Pulsed Light Synthesis of High Entropy Nanocatalysts with Enhanced Catalytic Activity and Prolonged Stability for Oxygen Evolution Reaction

The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of ne...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 10; číslo 18; s. e2300426 - n/a
Hlavní autori: Abdelhafiz, Ali, Tanvir, A. N. M., Zeng, Minxiang, Wang, Baoming, Ren, Zhichu, Harutyunyan, Avetik R., Zhang, Yanliang, Li, Ju
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.06.2023
Wiley Blackwell (John Wiley & Sons)
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst.
AbstractList The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO 2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst.
The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO 2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst.
Author Li, Ju
Zhang, Yanliang
Abdelhafiz, Ali
Zeng, Minxiang
Ren, Zhichu
Harutyunyan, Avetik R.
Tanvir, A. N. M.
Wang, Baoming
AuthorAffiliation 3 Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
5 Department of Chemical Engineering Texas Tech University Lubbock Texas 79409 USA
1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
4 Honda Research Institute USA, Inc.  San Jose CA 95134 USA
2 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN 46556 USA
AuthorAffiliation_xml – name: 1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
– name: 3 Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
– name: 4 Honda Research Institute USA, Inc.  San Jose CA 95134 USA
– name: 2 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN 46556 USA
– name: 5 Department of Chemical Engineering Texas Tech University Lubbock Texas 79409 USA
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-4270-6258
  surname: Abdelhafiz
  fullname: Abdelhafiz, Ali
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: A. N. M.
  surname: Tanvir
  fullname: Tanvir, A. N. M.
  organization: University of Notre Dame
– sequence: 3
  givenname: Minxiang
  surname: Zeng
  fullname: Zeng, Minxiang
  organization: Texas Tech University
– sequence: 4
  givenname: Baoming
  surname: Wang
  fullname: Wang, Baoming
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Zhichu
  surname: Ren
  fullname: Ren, Zhichu
  organization: Massachusetts Institute of Technology
– sequence: 6
  givenname: Avetik R.
  surname: Harutyunyan
  fullname: Harutyunyan, Avetik R.
  organization: USA, Inc. 
– sequence: 7
  givenname: Yanliang
  surname: Zhang
  fullname: Zhang, Yanliang
  email: yzhang45@nd.edu
  organization: University of Notre Dame
– sequence: 8
  givenname: Ju
  orcidid: 0000-0002-7841-8058
  surname: Li
  fullname: Li, Ju
  email: liju@mit.edu
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37088797$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1971284$$D View this record in Osti.gov
BookMark eNqFkl9v0zAUxSM0xP6wVx6RBS-8tDiOE9tPqCqFTarYRIFXy3Gc1lVql9jpls_Al-Zm7aZtEuLJ1vHvnnts39PkyHlnkuRNiscpxuSjqnZhTDDJMKakeJGckFTwUcYpPXq0P07OQ1hjjNM8YzTlr5LjjGHOmWAnyZ_rrgmmQnO7XEW06F1cmWAD8jW6AAnNXGz9tkfflPNaRdX0IQZ0Y-NwtFJOQ-30To9Wo4mOdmdjj5Sr0HXrG--WACyiKm0z6LVv0dVtvzQOzXa-6aL1Dn03Sg-b18nLWkGa88N6lvz8MvsxvRjNr75eTifzkc5zxkaFMorp2lSmxBknRVlpktGiBpXpIqdCEaJ1oVjBhTFaZDotOK2quk7LjIkyO0su976VV2u5be1Gtb30yso7wbdLqVq4TmNkRQtTCl5wVQsqRFWmTGABXlpgaJiD16e917YrN6bSBt5LNU9Mn544u5JLv5MpJpyTPAOHd3sHH6KVQdto9Ep754yOMhUsJZwC9OHQpvW_OxOi3NigTdMoZ3wXJOE4zwFmBND3z9C171oHDwoU4bnAjHKg3j7O_RD4fjIAoHtAtz6E1tQSkqnhm-AatoH8cphBOcygfJhBKBs_K7t3_mfBoc-NbUz_H1pOPv9a5DDG2V9Tz_En
CitedBy_id crossref_primary_10_1021_jacs_4c00652
crossref_primary_10_1016_j_fuel_2025_136556
crossref_primary_10_1021_jacs_3c10868
crossref_primary_10_1016_j_apsusc_2023_159102
crossref_primary_10_3390_nano14100889
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1002_advs_202501334
crossref_primary_10_1016_j_ensm_2025_104490
crossref_primary_10_1039_D4CY00066H
crossref_primary_10_1039_D5CS00090D
crossref_primary_10_1016_j_jelechem_2025_119083
crossref_primary_10_3390_nano13131915
crossref_primary_10_1016_j_jallcom_2024_173808
crossref_primary_10_1002_adma_202506117
crossref_primary_10_1021_acsaelm_5c00126
crossref_primary_10_1002_aenm_202303350
crossref_primary_10_1039_D5TA01857A
crossref_primary_10_1016_j_fuel_2025_135165
crossref_primary_10_1021_jacs_4c12838
crossref_primary_10_1002_adfm_202507930
crossref_primary_10_1002_adma_202419790
crossref_primary_10_1016_j_matlet_2024_137195
crossref_primary_10_1126_sciadv_ads7154
Cites_doi 10.1002/smll.202204255
10.1038/nature17981
10.1002/adfm.201601902
10.1002/cite.201900101
10.1021/acsanm.0c01282
10.1002/aenm.201702247
10.1126/science.aan5412
10.1038/nmat4764
10.1038/ncomms14586
10.1021/acsami.9b14792
10.1021/acsnano.2c07787
10.1038/srep01455
10.1021/acscentsci.9b00053
10.1039/C4EE01303D
10.1039/C8CP01413B
10.1038/s41929-021-00723-w
10.1021/jacs.0c06268
10.1038/s41467-019-10303-z
10.1021/acsaem.9b00957
10.1002/aenm.202001986
10.3390/nano11061417
10.1063/5.0006306
10.1002/admi.201700146
10.1016/j.ijrmhm.2019.02.005
10.1002/ente.202100688
10.1016/j.jallcom.2021.160221
10.1021/ja0742784
10.1038/s41467-020-20084-5
10.1039/C7SE00337D
10.1038/s41467-021-24453-6
10.1002/adfm.201901783
10.1016/j.apsusc.2022.154808
10.1039/D1NR02820K
10.1002/adma.202103812
10.1038/nchem.2695
10.1021/jp111978m
10.1038/s41929-020-00525-6
10.1002/aenm.202200742
10.1002/adfm.202204643
10.1016/B978-0-12-849891-0.00001-1
10.1038/s41586-019-1617-1
10.1038/s41560-020-0619-4
ContentType Journal Article
Copyright 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
OTOTI
5PM
DOA
DOI 10.1002/advs.202300426
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_d46eb9868af9499db17909ddfc90fea5
PMC10288253
1971284
37088797
10_1002_advs_202300426
ADVS5537
Genre article
Journal Article
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: DE‐NE0008812
– fundername: National Science Foundation
  funderid: CMMI‐1747685
– fundername: Basic Energy Sciences
  funderid: DE‐SC0023450
– fundername: Office of Science
– fundername: National Science Foundation
  grantid: CMMI-1747685
– fundername: U.S. Department of Energy
  grantid: DE-NE0008812
– fundername: Basic Energy Sciences
  grantid: DE-SC0023450
– fundername: ;
– fundername: ;
  grantid: CMMI‐1747685
– fundername: ;
  grantid: DE‐NE0008812
– fundername: ;
  grantid: DE‐SC0023450
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c5577-6aea7cfedeb03826bdc2346fea77c6549a22cc6a7689eec93c1684ddff1b379b3
IEDL.DBID 24P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974556800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:51:36 EDT 2025
Tue Nov 04 02:06:42 EST 2025
Mon Aug 28 20:02:17 EDT 2023
Fri Sep 05 14:56:57 EDT 2025
Sun Nov 09 08:55:05 EST 2025
Wed Feb 19 02:22:48 EST 2025
Tue Nov 18 22:11:13 EST 2025
Sat Nov 29 07:18:51 EST 2025
Wed Jan 22 16:22:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords green hydrogen production
high-entropy oxides (HEO)
noble metal-free catalysts
high-throughput synthesis
high-entropy oxyhydroxides (HEOH)
intense pulse light
Language English
License Attribution
2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5577-6aea7cfedeb03826bdc2346fea77c6549a22cc6a7689eec93c1684ddff1b379b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
DE‐NE0008812
ORCID 0000-0003-4270-6258
0000-0002-7841-8058
0000000342706258
0000000278418058
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202300426
PMID 37088797
PQID 2828590748
PQPubID 4365299
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d46eb9868af9499db17909ddfc90fea5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10288253
osti_scitechconnect_1971284
proquest_miscellaneous_2805519772
proquest_journals_2828590748
pubmed_primary_37088797
crossref_citationtrail_10_1002_advs_202300426
crossref_primary_10_1002_advs_202300426
wiley_primary_10_1002_advs_202300426_ADVS5537
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Blackwell (John Wiley & Sons)
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Blackwell (John Wiley & Sons)
– name: John Wiley and Sons Inc
– name: Wiley
References 2021; 9
2011; 115
2017; 8
2013; 3
2007; 129
2017; 4
2019; 5
2019; 2
2019; 11
2020; 142
2019; 10
2020; 11
2020; 10
2018; 20
2017; 9
2021; 13
2019; 80
2020; 5
2018; 8
2018; 2
2020; 3
2021; 12
2021; 11
2021; 33
2018; 359
2020; 152
2022; 5
2017; 16
2020; 92
2021; 877
2022; 12
2017
2019; 29
2016; 534
2022; 32
2022; 606
2014; 7
2016; 26
2022; 16
2019; 574
2022; 18
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
El‐Sayed H. A. (e_1_2_7_2_1) 2019; 2
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– start-page: 1
  year: 2017
– volume: 80
  start-page: 286
  year: 2019
  publication-title: Int. J. Refract. Met. Hard Mater.
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6373
  year: 2020
  publication-title: Nat. Commun.
– volume: 574
  start-page: 223
  year: 2019
  publication-title: Nature
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 16
  start-page: 121
  year: 2017
  publication-title: Nat. Mater.
– volume: 26
  start-page: 5862
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2021
  publication-title: Energy Technol.
– volume: 20
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 237
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 115
  start-page: 9074
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 4218
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 237
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 3
  start-page: 6078
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 877
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 1417
  year: 2021
  publication-title: Nanomaterials
– volume: 5
  start-page: 30
  year: 2022
  publication-title: Nat. Catal.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  start-page: 6322
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 92
  start-page: 31
  year: 2020
  publication-title: Chem. Ing. Tech.
– volume: 606
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 534
  start-page: 227
  year: 2016
  publication-title: Nature
– volume: 10
  start-page: 2650
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 558
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 5
  start-page: 359
  year: 2020
  publication-title: Nat. Energy
– volume: 3
  start-page: 985
  year: 2020
  publication-title: Nat. Catal.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 3
  start-page: 1455
  year: 2013
  publication-title: Sci. Rep.
– volume: 7
  start-page: 3135
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 457
  year: 2017
  publication-title: Nat. Chem.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2021
  publication-title: Nanoscale
– ident: e_1_2_7_12_1
  doi: 10.1002/smll.202204255
– ident: e_1_2_7_16_1
  doi: 10.1038/nature17981
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.201601902
– ident: e_1_2_7_6_1
  doi: 10.1002/cite.201900101
– ident: e_1_2_7_10_1
  doi: 10.1021/acsanm.0c01282
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201702247
– ident: e_1_2_7_17_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_7_30_1
  doi: 10.1038/nmat4764
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms14586
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.9b14792
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.2c07787
– ident: e_1_2_7_15_1
  doi: 10.1038/srep01455
– ident: e_1_2_7_25_1
  doi: 10.1021/acscentsci.9b00053
– ident: e_1_2_7_5_1
  doi: 10.1039/C4EE01303D
– ident: e_1_2_7_13_1
  doi: 10.1039/C8CP01413B
– ident: e_1_2_7_29_1
  doi: 10.1038/s41929-021-00723-w
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.0c06268
– ident: e_1_2_7_23_1
  doi: 10.1038/s41467-019-10303-z
– ident: e_1_2_7_24_1
  doi: 10.1021/acsaem.9b00957
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.202001986
– ident: e_1_2_7_22_1
  doi: 10.3390/nano11061417
– ident: e_1_2_7_43_1
  doi: 10.1063/5.0006306
– ident: e_1_2_7_7_1
  doi: 10.1002/admi.201700146
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ijrmhm.2019.02.005
– ident: e_1_2_7_41_1
  doi: 10.1002/ente.202100688
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jallcom.2021.160221
– ident: e_1_2_7_34_1
  doi: 10.1021/ja0742784
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-020-20084-5
– ident: e_1_2_7_1_1
  doi: 10.1039/C7SE00337D
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-021-24453-6
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201901783
– ident: e_1_2_7_19_1
  doi: 10.1016/j.apsusc.2022.154808
– ident: e_1_2_7_36_1
  doi: 10.1039/D1NR02820K
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.202103812
– ident: e_1_2_7_32_1
  doi: 10.1038/nchem.2695
– ident: e_1_2_7_33_1
  doi: 10.1021/jp111978m
– volume: 2
  start-page: 237
  year: 2019
  ident: e_1_2_7_2_1
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_9_1
  doi: 10.1038/s41929-020-00525-6
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.202200742
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.202204643
– ident: e_1_2_7_27_1
  doi: 10.1016/B978-0-12-849891-0.00001-1
– ident: e_1_2_7_21_1
  doi: 10.1038/s41586-019-1617-1
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-020-0619-4
SSID ssj0001537418
Score 2.4115357
Snippet The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being...
The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being...
Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to...
Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300426
SubjectTerms Alloys
Carbon
Carbon fibers
Chloride
Electrodes
Entropy
green hydrogen production
high‐entropy oxides (HEO)
high‐entropy oxyhydroxides (HEOH)
high‐throughput synthesis
intense pulse light
Light
Metals
Morphology
Nanoparticles
noble metal‐free catalysts
Oxides
Oxygen
Scanning electron microscopy
Thermodynamics
Transmission electron microscopy
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELojxDCzISEnCImsRxHB9LtRUHVFYUpN4sxw-6UpVUm90V-Q38aWbsbLQrQL1wihSPNs487G-y428IeQsY2DUlL1LmIUUpJcYc4w5SFe68sHkmjQ_NJsTFRX11Jec7rb6wJizSA0fFndiyco2sq1p75FGxDVJKSWu9kZl3OrCXAurZSabi-WCGtCxblsasONF2g-zcBQtZw94uFMj64dJBUP0NaP5ZL7mLY8NGdP6IPBwRJD2NMz8k91z7mByOMdrT9yOR9Icn5Nd8DRufpZ8xAaeXQwtgr1_0tPMUyzvoDKvUbwcKK2wXPuMM_aqn-GUWhq5DaQA9C_fhUfTUxEYTVLeWzpewaLY_QADQaqivHSjAX_rl5wAeSWeb0aPpVxdPTjwl389n384-pWPzhdRwLkRaaaeF8c66JmOQgzTWFKysQOVCmAqySl0UxlQa0hXpnJHM5FVdgl183jAhG_aMHLRd614QykvneG6wc5UtrXOyZDWvGkCm3hvIbxKSbo2hzMhMjg0yblTkVC4UGk9NxkvIu0n-NnJy_FPyI9p2kkIu7XADPEyNHqbu8rCEHKFnKIAkyKtrsADJrFQuBe7tCTneOowawx8mEHgBAZ3VCXkzDUPg4r8xunXdGmUyjqeGBbz_8-hf0zyZwMVfioTUe5639yL7I-3iOpCDI2CErJ-BUoOT3qEhBejnkkO0vPwfqjoiD_CXYyndMTlYLdfuFblvNqtFv3wdQvQ3Q-VDZg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagy4ELsDzDLshISMAh2jSO4_iEdlddcUCl2gVpb1bix24llJSmrchv4E8z47iBiteBUyXbUTPxzPibyeQbQl4CBrZVxtOYOQhRMok2x7iFUIVbJ8w4kdr5ZhNiOi0uL-UsJNzaUFa59YneUZtGY478KPVUa3DgFW8XX2LsGoVvV0MLjZtkD5nKshHZO5lMZ-c_siycIT3Llq0xSY9Ks0GW7pT56GHnNPKk_fDTgHH9DnD-Wjf5M571B9LZ3f8V5R65E6AoPe51Z5_csPV9sh-MvaWvAyP1mwfk22wNJ6ih7zGSpxddDaixnbe0cRTrROgEy90XHQVX3fh8UNeuWoopXpi69jUG9NSPw1_RY913rKBlbehsCd63voIFAHt9oW5HAUfTD187UG062QTToOe2_wTjIfl0Nvl4-i4OXRxizbkQcV7aUmhnja0SBsFMZXTKstzBqNA5hKdlmmqdlxD3SGu1ZHqcF5kxzo0rJmTFHpFR3dT2CaE8s5aPNbbAMpmxVmas4HkFENc5DYFSROLtbiodKM6x08Zn1ZMzpwp3Xw27H5FXw_pFT-7xx5UnqBzDKiTl9gPN8koFG1cmy20li7woHVL-mArZzyRIomUC4vKIHKBqKcA2SNCrsZJJr9RYCgQJETncaosKfgRuYFCViLwYpsED4GudsrbNGtckHD8_FiD_415Bh_tkAk8RKSJS7KjujiC7M_X82rOMI_IsUs7goXot_8cTUgCjLjiY29O_y3FAbuM1fbXdIRmtlmv7jNzSm9W8XT4P9vsd0YlR0Q
  priority: 102
  providerName: ProQuest
Title Pulsed Light Synthesis of High Entropy Nanocatalysts with Enhanced Catalytic Activity and Prolonged Stability for Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202300426
https://www.ncbi.nlm.nih.gov/pubmed/37088797
https://www.proquest.com/docview/2828590748
https://www.proquest.com/docview/2805519772
https://www.osti.gov/biblio/1971284
https://pubmed.ncbi.nlm.nih.gov/PMC10288253
https://doaj.org/article/d46eb9868af9499db17909ddfc90fea5
Volume 10
WOSCitedRecordID wos000974556800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZg5YEXYPwMG5WRkICHaE1sx_bjNnViEuuiDcR4ihLb2SqhZGraiv4N_NPcOWm2ChBCvLiqfWpj987-7nr-jpA3gIFdwUUcshJcFK7R5phw4KoIV0objbQpfbEJOZmoiwud3rrF3_JD9AE3tAy_X6OB50Wzd0Mamtsl0m3HzLsBd8kgipjC4g0xT2-iLIIhPQtWmAPvOmSK8zVz4yje2_yIjZPJE_jDSw2G9jvw-WsO5W1s6w-no4f_P61H5EEHTOl-q0nb5I6rHpPtzvQb-q7jp37_hPxIF3CeWvoR_Xp6vqoAQzbThtYlxawROsbk9-sVhY279tGhVTNvKAZ8YejKZxzQQ98PX0X3TVu_guaVpekM9uLqEgQABPu03RUFVE1Pv69A0el42RkKPXPthYyn5PPR-NPhh7Cr6RAaIaQMk9zl0pTOumLEwLUprIkZT0rolSYBZzWPY2OSHLwg7ZzRzESJ4taWZVQwqQv2jGxVdeVeECq4cyIyWBDLcuuc5kyJpADAW5YG3KaAhOvfMzMd4TnW3fiWtVTNcYZrnfVrHZC3vfx1S_XxR8kDVI9eCim6fUc9u8w6i88sT1yhVaLyEgmAbIFcaBpmYvQIpisCsoPKlQHSQbpeg3lNZp5FWiJkCMjuWueybleBB_B0gwD6VEBe98OwH-CfPHnl6gXKjAReRpYw_-etivbPySSeKVoGRG0o78ZENkeq6ZXnHEccqmLBYFG99v5lhTIAVecCjO_lP8rvkPvY2Sbj7ZKt-WzhXpF7ZjmfNrOhN25o5YUaksHBeJKeDX0UBdqT-NS3MD5Ij0_Sr_Duy_HkJ398Wz0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQvwLiGDTASCHiI1tpxEj8gNEanVetKxTZpPIXEdrZKKClNW8hv4L_wGznHuUDF7WkPPFWynTR2zuU7zvF3CHkCGNgknmAuTyFE8STqHBcGQhVh0kD3ulKltthEMBqFp6dyvEa-NWdhMK2ysYnWUOtc4R75NrNUa-DwwlfTTy5WjcKvq00JjUosDkz5GUK24uXgDbzfp4zt9Y939926qoCrhAgC149NHKjUaJN0OYDrRCvGPT-F1kD5EC7FjCnlx4DDpTFKctXzQ0_rNO0lPJAJh_teIuseCHvYIevjweH4_Y9dHcGRDqZhh-yy7VgvkRWccRutrHg_WyQAfnJQ5t8B3F_zNH_Gz9YB7l3_35buBrlWQ226U-nGBlkz2U2yURuzgj6vGbdf3CJfxwtACJoOcaeCHpUZoOJiUtA8pZgHQ_uYzj8tKbii3O53lcW8oLiFDV3nNoeC7tp2-Cu6o6qKHDTONB3PwLtkZzAAYL1NRC4pxAn07ZcSVJf2l7Xq03emOmJym5xcyKLcIZ0sz8w9QoVnjOgpLPGlPW2M9Hgo_AQgfJoqCAQd4jbSE6mawh0riXyMKvJpFqG0Ra20OeRZO35akZf8ceRrFMZ2FJKO24Z8dhbVNizSnm8SGfphnCKlkU6Q3U3CTJTswnSFQzZRlCPAbkhArDBTS82jngwQBDlkq5HOqLaT8ACtaDrkcdsNFg4_W8WZyRc4pivweHUA879bKUT7nDxALykDh4QrqrIykdWebHJuWdQRWYdMcFhUq1X_WKEIYOKRAPW-__d5PCJX9o8Ph9FwMDrYJFfx-iqzcIt05rOFeUAuq-V8Uswe1raDkg8XrXPfARORsZE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXYFzDBhgJBHuI2tpxEj8gNLZWTJu6ioG0t5D4slVCSWm6Qn4D_4hfxznOBSpuT3vgqZLtpLFzLt9xjr9DyFPAwCYLBPO5hRAlkKhzXBgIVYSxkR70pbKu2EQ0HscnJ3KyRr61Z2EwrbK1ic5Q60LhHnmPOao1cHhxzzZpEZO90avZJx8rSOGX1racRi0iB6b6DOFb-XJ_D971M8ZGw3e7b_ymwoCvhIgiP0xNGilrtMn6HIB2phXjQWihNVIhhE4pY0qFKWByaYySXA3CONDa2kHGI5lxuO8lcjkKwClj2iA7-rG_IzgSw7Q8kX3WS_US-cEZd3HLih905QLgpwC1_h3U_TVj82ck7Vzh6Mb_vIg3yfUGgNOdWmM2yJrJb5GNxsSV9EXDw719m3ydnANu0PQQ9y_ocZUDVi6nJS0sxewYOsQk_1lFwUEVbhesKhclxY1t6DpzmRV017XDX9EdVdfpoGmu6WQOPic_hQEA9l16ckUheqBHXypQaDpcNgaBvjX1wZM75P2FLMpdsp4XublPqAiMEQOFhb90oI2RAY9FmAGwt1ZBeOgRv5WkRDXE7lhf5GNSU1KzBCUv6STPI8-78bOa0uSPI1-jYHajkIrcNRTz06SxbIkOQpPJOIxTi0RHOkPONwkzUbIP0xUe2USxTgDRIS2xwvwttUgGMkJo5JGtVlKTxnrCA3Ri6pEnXTfYPfyYleamOMcxfYGHriOY_71aObrn5BH6Thl5JF5Rm5WJrPbk0zPHrY54O2aCw6I6DfvHCiUAHo8FqPqDv8_jMbkKipYc7o8PNsk1vLxON9wi64v5uXlIrqjlYlrOHzkjQsmHi1a474ktuMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+Light+Synthesis+of+High+Entropy+Nanocatalysts+with+Enhanced+Catalytic+Activity+and+Prolonged+Stability+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+science&rft.au=Abdelhafiz%2C+Ali&rft.au=Tanvir%2C+A.+N.+M.&rft.au=Zeng%2C+Minxiang&rft.au=Wang%2C+Baoming&rft.date=2023-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202300426&rft.externalDBID=10.1002%252Fadvs.202300426&rft.externalDocID=ADVS5537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon