary_10_1038_s41593_022_01051_3
crossref_primary_10_1016_j_cub_2021_07_058
crossref_primary_10_7554_eLife_95213
crossref_primary_10_7554_eLife_85646
crossref_primary_10_1371_journal_pcbi_1012085
crossref_primary_10_1038_s12276_021_00587_x
crossref_primary_10_1016_j_snr_2024_100274
crossref_primary_10_1016_j_neuroscience_2023_08_012
crossref_primary_10_1038_s41593_022_01201_7
crossref_primary_10_1523_JNEUROSCI_2479_21_2022
crossref_primary_10_1038_s41467_024_45853_4
crossref_primary_10_1016_j_cell_2020_09_024
crossref_primary_10_1016_j_cophys_2020_04_003
crossref_primary_10_1146_annurev_psych_020821_111311
crossref_primary_10_1002_hipo_70014
crossref_primary_10_1016_j_neuron_2019_12_029
crossref_primary_10_1002_hipo_23143
crossref_primary_10_1038_s41593_025_01986_3
crossref_primary_10_1038_s41593_019_0523_z
crossref_primary_10_1038_s41467_024_47570_4
crossref_primary_10_3389_fnsys_2021_718619
crossref_primary_10_1016_j_neuron_2018_10_002
crossref_primary_10_1016_j_neuron_2018_10_006
crossref_primary_10_1038_s41467_023_42611_w
crossref_primary_10_1038_s41593_025_01930_5
crossref_primary_10_1152_jn_00339_2021
crossref_primary_10_1016_j_neuron_2021_10_003
crossref_primary_10_1038_s41593_022_01153_y
crossref_primary_10_3390_brainsci13020322
crossref_primary_10_1016_j_cub_2019_11_048
crossref_primary_10_7554_eLife_55252
crossref_primary_10_7554_eLife_45333
crossref_primary_10_1007_s42113_024_00230_8
crossref_primary_10_1093_scan_nsac017
crossref_primary_10_1371_journal_pcbi_1008835
crossref_primary_10_7554_eLife_100666_3
crossref_primary_10_1038_s41598_021_93721_8
crossref_primary_10_1038_s41467_020_17270_w
crossref_primary_10_1371_journal_pcbi_1007875
crossref_primary_10_1038_s41586_024_07867_2
crossref_primary_10_1016_j_conb_2023_102803
crossref_primary_10_7554_eLife_43140
crossref_primary_10_1038_s41467_023_35967_6
crossref_primary_10_7554_eLife_51458
crossref_primary_10_7554_eLife_80663
crossref_primary_10_1111_mila_12522
crossref_primary_10_1016_j_neubiorev_2021_11_038
crossref_primary_10_1016_j_bbi_2020_07_028
crossref_primary_10_1093_scan_nsac006
crossref_primary_10_1016_j_celrep_2025_116033
crossref_primary_10_3389_fnins_2023_1200842
crossref_primary_10_1080_15230406_2023_2264758
crossref_primary_10_7554_eLife_44487
crossref_primary_10_1016_j_cub_2021_04_073
crossref_primary_10_3390_electronics12204212
crossref_primary_10_7554_eLife_83012
crossref_primary_10_1016_j_psyneuen_2020_105097
crossref_primary_10_1038_s41593_023_01557_4
ContentType Journal Article
Copyright Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2018.06.008
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 30008297
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: F32 NS077840
– fundername: NIMH NIH HHS
  grantid: R01 MH083686
– fundername: NINDS NIH HHS
  grantid: R37 NS081242
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8FE
8FH
AAEDT
AAEDW
AAFWJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGKMS
AHHHB
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
ID FETCH-LOGICAL-c557t-d60b23ce0085a191b8820b4d7a6dedb15fec702dbbbe077728ae1ce29866e7802
IEDL.DBID 7X8
ISICitedReferencesCount 239
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438378100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Sun Sep 28 07:39:14 EDT 2025
Mon Jul 21 05:59:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords place fields
reward
CA1
navigation
virtual reality
hippocampus
place cells
subiculum
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-d60b23ce0085a191b8820b4d7a6dedb15fec702dbbbe077728ae1ce29866e7802
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0896627318304768/pdf
PMID 30008297
PQID 2070792169
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2070792169
pubmed_primary_30008297
PublicationCentury 2000
PublicationDate 2018-07-11
PublicationDateYYYYMMDD 2018-07-11
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2018
References 29991694 - Nat Rev Neurosci. 2018 Aug;19(8):443
30001513 - Neuron. 2018 Jul 11;99(1):7-10
References_xml – reference: 30001513 - Neuron. 2018 Jul 11;99(1):7-10
– reference: 29991694 - Nat Rev Neurosci. 2018 Aug;19(8):443
SSID ssj0014591
Score 2.6601996
Snippet The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 179
SubjectTerms Animals
CA1 Region, Hippocampal - cytology
CA1 Region, Hippocampal - diagnostic imaging
CA1 Region, Hippocampal - physiology
Hippocampus - cytology
Hippocampus - diagnostic imaging
Hippocampus - physiology
Mice
Motivation
Neurons - cytology
Neurons - physiology
Optical Imaging
Reward
Spatial Navigation - physiology
Task Performance and Analysis
Virtual Reality
Title A Dedicated Population for Reward Coding in the Hippocampus
URI https://www.ncbi.nlm.nih.gov/pubmed/30008297
https://www.proquest.com/docview/2070792169
Volume 99
WOSCitedRecordID wos000438378100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx0fqoL1YQb4HdJJvd4EGKWnrQUkSht5DdTKGHJtG0Qv-9s5vUngTBSw6BhDCZ3fl2vpn5CLkJfB5g4DGeQnjshTABLw0VeCYGBLcaIQFzjcLPcjhU43E8ahJuVVNWudoT3UadFcbmyG0mhMnY51F8X354VjXKsquNhMYmaQUIZaxXy_GaRQiFU8yzJKtlO-NV65yr73LzIu0EVF5P8GTqd5Dpgk1__7-feUD2GphJe7VfHJINyNuk08vxiD1b0lvqCj9dRr1Ndmo9ymWH3PXooyNuEIbS0Y-0F0VgS1_B1tfSh8IGOzrNKSJHOpiWJQbDWbmojsh7_-ntYeA16gqeEULOvSxi2g8MWNCV4qlNI9ZmOsxkGmWQaS4mYCTzM601MIkgXKXADfixiiKQivnHZCsvcjglNMQ7aahVyCcq9KVMVWbwZQIiIQLJRJdcr4yVoPdaSiLNoVhUydpcXXJSWzwp6zEbSdA0_p794elzsmt_pE26cn5BWhNcu3BJts3XfFp9Xjm3wOtw9PINTW6_5A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dedicated+Population+for+Reward+Coding+in+the+Hippocampus&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Gauthier%2C+Jeffrey+L&rft.au=Tank%2C+David+W&rft.date=2018-07-11&rft.eissn=1097-4199&rft.volume=99&rft.issue=1&rft.spage=179&rft_id=info:doi/10.1016%2Fj.neuron.2018.06.008&rft_id=info%3Apmid%2F30008297&rft_id=info%3Apmid%2F30008297&rft.externalDocID=30008297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon