Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus

Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cel...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Vol. 93; no. 3; p. 677
Main Authors: GoodSmith, Douglas, Chen, Xiaojing, Wang, Cheng, Kim, Sang Hoon, Song, Hongjun, Burgalossi, Andrea, Christian, Kimberly M, Knierim, James J
Format: Journal Article
Language:English
Published: United States 08.02.2017
Subjects:
ISSN:1097-4199, 1097-4199
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.
AbstractList Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.
Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.
Author Chen, Xiaojing
Kim, Sang Hoon
GoodSmith, Douglas
Christian, Kimberly M
Knierim, James J
Wang, Cheng
Burgalossi, Andrea
Song, Hongjun
Author_xml – sequence: 1
  givenname: Douglas
  surname: GoodSmith
  fullname: GoodSmith, Douglas
  organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Xiaojing
  surname: Chen
  fullname: Chen, Xiaojing
  organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 3
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 4
  givenname: Sang Hoon
  surname: Kim
  fullname: Kim, Sang Hoon
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
– sequence: 5
  givenname: Hongjun
  surname: Song
  fullname: Song, Hongjun
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
– sequence: 6
  givenname: Andrea
  surname: Burgalossi
  fullname: Burgalossi, Andrea
  organization: Werner-Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany
– sequence: 7
  givenname: Kimberly M
  surname: Christian
  fullname: Christian, Kimberly M
  organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA
– sequence: 8
  givenname: James J
  surname: Knierim
  fullname: Knierim, James J
  email: jknierim@jhu.edu
  organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA. Electronic address: jknierim@jhu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28132828$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAQhoOsuB_6D0Ry9NKaTNo0Ocq6rsIugh_nkrZT7NJNatIe9t9btIKnmQeeGV7eJZlZZ5GQa85izri8O8QWB-9sDCPFHGIG8owsONNZlHCtZ__2OVmGcGCMJ6nmF2QOigtQoBZk_9aZvjEtfcXOY0Dbj-hsoK6mW2_s0CJdY9sGamxF9y6E08Sj0H8iffg5Qbo9-SFckvPatAGvprkiH4-b9_VTtHvZPq_vd1GZplkfpUmhMwSJvOTGsDGTSFXJUaGojSnKUmbAhKgQAaSqpDS6AqVVXbCkTlkGK3L7-7fz7mvA0OfHJpRjLGPRDSHnSoIWWmsxqjeTOhRHrPLON0fjT_lfBfANaclhAw
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3040298
crossref_primary_10_7554_eLife_82697
crossref_primary_10_1016_j_bios_2023_115797
crossref_primary_10_1016_j_neuron_2017_07_028
crossref_primary_10_1016_j_neubiorev_2019_11_010
crossref_primary_10_1523_JNEUROSCI_2455_20_2020
crossref_primary_10_3389_fncom_2022_826278
crossref_primary_10_1002_advs_202410927
crossref_primary_10_1038_s41583_021_00479_z
crossref_primary_10_1038_s41467_023_35805_9
crossref_primary_10_1007_s13311_017_0528_9
crossref_primary_10_1038_s41598_020_69867_2
crossref_primary_10_7554_eLife_95764_4
crossref_primary_10_1126_science_adj9198
crossref_primary_10_1073_pnas_2312752120
crossref_primary_10_1002_syn_21972
crossref_primary_10_7554_eLife_100196_4
crossref_primary_10_1038_s41467_022_34039_5
crossref_primary_10_1038_s41467_024_44882_3
crossref_primary_10_1523_JNEUROSCI_1008_21_2022
crossref_primary_10_1155_2019_1815371
crossref_primary_10_1002_hipo_23066
crossref_primary_10_1016_j_nlm_2017_11_012
crossref_primary_10_1016_j_tins_2018_03_014
crossref_primary_10_1016_j_nbd_2023_106311
crossref_primary_10_1016_j_neuron_2020_05_022
crossref_primary_10_1002_hipo_23468
crossref_primary_10_1002_hipo_23469
crossref_primary_10_1002_hipo_23623
crossref_primary_10_7554_eLife_88608
crossref_primary_10_1002_hipo_23585
crossref_primary_10_1007_s11055_021_01169_0
crossref_primary_10_1038_s41593_019_0484_2
crossref_primary_10_7554_eLife_65786
crossref_primary_10_1038_s41598_019_53192_4
crossref_primary_10_7554_eLife_95764
crossref_primary_10_1016_j_neuron_2018_05_007
crossref_primary_10_1002_advs_202301367
crossref_primary_10_1523_JNEUROSCI_2596_19_2020
crossref_primary_10_1016_j_bbr_2019_112373
crossref_primary_10_1073_pnas_2006138117
crossref_primary_10_1038_s41467_018_06899_3
crossref_primary_10_1007_s00441_017_2732_7
crossref_primary_10_1016_j_neuron_2017_01_021
crossref_primary_10_1016_j_nlm_2018_03_006
crossref_primary_10_1016_j_bpsgos_2021_04_005
crossref_primary_10_1038_s41467_025_60841_y
crossref_primary_10_1002_hipo_23415
crossref_primary_10_1002_hipo_23536
crossref_primary_10_1016_j_conb_2020_03_004
crossref_primary_10_1523_JNEUROSCI_0922_21_2022
crossref_primary_10_1523_JNEUROSCI_1724_20_2021
crossref_primary_10_1016_j_jneumeth_2019_108397
crossref_primary_10_1111_bph_70185
crossref_primary_10_1186_s12974_024_03217_1
crossref_primary_10_7554_eLife_74172
crossref_primary_10_1016_j_neuron_2018_07_010
crossref_primary_10_1038_s41586_018_0191_2
crossref_primary_10_1002_hipo_22956
crossref_primary_10_1016_j_celrep_2024_114382
crossref_primary_10_1016_j_bbr_2019_112005
crossref_primary_10_1016_j_celrep_2024_114386
crossref_primary_10_7554_eLife_100196
crossref_primary_10_1016_j_nbd_2024_106719
crossref_primary_10_1113_JP283728
crossref_primary_10_1016_j_cub_2022_01_023
crossref_primary_10_1038_s41467_022_33947_w
crossref_primary_10_7554_eLife_75391
crossref_primary_10_1002_hipo_23400
crossref_primary_10_1093_function_zqaf035
crossref_primary_10_1016_j_neubiorev_2019_11_006
crossref_primary_10_7554_eLife_66612
crossref_primary_10_1073_pnas_2201151119
crossref_primary_10_1126_science_aan4074
crossref_primary_10_1111_acel_13144
crossref_primary_10_1038_s41593_022_01176_5
crossref_primary_10_1016_j_nlm_2023_107738
crossref_primary_10_1007_s00441_017_2750_5
crossref_primary_10_1038_s41467_020_18351_6
crossref_primary_10_1016_j_isci_2024_109681
crossref_primary_10_1016_j_neures_2018_11_003
crossref_primary_10_1016_j_bbr_2019_112112
crossref_primary_10_1016_j_neuron_2016_12_011
crossref_primary_10_1038_s41583_019_0260_z
crossref_primary_10_1073_pnas_2410564121
crossref_primary_10_1016_j_neuron_2019_01_044
crossref_primary_10_1016_j_neuron_2020_07_006
crossref_primary_10_1016_j_neuron_2018_04_018
crossref_primary_10_1016_j_neuron_2023_09_016
crossref_primary_10_1002_hipo_23677
crossref_primary_10_1016_j_conb_2022_102556
crossref_primary_10_1038_s41598_019_45983_6
crossref_primary_10_1016_j_neuron_2019_01_043
crossref_primary_10_1113_JP282804
crossref_primary_10_1111_ejn_16368
crossref_primary_10_1523_JNEUROSCI_1595_17_2018
crossref_primary_10_1371_journal_pbio_3001213
crossref_primary_10_1016_j_pnpbp_2023_110759
crossref_primary_10_7554_eLife_68344
crossref_primary_10_1016_j_neuron_2021_09_019
crossref_primary_10_1523_JNEUROSCI_1360_21_2021
crossref_primary_10_1523_JNEUROSCI_1824_22_2023
crossref_primary_10_1016_j_bbr_2019_112346
crossref_primary_10_1016_j_celrep_2024_114000
crossref_primary_10_1002_hipo_70014
crossref_primary_10_1152_jn_00443_2019
crossref_primary_10_1109_TMI_2018_2878488
crossref_primary_10_3389_fncel_2020_609123
crossref_primary_10_1152_jn_00574_2017
crossref_primary_10_1371_journal_pcbi_1006908
crossref_primary_10_3389_fnins_2021_749925
crossref_primary_10_1016_j_nlm_2020_107268
crossref_primary_10_1002_cpz1_522
crossref_primary_10_1002_hipo_23386
crossref_primary_10_1016_j_nlm_2021_107486
crossref_primary_10_1093_brain_awz170
crossref_primary_10_7554_eLife_88608_3
crossref_primary_10_1016_j_bbamcr_2022_119279
crossref_primary_10_1038_s41593_025_02014_0
crossref_primary_10_1111_acel_13924
crossref_primary_10_1523_JNEUROSCI_1541_19_2020
crossref_primary_10_1016_j_bbr_2017_07_033
crossref_primary_10_3389_fnbeh_2023_1151877
crossref_primary_10_1038_s41467_023_41715_7
crossref_primary_10_1038_s41467_019_13533_3
crossref_primary_10_1016_j_celrep_2023_112334
crossref_primary_10_1016_j_neuron_2024_04_017
crossref_primary_10_1038_s41467_023_41803_8
crossref_primary_10_1038_s41467_017_02173_0
crossref_primary_10_1038_s41598_017_11606_1
crossref_primary_10_1073_pnas_2106830119
crossref_primary_10_1523_JNEUROSCI_0940_19_2019
crossref_primary_10_1126_science_abf3119
crossref_primary_10_1038_s41583_023_00710_z
crossref_primary_10_1016_j_neuron_2020_09_032
crossref_primary_10_1038_s41598_021_93721_8
crossref_primary_10_1016_j_cell_2020_02_055
crossref_primary_10_1073_pnas_2017590118
crossref_primary_10_1016_j_neuron_2017_08_005
crossref_primary_10_1016_j_cub_2017_06_057
crossref_primary_10_1038_s41598_024_58819_9
crossref_primary_10_1177_15593258211057768
crossref_primary_10_1038_s41598_019_41503_8
crossref_primary_10_1016_j_cub_2020_09_074
crossref_primary_10_1073_pnas_2416214122
crossref_primary_10_12688_f1000research_20642_1
crossref_primary_10_1038_s41593_017_0061_5
crossref_primary_10_1038_s41593_017_0065_1
crossref_primary_10_1371_journal_pbio_3002679
crossref_primary_10_1038_s41598_021_90332_1
crossref_primary_10_1007_s11055_023_01372_1
crossref_primary_10_1038_s41598_023_45304_y
crossref_primary_10_1016_j_nbd_2023_106294
crossref_primary_10_1093_neuonc_noac162
crossref_primary_10_3389_fncel_2023_1068472
crossref_primary_10_1007_s13311_017_0539_6
crossref_primary_10_1186_s13041_022_00980_1
crossref_primary_10_1523_JNEUROSCI_1663_23_2024
crossref_primary_10_1016_j_bbr_2019_112035
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2016.12.026
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 28132828
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: T32 NS091018
– fundername: NIMH NIH HHS
  grantid: R01 MH094146
– fundername: NINDS NIH HHS
  grantid: R01 NS039456
GroupedDBID ---
--K
-DZ
-~X
0R~
0SF
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c557t-54b97e26e1c1aa0591358c1e8e3faabcc672033dee2268d66a9d2898fb04f5072
IEDL.DBID 7X8
ISICitedReferencesCount 183
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396428800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Thu Oct 02 04:15:45 EDT 2025
Thu Jan 02 23:12:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords dentate gyrus
pattern separation
hilus
mossy cell
granule cell
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-54b97e26e1c1aa0591358c1e8e3faabcc672033dee2268d66a9d2898fb04f5072
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0896627316309990/pdf
PMID 28132828
PQID 1862939993
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1862939993
pubmed_primary_28132828
PublicationCentury 2000
PublicationDate 2017-02-08
PublicationDateYYYYMMDD 2017-02-08
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2017
References 9475612 - Behav Brain Res. 1997 Dec;89(1-2):1-34
27692065 - Elife. 2016 Oct 03;5:null
20357069 - J Neurophysiol. 2010 Jun;103(6):3167-83
17094145 - Hippocampus. 2006;16(12):1026-31
3026567 - Brain Res. 1986 Nov 29;398(2):242-52
19750211 - PLoS Comput Biol. 2009 Sep;5(9):e1000500
7643175 - J Neurophysiol. 1995 Apr;73(4):1691-705
23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
17162463 - Network. 2006 Dec;17(4):447-65
9034852 - Hippocampus. 1996;6(6):654-65
20928834 - Hippocampus. 2012 Feb;22(2):200-8
8740589 - J Neurosci Methods. 1996 Apr;65(2):113-36
15920719 - Hippocampus. 2005;15(5):579-86
21460835 - Nature. 2011 Apr 28;472(7344):466-70
21527713 - Science. 2011 Apr 29;332(6029):592-5
8353604 - Hippocampus. 1993 Apr;3(2):165-82
730852 - J Comp Neurol. 1978 Dec 15;182(4 Pt 2):851-914
9045077 - Neuroscience. 1996 Feb;70(3):631-52
26298277 - Neuron. 2015 Sep 2;87(5):1078-92
17145507 - Neuron. 2006 Dec 7;52(5):871-82
18651615 - Hippocampus. 2008;18(10):1064-73
23719794 - J Neurosci. 2013 May 29;33(22):9246-58
1361334 - Epilepsy Res Suppl. 1992;7:93-109
19381129 - J Vis Exp. 2009 Apr 20;(26):null
193192 - Science. 1977 Jun 10;196(4295):1223-5
26853363 - Curr Biol. 2016 Feb 22;26(4):536-41
15728838 - J Neurosci. 2005 Feb 23;25(8):1985-91
19301148 - Cogn Neurodyn. 2009 Jun;3(2):177-87
25211514 - Nat Protoc. 2014 Oct;9(10):2369-81
5784296 - J Physiol. 1969 Jun;202(2):437-70
21697391 - J Neurosci. 2011 Jun 22;31(25):9414-25
17765720 - Prog Brain Res. 2007;163:199-216
8036517 - Science. 1994 Jul 29;265(5172):676-9
15922039 - J Neurosci Methods. 2005 Jun 30;145(1-2):233-44
26298276 - Neuron. 2015 Sep 2;87(5):1093-105
2203093 - Prog Brain Res. 1990;83:1-11
9682188 - J Sleep Res. 1998;7 Suppl 1:6-16
2289972 - J Comp Neurol. 1990 Dec 8;302(2):206-19
8797016 - Hippocampus. 1996;6(2):149-72
20972420 - Nature. 2010 Nov 18;468(7322):394-9
20872737 - Hippocampus. 2010 Oct;20(10):1109-23
24462102 - Neuron. 2014 Jan 22;81(2):416-27
12629666 - J Comp Neurol. 2003 Apr 21;459(1):44-76
19590004 - Science. 2009 Jul 10;325(5937):210-3
2358523 - J Comp Neurol. 1990 May 22;295(4):580-623
7704110 - Hippocampus. 1994 Dec;4(6):661-82
16781044 - Prog Neurobiol. 2006 May;79(1):1-48
17765742 - Prog Brain Res. 2007;163:627-37
24198767 - Front Syst Neurosci. 2013 Oct 30;7:74
25471587 - J Neurosci. 2014 Dec 3;34(49):16509-17
24485517 - Trends Neurosci. 2014 Mar;37(3):136-45
26971949 - Neuron. 2016 Apr 6;90(1):101-12
22423105 - J Neurosci. 2012 Mar 14;32(11):3848-58
17303747 - Science. 2007 Feb 16;315(5814):961-6
18958849 - Hippocampus. 2009 Apr;19(4):321-37
22941111 - Nat Neurosci. 2012 Oct;15(10):1439-44
21670101 - Cereb Cortex. 2012 Feb;22(2):426-35
28132824 - Neuron. 2017 Feb 8;93(3):691-704.e5
23420672 - Front Neural Circuits. 2013 Jan 09;6:106
19515918 - J Neurosci. 2009 Jun 10;29(23):7504-12
25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35
9856467 - Neuron. 1998 Nov;21(5):1123-8
21788086 - Trends Neurosci. 2011 Oct;34(10):515-25
23259953 - Neuron. 2012 Dec 20;76(6):1189-200
2687720 - Neuroscience. 1989;31(3):551-70
17042797 - Eur J Neurosci. 2006 Oct;24(8):2203-10
22365813 - Cell. 2012 Mar 30;149(1):188-201
18007015 - Learn Mem. 2007 Nov 14;14(11):705-13
7884451 - J Neurophysiol. 1994 Nov;72(5):2167-80
7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59
References_xml – reference: 22941111 - Nat Neurosci. 2012 Oct;15(10):1439-44
– reference: 23259953 - Neuron. 2012 Dec 20;76(6):1189-200
– reference: 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35
– reference: 21697391 - J Neurosci. 2011 Jun 22;31(25):9414-25
– reference: 24485517 - Trends Neurosci. 2014 Mar;37(3):136-45
– reference: 17765742 - Prog Brain Res. 2007;163:627-37
– reference: 1361334 - Epilepsy Res Suppl. 1992;7:93-109
– reference: 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59
– reference: 8797016 - Hippocampus. 1996;6(2):149-72
– reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82
– reference: 16781044 - Prog Neurobiol. 2006 May;79(1):1-48
– reference: 15728838 - J Neurosci. 2005 Feb 23;25(8):1985-91
– reference: 5784296 - J Physiol. 1969 Jun;202(2):437-70
– reference: 26298276 - Neuron. 2015 Sep 2;87(5):1093-105
– reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17
– reference: 25471587 - J Neurosci. 2014 Dec 3;34(49):16509-17
– reference: 21460835 - Nature. 2011 Apr 28;472(7344):466-70
– reference: 17765720 - Prog Brain Res. 2007;163:199-216
– reference: 9682188 - J Sleep Res. 1998;7 Suppl 1:6-16
– reference: 7643175 - J Neurophysiol. 1995 Apr;73(4):1691-705
– reference: 9045077 - Neuroscience. 1996 Feb;70(3):631-52
– reference: 19381129 - J Vis Exp. 2009 Apr 20;(26):null
– reference: 20357069 - J Neurophysiol. 2010 Jun;103(6):3167-83
– reference: 19590004 - Science. 2009 Jul 10;325(5937):210-3
– reference: 9856467 - Neuron. 1998 Nov;21(5):1123-8
– reference: 2289972 - J Comp Neurol. 1990 Dec 8;302(2):206-19
– reference: 12629666 - J Comp Neurol. 2003 Apr 21;459(1):44-76
– reference: 20928834 - Hippocampus. 2012 Feb;22(2):200-8
– reference: 2203093 - Prog Brain Res. 1990;83:1-11
– reference: 9034852 - Hippocampus. 1996;6(6):654-65
– reference: 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25
– reference: 8740589 - J Neurosci Methods. 1996 Apr;65(2):113-36
– reference: 22423105 - J Neurosci. 2012 Mar 14;32(11):3848-58
– reference: 23420672 - Front Neural Circuits. 2013 Jan 09;6:106
– reference: 28132824 - Neuron. 2017 Feb 8;93(3):691-704.e5
– reference: 7884451 - J Neurophysiol. 1994 Nov;72(5):2167-80
– reference: 9475612 - Behav Brain Res. 1997 Dec;89(1-2):1-34
– reference: 20972420 - Nature. 2010 Nov 18;468(7322):394-9
– reference: 8353604 - Hippocampus. 1993 Apr;3(2):165-82
– reference: 2358523 - J Comp Neurol. 1990 May 22;295(4):580-623
– reference: 26853363 - Curr Biol. 2016 Feb 22;26(4):536-41
– reference: 26298277 - Neuron. 2015 Sep 2;87(5):1078-92
– reference: 17145507 - Neuron. 2006 Dec 7;52(5):871-82
– reference: 2687720 - Neuroscience. 1989;31(3):551-70
– reference: 8036517 - Science. 1994 Jul 29;265(5172):676-9
– reference: 18007015 - Learn Mem. 2007 Nov 14;14(11):705-13
– reference: 19515918 - J Neurosci. 2009 Jun 10;29(23):7504-12
– reference: 730852 - J Comp Neurol. 1978 Dec 15;182(4 Pt 2):851-914
– reference: 26971949 - Neuron. 2016 Apr 6;90(1):101-12
– reference: 15922039 - J Neurosci Methods. 2005 Jun 30;145(1-2):233-44
– reference: 15920719 - Hippocampus. 2005;15(5):579-86
– reference: 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35
– reference: 18651615 - Hippocampus. 2008;18(10):1064-73
– reference: 18958849 - Hippocampus. 2009 Apr;19(4):321-37
– reference: 17303747 - Science. 2007 Feb 16;315(5814):961-6
– reference: 17094145 - Hippocampus. 2006;16(12):1026-31
– reference: 24198767 - Front Syst Neurosci. 2013 Oct 30;7:74
– reference: 3026567 - Brain Res. 1986 Nov 29;398(2):242-52
– reference: 23719794 - J Neurosci. 2013 May 29;33(22):9246-58
– reference: 19750211 - PLoS Comput Biol. 2009 Sep;5(9):e1000500
– reference: 17042797 - Eur J Neurosci. 2006 Oct;24(8):2203-10
– reference: 24462102 - Neuron. 2014 Jan 22;81(2):416-27
– reference: 20872737 - Hippocampus. 2010 Oct;20(10):1109-23
– reference: 193192 - Science. 1977 Jun 10;196(4295):1223-5
– reference: 27692065 - Elife. 2016 Oct 03;5:null
– reference: 17162463 - Network. 2006 Dec;17(4):447-65
– reference: 19301148 - Cogn Neurodyn. 2009 Jun;3(2):177-87
– reference: 22365813 - Cell. 2012 Mar 30;149(1):188-201
– reference: 25211514 - Nat Protoc. 2014 Oct;9(10):2369-81
– reference: 21527713 - Science. 2011 Apr 29;332(6029):592-5
SSID ssj0014591
Score 2.6077716
Snippet Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 677
SubjectTerms Action Potentials - physiology
Animals
Brain Mapping
CA3 Region, Hippocampal - cytology
CA3 Region, Hippocampal - physiology
Decision Trees
Dentate Gyrus - cytology
Dentate Gyrus - physiology
Exploratory Behavior - physiology
Interneurons - cytology
Interneurons - physiology
Memory
Models, Neurological
Mossy Fibers, Hippocampal - physiology
Neurons - cytology
Neurons - physiology
Pyramidal Cells - cytology
Pyramidal Cells - physiology
Rats
Rats, Long-Evans
Spatial Processing - physiology
Title Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus
URI https://www.ncbi.nlm.nih.gov/pubmed/28132828
https://www.proquest.com/docview/1862939993
Volume 93
WOSCitedRecordID wos000396428800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxsnmZNyKIb8GltyRPMqabLxtDFPY20vQUhNnOdRP67z1JO_YkCL4UCk0pyWnOd853cj5C7jSASGUiGcTCZ0EEisUCBBMYi4Q64DoMEyc2IUYjOZmocZ1wK-qyyvWe6DbqJDc2R_7AEXor9KbKf5x_MasaZdnVWkJjmzR8hDLWqsVkwyIEoVPMsySrZTvV-uicq-9y_SJtB1QeuYSgF_0OMp2z6R_-9zOPyEENM2m3sotjsgVZk7S6GYbYnyW9p67w02XUm2Sv0qMsW2RoBYrRIOmrq4-tjyVlBc1TOkCntpoB7cFsVlCdJXSI_rWs7_EBRJL0yQ0BOigXq-KEvPef33ovrNZbYCYMxZKFQawEeBFww7VG3MX9UBoOEvxU69iYyHK2fgKAmE0mUaRVgvGaTONOkCKu9E7JTpZncE6oVRIVgZH4Kj_oAFdguwSB1ogIYh4nbXK7nr4p2rMlKXQG-aqYbiawTc6qNZjOq8YbU09i7Iwh4sUfRl-Sfc96YFtgLa9II8W_Ga7JrvlefhSLG2coeB2Nhz_8Sse2
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Representations+of+Granule+Cells+and+Mossy+Cells+of+the+Dentate+Gyrus&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=GoodSmith%2C+Douglas&rft.au=Chen%2C+Xiaojing&rft.au=Wang%2C+Cheng&rft.au=Kim%2C+Sang+Hoon&rft.date=2017-02-08&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=93&rft.issue=3&rft.spage=677&rft_id=info:doi/10.1016%2Fj.neuron.2016.12.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon