Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus
Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cel...
Gespeichert in:
| Veröffentlicht in: | Neuron (Cambridge, Mass.) Jg. 93; H. 3; S. 677 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
08.02.2017
|
| Schlagworte: | |
| ISSN: | 1097-4199, 1097-4199 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells. |
|---|---|
| AbstractList | Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells.Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells. Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern separation). A second excitatory cell type in the dentate gyrus, the mossy cell, forms an intricate circuit with granule cells, CA3c pyramidal cells, and local interneurons, but the influence of mossy cells on dentate function is often overlooked. Multiple tetrode recordings, supported by juxtacellular recording techniques, showed that granule cells fired very sparsely, whereas mossy cells in the hilus fired promiscuously in multiple locations and in multiple environments. The activity patterns of these cell types thus represent different environments through distinct computational mechanisms: sparse coding in granule cells and changes in firing field locations in mossy cells. |
| Author | Chen, Xiaojing Kim, Sang Hoon GoodSmith, Douglas Christian, Kimberly M Knierim, James J Wang, Cheng Burgalossi, Andrea Song, Hongjun |
| Author_xml | – sequence: 1 givenname: Douglas surname: GoodSmith fullname: GoodSmith, Douglas organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 2 givenname: Xiaojing surname: Chen fullname: Chen, Xiaojing organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 3 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 4 givenname: Sang Hoon surname: Kim fullname: Kim, Sang Hoon organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA – sequence: 5 givenname: Hongjun surname: Song fullname: Song, Hongjun organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA – sequence: 6 givenname: Andrea surname: Burgalossi fullname: Burgalossi, Andrea organization: Werner-Reichardt Centre for Integrative Neuroscience, 72076 Tübingen, Germany – sequence: 7 givenname: Kimberly M surname: Christian fullname: Christian, Kimberly M organization: Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA – sequence: 8 givenname: James J surname: Knierim fullname: Knierim, James J email: jknierim@jhu.edu organization: Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD 21205 USA. Electronic address: jknierim@jhu.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28132828$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAQhoOsuB_6D0Ry9NKaTNo0Ocq6rsIugh_nkrZT7NJNatIe9t9btIKnmQeeGV7eJZlZZ5GQa85izri8O8QWB-9sDCPFHGIG8owsONNZlHCtZ__2OVmGcGCMJ6nmF2QOigtQoBZk_9aZvjEtfcXOY0Dbj-hsoK6mW2_s0CJdY9sGamxF9y6E08Sj0H8iffg5Qbo9-SFckvPatAGvprkiH4-b9_VTtHvZPq_vd1GZplkfpUmhMwSJvOTGsDGTSFXJUaGojSnKUmbAhKgQAaSqpDS6AqVVXbCkTlkGK3L7-7fz7mvA0OfHJpRjLGPRDSHnSoIWWmsxqjeTOhRHrPLON0fjT_lfBfANaclhAw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3040298 crossref_primary_10_7554_eLife_82697 crossref_primary_10_1016_j_bios_2023_115797 crossref_primary_10_1016_j_neuron_2017_07_028 crossref_primary_10_1016_j_neubiorev_2019_11_010 crossref_primary_10_1523_JNEUROSCI_2455_20_2020 crossref_primary_10_3389_fncom_2022_826278 crossref_primary_10_1002_advs_202410927 crossref_primary_10_1038_s41583_021_00479_z crossref_primary_10_1038_s41467_023_35805_9 crossref_primary_10_1007_s13311_017_0528_9 crossref_primary_10_1038_s41598_020_69867_2 crossref_primary_10_7554_eLife_95764_4 crossref_primary_10_1126_science_adj9198 crossref_primary_10_1073_pnas_2312752120 crossref_primary_10_1002_syn_21972 crossref_primary_10_7554_eLife_100196_4 crossref_primary_10_1038_s41467_022_34039_5 crossref_primary_10_1038_s41467_024_44882_3 crossref_primary_10_1523_JNEUROSCI_1008_21_2022 crossref_primary_10_1155_2019_1815371 crossref_primary_10_1002_hipo_23066 crossref_primary_10_1016_j_nlm_2017_11_012 crossref_primary_10_1016_j_tins_2018_03_014 crossref_primary_10_1016_j_nbd_2023_106311 crossref_primary_10_1016_j_neuron_2020_05_022 crossref_primary_10_1002_hipo_23468 crossref_primary_10_1002_hipo_23469 crossref_primary_10_1002_hipo_23623 crossref_primary_10_7554_eLife_88608 crossref_primary_10_1002_hipo_23585 crossref_primary_10_1007_s11055_021_01169_0 crossref_primary_10_1038_s41593_019_0484_2 crossref_primary_10_7554_eLife_65786 crossref_primary_10_1038_s41598_019_53192_4 crossref_primary_10_7554_eLife_95764 crossref_primary_10_1016_j_neuron_2018_05_007 crossref_primary_10_1002_advs_202301367 crossref_primary_10_1523_JNEUROSCI_2596_19_2020 crossref_primary_10_1016_j_bbr_2019_112373 crossref_primary_10_1073_pnas_2006138117 crossref_primary_10_1038_s41467_018_06899_3 crossref_primary_10_1007_s00441_017_2732_7 crossref_primary_10_1016_j_neuron_2017_01_021 crossref_primary_10_1016_j_nlm_2018_03_006 crossref_primary_10_1016_j_bpsgos_2021_04_005 crossref_primary_10_1038_s41467_025_60841_y crossref_primary_10_1002_hipo_23415 crossref_primary_10_1002_hipo_23536 crossref_primary_10_1016_j_conb_2020_03_004 crossref_primary_10_1523_JNEUROSCI_0922_21_2022 crossref_primary_10_1523_JNEUROSCI_1724_20_2021 crossref_primary_10_1016_j_jneumeth_2019_108397 crossref_primary_10_1111_bph_70185 crossref_primary_10_1186_s12974_024_03217_1 crossref_primary_10_7554_eLife_74172 crossref_primary_10_1016_j_neuron_2018_07_010 crossref_primary_10_1038_s41586_018_0191_2 crossref_primary_10_1002_hipo_22956 crossref_primary_10_1016_j_celrep_2024_114382 crossref_primary_10_1016_j_bbr_2019_112005 crossref_primary_10_1016_j_celrep_2024_114386 crossref_primary_10_7554_eLife_100196 crossref_primary_10_1016_j_nbd_2024_106719 crossref_primary_10_1113_JP283728 crossref_primary_10_1016_j_cub_2022_01_023 crossref_primary_10_1038_s41467_022_33947_w crossref_primary_10_7554_eLife_75391 crossref_primary_10_1002_hipo_23400 crossref_primary_10_1093_function_zqaf035 crossref_primary_10_1016_j_neubiorev_2019_11_006 crossref_primary_10_7554_eLife_66612 crossref_primary_10_1073_pnas_2201151119 crossref_primary_10_1126_science_aan4074 crossref_primary_10_1111_acel_13144 crossref_primary_10_1038_s41593_022_01176_5 crossref_primary_10_1016_j_nlm_2023_107738 crossref_primary_10_1007_s00441_017_2750_5 crossref_primary_10_1038_s41467_020_18351_6 crossref_primary_10_1016_j_isci_2024_109681 crossref_primary_10_1016_j_neures_2018_11_003 crossref_primary_10_1016_j_bbr_2019_112112 crossref_primary_10_1016_j_neuron_2016_12_011 crossref_primary_10_1038_s41583_019_0260_z crossref_primary_10_1073_pnas_2410564121 crossref_primary_10_1016_j_neuron_2019_01_044 crossref_primary_10_1016_j_neuron_2020_07_006 crossref_primary_10_1016_j_neuron_2018_04_018 crossref_primary_10_1016_j_neuron_2023_09_016 crossref_primary_10_1002_hipo_23677 crossref_primary_10_1016_j_conb_2022_102556 crossref_primary_10_1038_s41598_019_45983_6 crossref_primary_10_1016_j_neuron_2019_01_043 crossref_primary_10_1113_JP282804 crossref_primary_10_1111_ejn_16368 crossref_primary_10_1523_JNEUROSCI_1595_17_2018 crossref_primary_10_1371_journal_pbio_3001213 crossref_primary_10_1016_j_pnpbp_2023_110759 crossref_primary_10_7554_eLife_68344 crossref_primary_10_1016_j_neuron_2021_09_019 crossref_primary_10_1523_JNEUROSCI_1360_21_2021 crossref_primary_10_1523_JNEUROSCI_1824_22_2023 crossref_primary_10_1016_j_bbr_2019_112346 crossref_primary_10_1016_j_celrep_2024_114000 crossref_primary_10_1002_hipo_70014 crossref_primary_10_1152_jn_00443_2019 crossref_primary_10_1109_TMI_2018_2878488 crossref_primary_10_3389_fncel_2020_609123 crossref_primary_10_1152_jn_00574_2017 crossref_primary_10_1371_journal_pcbi_1006908 crossref_primary_10_3389_fnins_2021_749925 crossref_primary_10_1016_j_nlm_2020_107268 crossref_primary_10_1002_cpz1_522 crossref_primary_10_1002_hipo_23386 crossref_primary_10_1016_j_nlm_2021_107486 crossref_primary_10_1093_brain_awz170 crossref_primary_10_7554_eLife_88608_3 crossref_primary_10_1016_j_bbamcr_2022_119279 crossref_primary_10_1038_s41593_025_02014_0 crossref_primary_10_1111_acel_13924 crossref_primary_10_1523_JNEUROSCI_1541_19_2020 crossref_primary_10_1016_j_bbr_2017_07_033 crossref_primary_10_3389_fnbeh_2023_1151877 crossref_primary_10_1038_s41467_023_41715_7 crossref_primary_10_1038_s41467_019_13533_3 crossref_primary_10_1016_j_celrep_2023_112334 crossref_primary_10_1016_j_neuron_2024_04_017 crossref_primary_10_1038_s41467_023_41803_8 crossref_primary_10_1038_s41467_017_02173_0 crossref_primary_10_1038_s41598_017_11606_1 crossref_primary_10_1073_pnas_2106830119 crossref_primary_10_1523_JNEUROSCI_0940_19_2019 crossref_primary_10_1126_science_abf3119 crossref_primary_10_1038_s41583_023_00710_z crossref_primary_10_1016_j_neuron_2020_09_032 crossref_primary_10_1038_s41598_021_93721_8 crossref_primary_10_1016_j_cell_2020_02_055 crossref_primary_10_1073_pnas_2017590118 crossref_primary_10_1016_j_neuron_2017_08_005 crossref_primary_10_1016_j_cub_2017_06_057 crossref_primary_10_1038_s41598_024_58819_9 crossref_primary_10_1177_15593258211057768 crossref_primary_10_1038_s41598_019_41503_8 crossref_primary_10_1016_j_cub_2020_09_074 crossref_primary_10_1073_pnas_2416214122 crossref_primary_10_12688_f1000research_20642_1 crossref_primary_10_1038_s41593_017_0061_5 crossref_primary_10_1038_s41593_017_0065_1 crossref_primary_10_1371_journal_pbio_3002679 crossref_primary_10_1038_s41598_021_90332_1 crossref_primary_10_1007_s11055_023_01372_1 crossref_primary_10_1038_s41598_023_45304_y crossref_primary_10_1016_j_nbd_2023_106294 crossref_primary_10_1093_neuonc_noac162 crossref_primary_10_3389_fncel_2023_1068472 crossref_primary_10_1007_s13311_017_0539_6 crossref_primary_10_1186_s13041_022_00980_1 crossref_primary_10_1523_JNEUROSCI_1663_23_2024 crossref_primary_10_1016_j_bbr_2019_112035 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2016.12.026 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 28132828 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: T32 NS091018 – fundername: NIMH NIH HHS grantid: R01 MH094146 – fundername: NINDS NIH HHS grantid: R01 NS039456 |
| GroupedDBID | --- --K -DZ -~X 0R~ 0SF 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c557t-54b97e26e1c1aa0591358c1e8e3faabcc672033dee2268d66a9d2898fb04f5072 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396428800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Thu Oct 02 04:15:45 EDT 2025 Thu Jan 02 23:12:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | dentate gyrus pattern separation hilus mossy cell granule cell |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c557t-54b97e26e1c1aa0591358c1e8e3faabcc672033dee2268d66a9d2898fb04f5072 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0896627316309990/pdf |
| PMID | 28132828 |
| PQID | 1862939993 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1862939993 pubmed_primary_28132828 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-08 |
| PublicationDateYYYYMMDD | 2017-02-08 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2017 |
| References | 9475612 - Behav Brain Res. 1997 Dec;89(1-2):1-34 27692065 - Elife. 2016 Oct 03;5:null 20357069 - J Neurophysiol. 2010 Jun;103(6):3167-83 17094145 - Hippocampus. 2006;16(12):1026-31 3026567 - Brain Res. 1986 Nov 29;398(2):242-52 19750211 - PLoS Comput Biol. 2009 Sep;5(9):e1000500 7643175 - J Neurophysiol. 1995 Apr;73(4):1691-705 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 17162463 - Network. 2006 Dec;17(4):447-65 9034852 - Hippocampus. 1996;6(6):654-65 20928834 - Hippocampus. 2012 Feb;22(2):200-8 8740589 - J Neurosci Methods. 1996 Apr;65(2):113-36 15920719 - Hippocampus. 2005;15(5):579-86 21460835 - Nature. 2011 Apr 28;472(7344):466-70 21527713 - Science. 2011 Apr 29;332(6029):592-5 8353604 - Hippocampus. 1993 Apr;3(2):165-82 730852 - J Comp Neurol. 1978 Dec 15;182(4 Pt 2):851-914 9045077 - Neuroscience. 1996 Feb;70(3):631-52 26298277 - Neuron. 2015 Sep 2;87(5):1078-92 17145507 - Neuron. 2006 Dec 7;52(5):871-82 18651615 - Hippocampus. 2008;18(10):1064-73 23719794 - J Neurosci. 2013 May 29;33(22):9246-58 1361334 - Epilepsy Res Suppl. 1992;7:93-109 19381129 - J Vis Exp. 2009 Apr 20;(26):null 193192 - Science. 1977 Jun 10;196(4295):1223-5 26853363 - Curr Biol. 2016 Feb 22;26(4):536-41 15728838 - J Neurosci. 2005 Feb 23;25(8):1985-91 19301148 - Cogn Neurodyn. 2009 Jun;3(2):177-87 25211514 - Nat Protoc. 2014 Oct;9(10):2369-81 5784296 - J Physiol. 1969 Jun;202(2):437-70 21697391 - J Neurosci. 2011 Jun 22;31(25):9414-25 17765720 - Prog Brain Res. 2007;163:199-216 8036517 - Science. 1994 Jul 29;265(5172):676-9 15922039 - J Neurosci Methods. 2005 Jun 30;145(1-2):233-44 26298276 - Neuron. 2015 Sep 2;87(5):1093-105 2203093 - Prog Brain Res. 1990;83:1-11 9682188 - J Sleep Res. 1998;7 Suppl 1:6-16 2289972 - J Comp Neurol. 1990 Dec 8;302(2):206-19 8797016 - Hippocampus. 1996;6(2):149-72 20972420 - Nature. 2010 Nov 18;468(7322):394-9 20872737 - Hippocampus. 2010 Oct;20(10):1109-23 24462102 - Neuron. 2014 Jan 22;81(2):416-27 12629666 - J Comp Neurol. 2003 Apr 21;459(1):44-76 19590004 - Science. 2009 Jul 10;325(5937):210-3 2358523 - J Comp Neurol. 1990 May 22;295(4):580-623 7704110 - Hippocampus. 1994 Dec;4(6):661-82 16781044 - Prog Neurobiol. 2006 May;79(1):1-48 17765742 - Prog Brain Res. 2007;163:627-37 24198767 - Front Syst Neurosci. 2013 Oct 30;7:74 25471587 - J Neurosci. 2014 Dec 3;34(49):16509-17 24485517 - Trends Neurosci. 2014 Mar;37(3):136-45 26971949 - Neuron. 2016 Apr 6;90(1):101-12 22423105 - J Neurosci. 2012 Mar 14;32(11):3848-58 17303747 - Science. 2007 Feb 16;315(5814):961-6 18958849 - Hippocampus. 2009 Apr;19(4):321-37 22941111 - Nat Neurosci. 2012 Oct;15(10):1439-44 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35 28132824 - Neuron. 2017 Feb 8;93(3):691-704.e5 23420672 - Front Neural Circuits. 2013 Jan 09;6:106 19515918 - J Neurosci. 2009 Jun 10;29(23):7504-12 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35 9856467 - Neuron. 1998 Nov;21(5):1123-8 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25 23259953 - Neuron. 2012 Dec 20;76(6):1189-200 2687720 - Neuroscience. 1989;31(3):551-70 17042797 - Eur J Neurosci. 2006 Oct;24(8):2203-10 22365813 - Cell. 2012 Mar 30;149(1):188-201 18007015 - Learn Mem. 2007 Nov 14;14(11):705-13 7884451 - J Neurophysiol. 1994 Nov;72(5):2167-80 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59 |
| References_xml | – reference: 22941111 - Nat Neurosci. 2012 Oct;15(10):1439-44 – reference: 23259953 - Neuron. 2012 Dec 20;76(6):1189-200 – reference: 25489089 - Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18428-35 – reference: 21697391 - J Neurosci. 2011 Jun 22;31(25):9414-25 – reference: 24485517 - Trends Neurosci. 2014 Mar;37(3):136-45 – reference: 17765742 - Prog Brain Res. 2007;163:627-37 – reference: 1361334 - Epilepsy Res Suppl. 1992;7:93-109 – reference: 7891125 - J Neurosci. 1995 Mar;15(3 Pt 1):1648-59 – reference: 8797016 - Hippocampus. 1996;6(2):149-72 – reference: 7704110 - Hippocampus. 1994 Dec;4(6):661-82 – reference: 16781044 - Prog Neurobiol. 2006 May;79(1):1-48 – reference: 15728838 - J Neurosci. 2005 Feb 23;25(8):1985-91 – reference: 5784296 - J Physiol. 1969 Jun;202(2):437-70 – reference: 26298276 - Neuron. 2015 Sep 2;87(5):1093-105 – reference: 23334581 - Nat Neurosci. 2013 Mar;16(3):309-17 – reference: 25471587 - J Neurosci. 2014 Dec 3;34(49):16509-17 – reference: 21460835 - Nature. 2011 Apr 28;472(7344):466-70 – reference: 17765720 - Prog Brain Res. 2007;163:199-216 – reference: 9682188 - J Sleep Res. 1998;7 Suppl 1:6-16 – reference: 7643175 - J Neurophysiol. 1995 Apr;73(4):1691-705 – reference: 9045077 - Neuroscience. 1996 Feb;70(3):631-52 – reference: 19381129 - J Vis Exp. 2009 Apr 20;(26):null – reference: 20357069 - J Neurophysiol. 2010 Jun;103(6):3167-83 – reference: 19590004 - Science. 2009 Jul 10;325(5937):210-3 – reference: 9856467 - Neuron. 1998 Nov;21(5):1123-8 – reference: 2289972 - J Comp Neurol. 1990 Dec 8;302(2):206-19 – reference: 12629666 - J Comp Neurol. 2003 Apr 21;459(1):44-76 – reference: 20928834 - Hippocampus. 2012 Feb;22(2):200-8 – reference: 2203093 - Prog Brain Res. 1990;83:1-11 – reference: 9034852 - Hippocampus. 1996;6(6):654-65 – reference: 21788086 - Trends Neurosci. 2011 Oct;34(10):515-25 – reference: 8740589 - J Neurosci Methods. 1996 Apr;65(2):113-36 – reference: 22423105 - J Neurosci. 2012 Mar 14;32(11):3848-58 – reference: 23420672 - Front Neural Circuits. 2013 Jan 09;6:106 – reference: 28132824 - Neuron. 2017 Feb 8;93(3):691-704.e5 – reference: 7884451 - J Neurophysiol. 1994 Nov;72(5):2167-80 – reference: 9475612 - Behav Brain Res. 1997 Dec;89(1-2):1-34 – reference: 20972420 - Nature. 2010 Nov 18;468(7322):394-9 – reference: 8353604 - Hippocampus. 1993 Apr;3(2):165-82 – reference: 2358523 - J Comp Neurol. 1990 May 22;295(4):580-623 – reference: 26853363 - Curr Biol. 2016 Feb 22;26(4):536-41 – reference: 26298277 - Neuron. 2015 Sep 2;87(5):1078-92 – reference: 17145507 - Neuron. 2006 Dec 7;52(5):871-82 – reference: 2687720 - Neuroscience. 1989;31(3):551-70 – reference: 8036517 - Science. 1994 Jul 29;265(5172):676-9 – reference: 18007015 - Learn Mem. 2007 Nov 14;14(11):705-13 – reference: 19515918 - J Neurosci. 2009 Jun 10;29(23):7504-12 – reference: 730852 - J Comp Neurol. 1978 Dec 15;182(4 Pt 2):851-914 – reference: 26971949 - Neuron. 2016 Apr 6;90(1):101-12 – reference: 15922039 - J Neurosci Methods. 2005 Jun 30;145(1-2):233-44 – reference: 15920719 - Hippocampus. 2005;15(5):579-86 – reference: 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35 – reference: 18651615 - Hippocampus. 2008;18(10):1064-73 – reference: 18958849 - Hippocampus. 2009 Apr;19(4):321-37 – reference: 17303747 - Science. 2007 Feb 16;315(5814):961-6 – reference: 17094145 - Hippocampus. 2006;16(12):1026-31 – reference: 24198767 - Front Syst Neurosci. 2013 Oct 30;7:74 – reference: 3026567 - Brain Res. 1986 Nov 29;398(2):242-52 – reference: 23719794 - J Neurosci. 2013 May 29;33(22):9246-58 – reference: 19750211 - PLoS Comput Biol. 2009 Sep;5(9):e1000500 – reference: 17042797 - Eur J Neurosci. 2006 Oct;24(8):2203-10 – reference: 24462102 - Neuron. 2014 Jan 22;81(2):416-27 – reference: 20872737 - Hippocampus. 2010 Oct;20(10):1109-23 – reference: 193192 - Science. 1977 Jun 10;196(4295):1223-5 – reference: 27692065 - Elife. 2016 Oct 03;5:null – reference: 17162463 - Network. 2006 Dec;17(4):447-65 – reference: 19301148 - Cogn Neurodyn. 2009 Jun;3(2):177-87 – reference: 22365813 - Cell. 2012 Mar 30;149(1):188-201 – reference: 25211514 - Nat Protoc. 2014 Oct;9(10):2369-81 – reference: 21527713 - Science. 2011 Apr 29;332(6029):592-5 |
| SSID | ssj0014591 |
| Score | 2.6077716 |
| Snippet | Granule cells in the dentate gyrus of the hippocampus are thought to be essential to memory function by decorrelating overlapping input patterns (pattern... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 677 |
| SubjectTerms | Action Potentials - physiology Animals Brain Mapping CA3 Region, Hippocampal - cytology CA3 Region, Hippocampal - physiology Decision Trees Dentate Gyrus - cytology Dentate Gyrus - physiology Exploratory Behavior - physiology Interneurons - cytology Interneurons - physiology Memory Models, Neurological Mossy Fibers, Hippocampal - physiology Neurons - cytology Neurons - physiology Pyramidal Cells - cytology Pyramidal Cells - physiology Rats Rats, Long-Evans Spatial Processing - physiology |
| Title | Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28132828 https://www.proquest.com/docview/1862939993 |
| Volume | 93 |
| WOSCitedRecordID | wos000396428800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxsnmZNyKIb8WlbdLkSYa6-eDGEIW9lSwXEGY7103ov_ck7diTIPhSKDSlJKfnfOf6IXQTMzfISYNvQpQNwN6ygOuODThNBI-pVJr6RuGXZDjk47EY1QG3oi6rXOlEr6h1rlyM_I4A9BZgTUV0P_sKHGuUy67WFBqbqBEBlHFSnYzXWYSYesY8l2R12U6xap3z9V1-XqSbgEqYDwiG7HeQ6Y1Nb_-_n3mA9mqYibuVXByiDZM1UaubgYv9WeJb7As_fUS9iXYqPsqyhQaOoBgEEr_6-ti6LSkrcG5xH4zacmrwg5lOCywzjQdgX8v6Hh4AJIkf_RKD--V8WRyh997T28NzUPMtBIrSZBHQeCISEzJDFJEScBeJKFfEcBNZKSdKMZezjbQxgNm4ZkwKDf4at5NObAFXhsdoK8szc4pwR0dKUuUoC22sNRNSxYxoAtqMEXh1G12vti8FeXZJCpmZfFmk6w1so5PqDNJZNXgjDTn4zuAinv1h9TnaDZ0FdgXW_AI1LPzN5hJtq-_FRzG_8oIC1-Fo8APIL8bh |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Representations+of+Granule+Cells+and+Mossy+Cells+of+the+Dentate+Gyrus&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=GoodSmith%2C+Douglas&rft.au=Chen%2C+Xiaojing&rft.au=Wang%2C+Cheng&rft.au=Kim%2C+Sang+Hoon&rft.date=2017-02-08&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=93&rft.issue=3&rft.spage=677&rft_id=info:doi/10.1016%2Fj.neuron.2016.12.026&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |