Drought Has a Greater Negative Effect on the Growth of the C3 Chenopodium quinoa Crop Halophyte than Elevated CO2 and/or High Temperature

Plant growth and productivity are predicted to be affected by rising CO2 concentrations, drought and temperature stress. The C3 crop model in a changing climate is Chenopodium quinoa Willd—a protein-rich pseudohalphyte (Amaranthaceae). Morphophysiological, biochemical and molecular genetic studies w...

Full description

Saved in:
Bibliographic Details
Published in:Plants Vol. 13; no. 12; p. 1666
Main Authors: Rakhmankulova, Zulfira, Shuyskaya, Elena, Prokofieva, Maria, Toderich, Kristina, Saidova, Luizat, Lunkova, Nina, Voronin, Pavel
Format: Journal Article
Language:English
Published: Basel MDPI AG 16.06.2024
MDPI
Subjects:
ISSN:2223-7747, 2223-7747
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Plant growth and productivity are predicted to be affected by rising CO2 concentrations, drought and temperature stress. The C3 crop model in a changing climate is Chenopodium quinoa Willd—a protein-rich pseudohalphyte (Amaranthaceae). Morphophysiological, biochemical and molecular genetic studies were performed on quinoa grown at ambient (400 ppm, aCO2) and elevated (800 ppm, eCO2) CO2 concentrations, drought (D) and/or high temperature (eT) treatments. Among the single factors, drought caused the greatest stress response, inducing disturbances in the light and dark photosynthesis reactions (PSII, apparent photosynthesis) and increasing oxidative stress (MDA). Futhermore, compensation mechanisms played an important protective role against eT or eCO2. The disruption of the PSII function was accompanied by the activation of the expression of PGR5, a gene of PSI cyclic electron transport (CET). Wherein under these conditions, the constant Rubisco content was maintained due to an increase in its biosynthesis, which was confirmed by the activation of rbcL gene expression. In addition, the combined stress treatments D+eT and eCO2+D+eT caused the greatest negative effect, as measured by increased oxidative stress, decreased water use efficiency, and the functioning of protective mechanisms, such as photorespiration and the activity of antioxidant enzymes. Furthermore, decreased PSII efficiency and increased non-photochemical quenching (NPQ) were not accompanied by the activation of protective mechanisms involving PSI CET. In summary, results show that the greatest stress experienced by C. quinoa plants was caused by drought and the combined stresses D+eT and eCO2+D+eT. Thus, drought consistently played a decisive role, leading to increased oxidative stress and a decrease in defense mechanism effectiveness.
AbstractList Plant growth and productivity are predicted to be affected by rising CO2 concentrations, drought and temperature stress. The C3 crop model in a changing climate is Chenopodium quinoa Willd—a protein-rich pseudohalphyte (Amaranthaceae). Morphophysiological, biochemical and molecular genetic studies were performed on quinoa grown at ambient (400 ppm, aCO2) and elevated (800 ppm, eCO2) CO2 concentrations, drought (D) and/or high temperature (eT) treatments. Among the single factors, drought caused the greatest stress response, inducing disturbances in the light and dark photosynthesis reactions (PSII, apparent photosynthesis) and increasing oxidative stress (MDA). Futhermore, compensation mechanisms played an important protective role against eT or eCO2. The disruption of the PSII function was accompanied by the activation of the expression of PGR5, a gene of PSI cyclic electron transport (CET). Wherein under these conditions, the constant Rubisco content was maintained due to an increase in its biosynthesis, which was confirmed by the activation of rbcL gene expression. In addition, the combined stress treatments D+eT and eCO2+D+eT caused the greatest negative effect, as measured by increased oxidative stress, decreased water use efficiency, and the functioning of protective mechanisms, such as photorespiration and the activity of antioxidant enzymes. Furthermore, decreased PSII efficiency and increased non-photochemical quenching (NPQ) were not accompanied by the activation of protective mechanisms involving PSI CET. In summary, results show that the greatest stress experienced by C. quinoa plants was caused by drought and the combined stresses D+eT and eCO2+D+eT. Thus, drought consistently played a decisive role, leading to increased oxidative stress and a decrease in defense mechanism effectiveness.
Plant growth and productivity are predicted to be affected by rising CO₂ concentrations, drought and temperature stress. The C₃ crop model in a changing climate is Chenopodium quinoa Willd—a protein-rich pseudohalphyte (Amaranthaceae). Morphophysiological, biochemical and molecular genetic studies were performed on quinoa grown at ambient (400 ppm, aCO₂) and elevated (800 ppm, eCO₂) CO₂ concentrations, drought (D) and/or high temperature (eT) treatments. Among the single factors, drought caused the greatest stress response, inducing disturbances in the light and dark photosynthesis reactions (PSII, apparent photosynthesis) and increasing oxidative stress (MDA). Futhermore, compensation mechanisms played an important protective role against eT or eCO₂. The disruption of the PSII function was accompanied by the activation of the expression of PGR5, a gene of PSI cyclic electron transport (CET). Wherein under these conditions, the constant Rubisco content was maintained due to an increase in its biosynthesis, which was confirmed by the activation of rbcL gene expression. In addition, the combined stress treatments D+eT and eCO₂+D+eT caused the greatest negative effect, as measured by increased oxidative stress, decreased water use efficiency, and the functioning of protective mechanisms, such as photorespiration and the activity of antioxidant enzymes. Furthermore, decreased PSII efficiency and increased non-photochemical quenching (NPQ) were not accompanied by the activation of protective mechanisms involving PSI CET. In summary, results show that the greatest stress experienced by C. quinoa plants was caused by drought and the combined stresses D+eT and eCO₂+D+eT. Thus, drought consistently played a decisive role, leading to increased oxidative stress and a decrease in defense mechanism effectiveness.
Author Nina Lunkova
Zulfira Rakhmankulova
Kristina Toderich
Maria Prokofieva
Elena Shuyskaya
Luizat Saidova
Pavel Voronin
AuthorAffiliation 1 K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; zulfirar@mail.ru (Z.R.); evshuya@gmail.com (E.S.); maria.vdovitchenko@gmail.com (M.P.); saidovaluizat@mail.ru (L.S.); nina.lunkova@gmail.com (N.L.)
2 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan
AuthorAffiliation_xml – name: 2 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan
– name: 1 K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; zulfirar@mail.ru (Z.R.); evshuya@gmail.com (E.S.); maria.vdovitchenko@gmail.com (M.P.); saidovaluizat@mail.ru (L.S.); nina.lunkova@gmail.com (N.L.)
Author_xml – sequence: 1
  givenname: Zulfira
  surname: Rakhmankulova
  fullname: Rakhmankulova, Zulfira
– sequence: 2
  givenname: Elena
  orcidid: 0000-0001-7701-8610
  surname: Shuyskaya
  fullname: Shuyskaya, Elena
– sequence: 3
  givenname: Maria
  surname: Prokofieva
  fullname: Prokofieva, Maria
– sequence: 4
  givenname: Kristina
  orcidid: 0000-0003-2825-7214
  surname: Toderich
  fullname: Toderich, Kristina
– sequence: 5
  givenname: Luizat
  surname: Saidova
  fullname: Saidova, Luizat
– sequence: 6
  givenname: Nina
  surname: Lunkova
  fullname: Lunkova, Nina
– sequence: 7
  givenname: Pavel
  orcidid: 0000-0002-2239-2506
  surname: Voronin
  fullname: Voronin, Pavel
BackLink https://cir.nii.ac.jp/crid/1874243916266213760$$DView record in CiNii
BookMark eNp1kstu1DAUhiNUJErplrUlWLCZ1pfETlYIhaFTqaKbsrZO4pOJRxk7dZyp-go8Bc_Ck-HpVIiphGX5dv7_s-Vz3mYnzjvMsveMXghR0ctxABcnJhhnUspX2SnnXCyUytXJP-s32fk0bWhqZepMnmY_vwY_r_tIVjARIFcBIWIg33EN0e6QLLsO20i8I7HHFPYPsSe-e9rV4vevukfnR2_svCX3s3UeSB38mHCDH_vHiEkJjiwH3CWwIfUtJ-DMpQ9kZdc9ucPtiAHiHPBd9rqDYcLz5_ks-_FteVevFje3V9f1l5tFWxQqLoDRomk6VAUvBKuQV9A1FTWNlLSgDRNlWRnTpniuuiodlcBKWbVVC0q2bS7OsusD13jY6DHYLYRH7cHqpwMf1hpCtO2AuqsaUMjQsDzPsTJQ0A5AIHBaGIMmsT4fWOPcbDHd6mKA4Qh6HHG212u_04xxqpRgifDpmRD8_YxT1Fs7tTikfKKfJy1YIWRRpmQl6YcX0o2fg0t_pQVVPKkKWiXVxUHVBj9NAbu_r2FU72tFH9dKMuQvDK2NKft-_2I7_N_28WBz1ibHfmSlynkuKia5lJwJJan4A0UF0kg
CitedBy_id crossref_primary_10_1080_22797254_2024_2422330
crossref_primary_10_1016_j_scienta_2025_113980
Cites_doi 10.1016/j.plantsci.2018.05.008
10.3389/fpls.2023.1111875
10.1104/pp.19.00956
10.3389/fpls.2022.892676
10.1104/pp.011114
10.1111/ppl.12540
10.1111/j.1365-3040.2010.02192.x
10.2478/intag-2013-0017
10.1126/scisignal.2001346
10.2135/cropsci2001.412385x
10.1111/nph.18087
10.1111/tpj.15483
10.1111/j.1469-8137.2009.02830.x
10.1146/annurev.arplant.58.091406.110525
10.1111/pce.12168
10.1111/nph.16436
10.1111/jipb.12047
10.1093/plphys/kiad647
10.1016/B978-0-12-816091-6.00002-X
10.1016/0003-9861(68)90654-1
10.1038/s41477-019-0526-5
10.1007/s11356-020-11728-6
10.3390/antiox12051060
10.1016/j.ecoenv.2020.111136
10.1093/jxb/erad063
10.1111/gcb.12626
10.3389/fpls.2022.953712
10.1186/s12870-017-1062-y
10.1186/1471-2229-14-111
10.2135/cropsci2012.01.0030
10.1093/jxb/erz486
10.1016/j.plantsci.2019.110387
10.1134/S1021443723601283
10.3389/fpls.2021.702196
10.1007/s11099-013-0021-6
10.1126/science.aas9313
10.1111/nph.12296
10.1111/tpj.13557
10.1007/s11120-013-9880-8
10.1016/j.cub.2012.11.022
10.3390/ijms14059643
10.1186/s12870-019-1788-9
10.21273/JASHS04725-19
10.3390/plants13060800
10.4025/actasciagron.v44i1.53515
10.1016/j.plantsci.2009.06.017
10.1016/j.plantsci.2021.111007
10.1104/pp.103.033431
10.1007/4-431-29361-2
10.1016/j.stress.2023.100296
10.15252/embr.202051598
10.1016/j.agee.2013.06.013
10.3389/fpls.2015.00723
10.1038/s41598-022-21035-4
10.1071/PP00043
10.1007/s11120-016-0223-4
10.1038/s41576-021-00413-0
10.3389/fpls.2021.748204
10.1146/annurev.arplant.55.031903.141610
10.3390/ijms160920392
10.1046/j.1469-8137.2003.00680.x
10.1111/j.1438-8677.2012.00710.x
10.1111/nph.15283
10.3389/fchem.2018.00026
10.1046/j.0016-8025.2001.00730.x
10.1134/S1021443723601349
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID RYH
AAYXX
CITATION
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
5PM
DOA
DOI 10.3390/plants13121666
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_f9ba7e1ed1444e9da50faa3ea205dded
PMC11207731
10_3390_plants13121666
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 23-24-00551
GroupedDBID 53G
5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
OK1
OZF
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PYCSY
RPM
RYH
AAYXX
CITATION
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
5PM
ID FETCH-LOGICAL-c557t-a105bbfe7525319e29afb90db66050b13889ddce7547f90508a1869c9ca76cc43
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001257319300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2223-7747
IngestDate Mon Nov 10 04:29:56 EST 2025
Tue Nov 04 02:05:30 EST 2025
Thu Sep 04 16:28:05 EDT 2025
Fri Jul 25 12:09:39 EDT 2025
Sat Nov 29 07:15:26 EST 2025
Tue Nov 18 21:18:38 EST 2025
Mon Nov 10 09:09:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-a105bbfe7525319e29afb90db66050b13889ddce7547f90508a1869c9ca76cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2239-2506
0000-0001-7701-8610
0000-0003-2825-7214
OpenAccessLink https://www.proquest.com/docview/3072658509?pq-origsite=%requestingapplication%
PQID 3072658509
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_f9ba7e1ed1444e9da50faa3ea205dded
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11207731
proquest_miscellaneous_3153658816
proquest_journals_3072658509
crossref_primary_10_3390_plants13121666
crossref_citationtrail_10_3390_plants13121666
nii_cinii_1874243916266213760
PublicationCentury 2000
PublicationDate 20240616
PublicationDateYYYYMMDD 2024-06-16
PublicationDate_xml – month: 6
  year: 2024
  text: 20240616
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Plants
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lamaoui (ref_37) 2018; 6
Rizhsky (ref_39) 2004; 134
ref_56
Vital (ref_2) 2022; 12
Nouri (ref_7) 2015; 16
Voss (ref_61) 2013; 15
ref_17
Dusenge (ref_24) 2019; 221
Bauer (ref_13) 2013; 23
Salmon (ref_8) 2020; 226
Long (ref_25) 2004; 55
Lu (ref_54) 2020; 292
Berry (ref_6) 2013; 117
Erice (ref_26) 2013; 55
Gu (ref_30) 2010; 33
Nicol (ref_50) 2019; 5
Cao (ref_22) 2022; 13
Zandalinas (ref_32) 2018; 162
ref_68
Hamilton (ref_29) 2001; 24
Lima (ref_46) 2022; 44
ref_66
ref_20
ref_64
Ziska (ref_18) 2000; 27
Ma (ref_53) 2021; 12
Lipiec (ref_36) 2013; 27
Allakhverdiev (ref_58) 2002; 130
Sinha (ref_33) 2021; 311
Nakamura (ref_65) 2013; 199
Chadee (ref_14) 2021; 12
Zhang (ref_3) 2022; 23
Poorter (ref_57) 2009; 182
Liang (ref_51) 2020; 145
Wang (ref_31) 2013; 178
Zandalinas (ref_41) 2022; 234
Ziska (ref_28) 2001; 41
Zhang (ref_43) 2021; 28
ref_35
ref_34
Shikanai (ref_52) 2007; 58
Rakhmankulova (ref_63) 2023; 70
Zinta (ref_59) 2014; 20
Yanhui (ref_15) 2020; 204
Geiger (ref_12) 2011; 4
Yu (ref_21) 2012; 52
Sengupta (ref_44) 2019; 181
Heath (ref_69) 1968; 125
Poorter (ref_19) 2003; 157
Liu (ref_4) 2023; 14
Zandalinas (ref_42) 2020; 71
Hasanuzzaman (ref_9) 2013; 14
Zhang (ref_40) 2017; 90
Burgess (ref_16) 2024; 194
Reich (ref_23) 2018; 360
Kanemoto (ref_27) 2009; 177
Gosa (ref_11) 2019; 282
Fan (ref_60) 2016; 129
Shuyskaya (ref_67) 2023; 70
ref_1
Hancock (ref_55) 2014; 37
Shanker (ref_45) 2022; 13
Chauhan (ref_5) 2023; 10
Moshelion (ref_10) 2020; 21
Ashraf (ref_62) 2013; 51
ref_48
Pandey (ref_49) 2015; 6
Ghannoum (ref_47) 2023; 74
Rivero (ref_38) 2022; 109
References_xml – volume: 282
  start-page: 49
  year: 2019
  ident: ref_11
  article-title: Quantitative and comparative analysis of whole-plant stress physiology studies
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.05.008
– volume: 14
  start-page: 1111875
  year: 2023
  ident: ref_4
  article-title: Metabolic pathways engineering for drought or/and heat tolerance in cereals
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1111875
– volume: 181
  start-page: 1668
  year: 2019
  ident: ref_44
  article-title: Jasmonic acid is required for plant acclimation to a combination of high light and heat stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00956
– volume: 13
  start-page: 892676
  year: 2022
  ident: ref_45
  article-title: High-resolution dissection of photosystem II electron transport reveals differential response to water deficit and heat stress in isolation and combination in pearl millet [Pennisetum glaucum (L.) R. Br.]
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.892676
– volume: 130
  start-page: 1433
  year: 2002
  ident: ref_58
  article-title: Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.011114
– volume: 162
  start-page: 2
  year: 2018
  ident: ref_32
  article-title: Plant adaptations to the combination of drought and high temperatures
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.12540
– volume: 33
  start-page: 1852
  year: 2010
  ident: ref_30
  article-title: Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02192.x
– volume: 27
  start-page: 463
  year: 2013
  ident: ref_36
  article-title: Effect of drought and heat stresses on plant growth and yield: A review
  publication-title: Int. Agrophys.
  doi: 10.2478/intag-2013-0017
– volume: 4
  start-page: ra32
  year: 2011
  ident: ref_12
  article-title: Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001346
– volume: 41
  start-page: 385
  year: 2001
  ident: ref_28
  article-title: Rising atmospheric carbon dioxide and seed yield of soybean genotypes
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2001.412385x
– volume: 234
  start-page: 1161
  year: 2022
  ident: ref_41
  article-title: Plant responses to multifactorial stress combination
  publication-title: New Phytol.
  doi: 10.1111/nph.18087
– volume: 109
  start-page: 373
  year: 2022
  ident: ref_38
  article-title: Developing climate-resilient crops: Improving plant tolerance to stress combination
  publication-title: Plant J.
  doi: 10.1111/tpj.15483
– volume: 182
  start-page: 565
  year: 2009
  ident: ref_57
  article-title: Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: ref_1
– volume: 58
  start-page: 199
  year: 2007
  ident: ref_52
  article-title: Cyclic electron transport around photosystem I: Genetic approaches
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.58.091406.110525
– volume: 37
  start-page: 439
  year: 2014
  ident: ref_55
  article-title: Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12168
– volume: 226
  start-page: 690
  year: 2020
  ident: ref_8
  article-title: Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees
  publication-title: New Phytol.
  doi: 10.1111/nph.16436
– volume: 55
  start-page: 721
  year: 2013
  ident: ref_26
  article-title: Photosynthetic and molecular markers of CO2 mediated photosynthetic down regulation in nodulated alfalfa
  publication-title: J. Integ. Plant Biol.
  doi: 10.1111/jipb.12047
– volume: 194
  start-page: 1255
  year: 2024
  ident: ref_16
  article-title: Double trouble: Compound effects of heat and drought stress on carbon assimilation
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiad647
– ident: ref_35
  doi: 10.1016/B978-0-12-816091-6.00002-X
– volume: 125
  start-page: 180
  year: 1968
  ident: ref_69
  article-title: Photoperoxidation in isolated chloroplasts
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90654-1
– volume: 5
  start-page: 1177
  year: 2019
  ident: ref_50
  article-title: Disentangling the sites of non-photochemical quenching in vascular plants
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0526-5
– volume: 28
  start-page: 15274
  year: 2021
  ident: ref_43
  article-title: The effects of elevated CO2, elevated O3, elevated temperature, and drought on plant leaf gas exchanges: A global meta-analysis of experimental studies
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-020-11728-6
– ident: ref_48
  doi: 10.3390/antiox12051060
– volume: 204
  start-page: 111136
  year: 2020
  ident: ref_15
  article-title: Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111136
– volume: 74
  start-page: 2875
  year: 2023
  ident: ref_47
  article-title: Elevated [CO2] negatively impacts C4 photosynthesis under heat and water stress without penalizing biomass
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erad063
– volume: 20
  start-page: 3670
  year: 2014
  ident: ref_59
  article-title: Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels
  publication-title: Global Chang. Biol.
  doi: 10.1111/gcb.12626
– volume: 13
  start-page: 953712
  year: 2022
  ident: ref_22
  article-title: Elevated CO2 enhanced water use efficiency of wheat to progressive drought stress but not on maize
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.953712
– ident: ref_34
  doi: 10.1186/s12870-017-1062-y
– ident: ref_66
– ident: ref_17
  doi: 10.1186/1471-2229-14-111
– volume: 52
  start-page: 1848
  year: 2012
  ident: ref_21
  article-title: Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature, drought stress, and the combined stress
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2012.01.0030
– volume: 71
  start-page: 1734
  year: 2020
  ident: ref_42
  article-title: Signal transduction networks during stress combination
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz486
– volume: 292
  start-page: 110387
  year: 2020
  ident: ref_54
  article-title: Cyclic electron flow modulate the linear electron flow and reactive oxygen species in tomato leaves under high temperature
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110387
– volume: 70
  start-page: 127
  year: 2023
  ident: ref_67
  article-title: Effect of acclimation to high temperatures on the mechanisms of drought tolerance in species with different types of photosynthesis: Sedobassia sedoides (C3–C4) and Bassia prostrata (C4-NADP)
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443723601283
– volume: 12
  start-page: 702196
  year: 2021
  ident: ref_53
  article-title: The physiological functionality of PGR5/PGRL1-dependent cyclic electron transport in sustaining photosynthesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.702196
– volume: 51
  start-page: 163
  year: 2013
  ident: ref_62
  article-title: Photosynthesis under stressful environments: An overview
  publication-title: Photosynthetica
  doi: 10.1007/s11099-013-0021-6
– volume: 360
  start-page: 317
  year: 2018
  ident: ref_23
  article-title: Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment
  publication-title: Science
  doi: 10.1126/science.aas9313
– volume: 199
  start-page: 832
  year: 2013
  ident: ref_65
  article-title: Promotion of cyclic electron transport around photosystem I during the evolution of NADP-malic enzyme-type c photosynthesis in the genus Flaveria
  publication-title: New Phytol.
  doi: 10.1111/nph.12296
– volume: 90
  start-page: 839
  year: 2017
  ident: ref_40
  article-title: Differences and commonalities of plant responses to single and combined stresses
  publication-title: Plant J.
  doi: 10.1111/tpj.13557
– volume: 117
  start-page: 91
  year: 2013
  ident: ref_6
  article-title: Photosynthetic gene expression in higher plants
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-013-9880-8
– volume: 23
  start-page: 53
  year: 2013
  ident: ref_13
  article-title: The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.11.022
– volume: 14
  start-page: 9643
  year: 2013
  ident: ref_9
  article-title: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms14059643
– ident: ref_20
  doi: 10.1186/s12870-019-1788-9
– volume: 145
  start-page: 12
  year: 2020
  ident: ref_51
  article-title: Effects of drought stress on photosynthetic and physiological parameters of tomato
  publication-title: J. Amer. Soc. Hort. Sci.
  doi: 10.21273/JASHS04725-19
– ident: ref_68
  doi: 10.3390/plants13060800
– volume: 44
  start-page: e53515
  year: 2022
  ident: ref_46
  article-title: Interaction between increased CO2 and temperature enhance plant growth but do not affect millet grain production
  publication-title: Acta Sci. Agron.
  doi: 10.4025/actasciagron.v44i1.53515
– volume: 177
  start-page: 398
  year: 2009
  ident: ref_27
  article-title: Photosynthetic acclimation to elevated CO2 is dependent on N partitioning and transpiration in soybean
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2009.06.017
– volume: 311
  start-page: 111007
  year: 2021
  ident: ref_33
  article-title: The impact of stress combination on reproductive processes in crops
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2021.111007
– volume: 134
  start-page: 1683
  year: 2004
  ident: ref_39
  article-title: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.033431
– ident: ref_56
  doi: 10.1007/4-431-29361-2
– volume: 10
  start-page: 100296
  year: 2023
  ident: ref_5
  article-title: Plant photosynthesis under abiotic stresses: Damages, adaptive, and signaling mechanisms
  publication-title: Plant Stress
  doi: 10.1016/j.stress.2023.100296
– volume: 21
  start-page: e51598
  year: 2020
  ident: ref_10
  article-title: The dichotomy of yield and drought resistance
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051598
– volume: 178
  start-page: 57
  year: 2013
  ident: ref_31
  article-title: Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.06.013
– volume: 6
  start-page: 723
  year: 2015
  ident: ref_49
  article-title: Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00723
– volume: 12
  start-page: 16467
  year: 2022
  ident: ref_2
  article-title: Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21035-4
– volume: 27
  start-page: 979
  year: 2000
  ident: ref_18
  article-title: Sensitivity of field-grown soybean to future atmospheric CO2: Selection for improved productivity in the 21st century
  publication-title: Funct. Plant Biol.
  doi: 10.1071/PP00043
– volume: 129
  start-page: 239
  year: 2016
  ident: ref_60
  article-title: Obstacles in the quantification of the cyclic electron flux around photosystem I in leaves of C3 plants
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-016-0223-4
– volume: 23
  start-page: 104
  year: 2022
  ident: ref_3
  article-title: Abiotic stress responses in plants
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00413-0
– volume: 12
  start-page: 748204
  year: 2021
  ident: ref_14
  article-title: The Complementary roles of chloroplast cyclic electron transport and mitochondrial alternative oxidase to ensure photosynthetic performance
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.748204
– volume: 55
  start-page: 591
  year: 2004
  ident: ref_25
  article-title: Rising atmospheric carbon dioxide: Plants FACE the future
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141610
– ident: ref_64
– volume: 16
  start-page: 20392
  year: 2015
  ident: ref_7
  article-title: Abiotic stresses: Insight into gene regulation and protein expression in photosynthetic pathways of plants
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160920392
– volume: 157
  start-page: 175
  year: 2003
  ident: ref_19
  article-title: Plant growth and competition at elevated CO2: On winners, losers and functional groups
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00680.x
– volume: 15
  start-page: 713
  year: 2013
  ident: ref_61
  article-title: Emerging concept for the role of photorespiration as an important part of abiotic stress response
  publication-title: Plant Biol.
  doi: 10.1111/j.1438-8677.2012.00710.x
– volume: 221
  start-page: 32
  year: 2019
  ident: ref_24
  article-title: Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration
  publication-title: New Phytol.
  doi: 10.1111/nph.15283
– volume: 6
  start-page: 26
  year: 2018
  ident: ref_37
  article-title: Heat and drought stresses in crops and approaches for their mitigation
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00026
– volume: 24
  start-page: 975
  year: 2001
  ident: ref_29
  article-title: Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.0016-8025.2001.00730.x
– volume: 70
  start-page: 117
  year: 2023
  ident: ref_63
  article-title: Effect of elevated CO2 and temperature on plants with different type of photosynthesis: Quinoa (C3) and Amaranth (C4)
  publication-title: Russ. J. Plant. Physiol.
  doi: 10.1134/S1021443723601349
SSID ssj0000800816
Score 2.286455
Snippet Plant growth and productivity are predicted to be affected by rising CO2 concentrations, drought and temperature stress. The C3 crop model in a changing...
Plant growth and productivity are predicted to be affected by rising CO₂ concentrations, drought and temperature stress. The C₃ crop model in a changing...
SourceID doaj
pubmedcentral
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1666
SubjectTerms Biomass
Biosynthesis
Botany
Carbon dioxide
Carbon dioxide concentration
Chenopodium quinoa
climate
Climate change
Combined stress
crop models
Drought
Efficiency
electron transfer
Electron transport
Gene expression
genes
Halophytes
Heat
Heat resistance
High temperature
individual factors
Metabolism
Oxidative stress
Photochemicals
Photorespiration
Photosynthesis
Photosystem II
Physiology
Plant growth
Plant resistance
protective effect
protective mechanisms
PSI cyclic electron transport
QK1-989
Quinoa
RbcL gene
Ribulose-bisphosphate carboxylase
stress response
Temperature
Water
Water use
Water use efficiency
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ1QMXxK8ItMhISJyijX8Sx0caWvWAFg5F6i2yY5sNWuxtNlvEK_AUPAtPxjhJV5sD4sIlUuxR5HhmMt8kk28QesOocIUjZSqIzVOeNyRVjOtU2Fw3jEGQGEmSPojlsry-lp8OWn3FmrCRHnjcuIWTWglLrAHkz600Ks-cUswqmuXgmiY-fQH1HCRTXyccVJJiZGlkkNcvNutYV0IYofFD2SwKDWT9EFt8285w5rxK8iDsXDxEDya8iN-N63yE7ln_GB2fBcB0P56gn--HLjs9vlRbrPCQ79sOL-2Xgc8bj9zEOHgMOA-mw_d-hYMbzir2-1e1sj5sgml33_DNrvVB4aoLG7jcOsD-9xbHN-v4fG1v4cIGVx8pVt4sQodjgQi-soC6R1bmp-jzxflVdZlO3RXSJs9FnypAVlo7K3Ia_dBSqZyWmdEFZDiZJqAlaeDmRc6FkzBUqti-qpGNEkXTcPYMHfng7XOEC505rS2BgEu4k6UyVBaCGw5jHABZgtK73a6biXo8dsBY15CCRO3Uc-0k6O1efjOSbvxV8iwqby8VybKHATChejKh-l8mlKBTUD2sLB5jj0I6_I4M0IWSWDOUoJM7o6gnD9_W8GykgN4AbyXo9X4afDN-cFHehh3IQDgBGTDEBJUzY5oteD7j29XA8g1AOBOCkRf_4xZfovsU0FiscSPFCTrqu509RcfNbd9uu1eD7_wBbg8hzQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Drought Has a Greater Negative Effect on the Growth of the C3 Chenopodium quinoa Crop Halophyte than Elevated CO2 and/or High Temperature
URI https://cir.nii.ac.jp/crid/1874243916266213760
https://www.proquest.com/docview/3072658509
https://www.proquest.com/docview/3153658816
https://pubmed.ncbi.nlm.nih.gov/PMC11207731
https://doaj.org/article/f9ba7e1ed1444e9da50faa3ea205dded
Volume 13
WOSCitedRecordID wos001257319300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M0K
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: PATMY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2223-7747
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800816
  issn: 2223-7747
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg7YEL36gp7cpISJyijeMkTk4VG7Yqgi4RKlI5RXbsdCMtcZrNFnHhzr9m7GS35AAXLpZijxIrM_Y8TyZvEHpNfVZGJYldRlToBmFBXE4D4TIVioJScBI9SdJHtljEV1dJNgTc1kNa5XZPtBu11IWJkU_BFn3wluDfTpsb11SNMl9XhxIa99G-YUmgNnUv28VYDBqKSdRzNVI43U-blckuIRSkI0uMeOeLLGU_eJi6qkZoc5wr-YfzOXv0v9N-jB4OsBO_7e3kCbqn6qfoYKYBGv54hn69s8V6OnzO15hjGzZQLV6oa0sLjnuKY6xrDHARhvX3bol1aa9SitOlqnWjZbX5hm82Va05TlvdwN1WGrTYKWzi83i-UrdwX4nTTz7mtZzqFps0E3ypALv33M7P0Zez-WV67g41GtwiDFnncsBnQpSKhb5ZzcpPeCkST4oIzkmeIKDrRMLLY2HAygS6Ym6KYBVJwVlUFAF9gfZqXatDhCPhlUIoAm6bBGUSc-knEQtkAH0BwDoHuVtt5cVAYG7qaKxyOMgY7eZj7TrozU6-6ak7_io5M8rfSRnKbduh2-t8WMF5mQjOFFESjqCBSiQPvZJzqrjvheAjpINOwHRgZqY1lQ59-1MzACCfmMwjBx1vLSQf9ol1fmceDnq1G4YVbj7b8FrpDciAYYMMGLKD4pExjiY8HqmrpeUKBzjtMUbJ0b-f_hI98AGtmRw4Eh2jva7dqBN0UNx21bqdoP3ZfJF9ntiABbQX3oeJXWmm_TmH8ez9Rfb1Nx1fMsc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKqQQX_isCLRgJxCna2E7i-IAQ3bbaqsvSwyL1Fhzb6UZa4jSbbdVH4GV4RsbJ7kIOcOuBS6TYI8dKPs98Y09mEHrLKM_jnCQ-Jybyw0gRX7Iw87mJMsUYGIkuSdKYTybJ-bk420I_1__CuLDKtU5sFbW2yu2RDwCLFKwl2LeP1aXvqka509V1CY0OFqfm5hpctsWHk0P4vu8oPT6aDkf-qqqAr6KIN74ERpFlueERdfgzVMg8E4HOYmD2QUZgdkJrBf0hzwU0JdKVbVJCSR4rFTIY9w66CzSCJm2o4NlmT8exr4TEXW5IxkQwqOYumoUwQt3xXM_2tSUCwKKVRdFjt_3YzD-M3fHD_-01PUIPVrQaf-rWwWO0ZconaOfAAvW9eYp-HLbFiBo8kgsscbstYmo8MRdt2nPcpXDGtsRAh6HbXjczbPP2bsjwcGZKW1ldLL_jy2VRWomHta1gtLkFlDYGu_MHfDQ3VzCuxsMvFMtSD2yNXRgNnhrwTbrc1c_Q11t5Dbtou7SleY5wnAV5lhkCtISEuUikpiLmoQ6hLQTa6iF_jY5UrRK0uzoh8xQcNYemtI8mD73fyFddapK_Sh44sG2kXErxtsHWF-lKQ6W5yCQ3xGhwsUMjtIyCXEpmJA0isIHaQ_sAVZiZu7pKjrT9aRsIHiUusspDe2tEpis9uEh_w9FDbzbdoMHcsZQsjV2CDBhdkIGF46GkB_7ehPs9ZTFrc6GDuxBwzsiLfz_9Nbo3mn4ep-OTyelLdJ8CM3XxfiTeQ9tNvTT7aEddNcWiftWuaIy-3fba-AUfs4iv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGmBCX8V9kbGAkEKeosZ3E8QEh1q7atKn0MKTdgmM7a6QSd2m6aR-Br8Sn4zlJCznAbQculWo_uVb6e-_9nv3yHkLvGOV5nJPE58REfhgp4ksWZj43UaYYAyfRFkk645NJcnEhplvo5_pdGJdWubaJjaHWVrkz8gFgkYK3BP82yLu0iOlo_Glx5bsOUu6mdd1Oo4XIqbm9gfBt-fFkBP_1e0rHR-fDY7_rMOCrKOK1L4FdZFlueEQdFg0VMs9EoLMYWH6QEdip0FrBfMhzAUOJdC2clFCSx0qFDNa9h-5zV7S8SRucbs53HBNLSNzWiWRMBIPF3GW2EEaou6rr-cGmXQB4t7Ioeky3n6f5h-MbP_qfH9ljtNvRbfy51Y8naMuUT9HOoQVKfPsM_Rg1TYpqfCyXWOLmuMRUeGIum3LouC3tjG2JgSbDtL2pZ9jmzbchw8OZKe3C6mL1HV-titJKPKzsAlabW0BvbbC7l8BHc3MN62o8_EKxLPXAVtil1-BzAzFLW9P6Ofp6J4_hBdoubWleIhxnQZ5lhgBdIWEuEqmpiHmoQxgLgc56yF8jJVVd4XbXP2SeQgDnkJX2keWhDxv5RVuy5K-Shw54GylXarwZsNVl2lmuNBeZ5IYYDaF3aISWUZBLyYykQQS-UXvoAGALO3OfrsMjbV7mBuJHicu48tD-Gp1pZx-X6W9oeujtZhosm7uukqWxK5ABZwwyoEQeSnqK0Ntwf6YsZk2NdAgjAs4Z2fv3r79BD0Al0rOTyekr9JACYXVpgCTeR9t1tTIHaEdd18Wyet0oN0bf7lo1fgGOLpFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drought+Has+a+Greater+Negative+Effect+on+the+Growth+of+the+C3%C2%A0Chenopodium+quinoa+Crop+Halophyte+than+Elevated+CO2+and%2For+High+Temperature&rft.jtitle=Plants+%28Basel%29&rft.au=Rakhmankulova%2C+Zulfira&rft.au=Shuyskaya%2C+Elena&rft.au=Prokofieva%2C+Maria&rft.au=Toderich%2C+Kristina&rft.date=2024-06-16&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=13&rft.issue=12&rft.spage=1666&rft_id=info:doi/10.3390%2Fplants13121666&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_plants13121666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon