Pulsed Light Synthesis of High Entropy Nanocatalysts with Enhanced Catalytic Activity and Prolonged Stability for Oxygen Evolution Reaction
The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of ne...
Uložené v:
| Vydané v: | Advanced science Ročník 10; číslo 18; s. e2300426 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.06.2023
Wiley Blackwell (John Wiley & Sons) John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.
Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst. |
|---|---|
| AbstractList | The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO
catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO 2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst. The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO 2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being time‐consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high‐power‐density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high‐throughput method opens new pathways toward developing next‐generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion. Diagram showing high‐throughput synthesis of high entropy alloys/oxides (HEOs) nanoparticles, using intense pulsed light. Upon photon absorption by the substrate, temperature rises within a few milliseconds, converting mixed precursors to HEOs nanoparticles. Activity toward oxygen evolution reaction is compared to commercial IrO2 catalyst. |
| Author | Li, Ju Zhang, Yanliang Abdelhafiz, Ali Zeng, Minxiang Ren, Zhichu Harutyunyan, Avetik R. Tanvir, A. N. M. Wang, Baoming |
| AuthorAffiliation | 3 Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA 5 Department of Chemical Engineering Texas Tech University Lubbock Texas 79409 USA 1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA 4 Honda Research Institute USA, Inc. San Jose CA 95134 USA 2 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN 46556 USA |
| AuthorAffiliation_xml | – name: 1 Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA – name: 3 Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA – name: 4 Honda Research Institute USA, Inc. San Jose CA 95134 USA – name: 2 Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN 46556 USA – name: 5 Department of Chemical Engineering Texas Tech University Lubbock Texas 79409 USA |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-4270-6258 surname: Abdelhafiz fullname: Abdelhafiz, Ali organization: Massachusetts Institute of Technology – sequence: 2 givenname: A. N. M. surname: Tanvir fullname: Tanvir, A. N. M. organization: University of Notre Dame – sequence: 3 givenname: Minxiang surname: Zeng fullname: Zeng, Minxiang organization: Texas Tech University – sequence: 4 givenname: Baoming surname: Wang fullname: Wang, Baoming organization: Massachusetts Institute of Technology – sequence: 5 givenname: Zhichu surname: Ren fullname: Ren, Zhichu organization: Massachusetts Institute of Technology – sequence: 6 givenname: Avetik R. surname: Harutyunyan fullname: Harutyunyan, Avetik R. organization: USA, Inc. – sequence: 7 givenname: Yanliang surname: Zhang fullname: Zhang, Yanliang email: yzhang45@nd.edu organization: University of Notre Dame – sequence: 8 givenname: Ju orcidid: 0000-0002-7841-8058 surname: Li fullname: Li, Ju email: liju@mit.edu organization: Massachusetts Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37088797$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1971284$$D View this record in Osti.gov |
| BookMark | eNqFkl9v0zAUxSM0xP6wVx6RBS-8tDiOE9tPqCqFTarYRIFXy3Gc1lVql9jpls_Al-Zm7aZtEuLJ1vHvnnts39PkyHlnkuRNiscpxuSjqnZhTDDJMKakeJGckFTwUcYpPXq0P07OQ1hjjNM8YzTlr5LjjGHOmWAnyZ_rrgmmQnO7XEW06F1cmWAD8jW6AAnNXGz9tkfflPNaRdX0IQZ0Y-NwtFJOQ-30To9Wo4mOdmdjj5Sr0HXrG--WACyiKm0z6LVv0dVtvzQOzXa-6aL1Dn03Sg-b18nLWkGa88N6lvz8MvsxvRjNr75eTifzkc5zxkaFMorp2lSmxBknRVlpktGiBpXpIqdCEaJ1oVjBhTFaZDotOK2quk7LjIkyO0su976VV2u5be1Gtb30yso7wbdLqVq4TmNkRQtTCl5wVQsqRFWmTGABXlpgaJiD16e917YrN6bSBt5LNU9Mn544u5JLv5MpJpyTPAOHd3sHH6KVQdto9Ep754yOMhUsJZwC9OHQpvW_OxOi3NigTdMoZ3wXJOE4zwFmBND3z9C171oHDwoU4bnAjHKg3j7O_RD4fjIAoHtAtz6E1tQSkqnhm-AatoH8cphBOcygfJhBKBs_K7t3_mfBoc-NbUz_H1pOPv9a5DDG2V9Tz_En |
| CitedBy_id | crossref_primary_10_1021_jacs_4c00652 crossref_primary_10_1016_j_fuel_2025_136556 crossref_primary_10_1021_jacs_3c10868 crossref_primary_10_1016_j_apsusc_2023_159102 crossref_primary_10_3390_nano14100889 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1002_advs_202501334 crossref_primary_10_1016_j_ensm_2025_104490 crossref_primary_10_1039_D4CY00066H crossref_primary_10_1039_D5CS00090D crossref_primary_10_1016_j_jelechem_2025_119083 crossref_primary_10_3390_nano13131915 crossref_primary_10_1016_j_jallcom_2024_173808 crossref_primary_10_1002_adma_202506117 crossref_primary_10_1021_acsaelm_5c00126 crossref_primary_10_1002_aenm_202303350 crossref_primary_10_1039_D5TA01857A crossref_primary_10_1016_j_fuel_2025_135165 crossref_primary_10_1021_jacs_4c12838 crossref_primary_10_1002_adfm_202507930 crossref_primary_10_1002_adma_202419790 crossref_primary_10_1016_j_matlet_2024_137195 crossref_primary_10_1126_sciadv_ads7154 |
| Cites_doi | 10.1002/smll.202204255 10.1038/nature17981 10.1002/adfm.201601902 10.1002/cite.201900101 10.1021/acsanm.0c01282 10.1002/aenm.201702247 10.1126/science.aan5412 10.1038/nmat4764 10.1038/ncomms14586 10.1021/acsami.9b14792 10.1021/acsnano.2c07787 10.1038/srep01455 10.1021/acscentsci.9b00053 10.1039/C4EE01303D 10.1039/C8CP01413B 10.1038/s41929-021-00723-w 10.1021/jacs.0c06268 10.1038/s41467-019-10303-z 10.1021/acsaem.9b00957 10.1002/aenm.202001986 10.3390/nano11061417 10.1063/5.0006306 10.1002/admi.201700146 10.1016/j.ijrmhm.2019.02.005 10.1002/ente.202100688 10.1016/j.jallcom.2021.160221 10.1021/ja0742784 10.1038/s41467-020-20084-5 10.1039/C7SE00337D 10.1038/s41467-021-24453-6 10.1002/adfm.201901783 10.1016/j.apsusc.2022.154808 10.1039/D1NR02820K 10.1002/adma.202103812 10.1038/nchem.2695 10.1021/jp111978m 10.1038/s41929-020-00525-6 10.1002/aenm.202200742 10.1002/adfm.202204643 10.1016/B978-0-12-849891-0.00001-1 10.1038/s41586-019-1617-1 10.1038/s41560-020-0619-4 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 OTOTI 5PM DOA |
| DOI | 10.1002/advs.202300426 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC AUTh Library subscriptions: ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_d46eb9868af9499db17909ddfc90fea5 PMC10288253 1971284 37088797 10_1002_advs_202300426 ADVS5537 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: U.S. Department of Energy funderid: DE‐NE0008812 – fundername: National Science Foundation funderid: CMMI‐1747685 – fundername: Basic Energy Sciences funderid: DE‐SC0023450 – fundername: Office of Science – fundername: National Science Foundation grantid: CMMI-1747685 – fundername: U.S. Department of Energy grantid: DE-NE0008812 – fundername: Basic Energy Sciences grantid: DE-SC0023450 – fundername: ; – fundername: ; grantid: CMMI‐1747685 – fundername: ; grantid: DE‐NE0008812 – fundername: ; grantid: DE‐SC0023450 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO AEUQT OTOTI 5PM |
| ID | FETCH-LOGICAL-c5577-6aea7cfedeb03826bdc2346fea77c6549a22cc6a7689eec93c1684ddff1b379b3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974556800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:51:36 EDT 2025 Tue Nov 04 02:06:42 EST 2025 Mon Aug 28 20:02:17 EDT 2023 Fri Sep 05 14:56:57 EDT 2025 Sun Nov 09 08:55:05 EST 2025 Wed Feb 19 02:22:48 EST 2025 Tue Nov 18 22:11:13 EST 2025 Sat Nov 29 07:18:51 EST 2025 Wed Jan 22 16:22:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | green hydrogen production high-entropy oxides (HEO) noble metal-free catalysts high-throughput synthesis high-entropy oxyhydroxides (HEOH) intense pulse light |
| Language | English |
| License | Attribution 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5577-6aea7cfedeb03826bdc2346fea77c6549a22cc6a7689eec93c1684ddff1b379b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE DE‐NE0008812 |
| ORCID | 0000-0003-4270-6258 0000-0002-7841-8058 0000000342706258 0000000278418058 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202300426 |
| PMID | 37088797 |
| PQID | 2828590748 |
| PQPubID | 4365299 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d46eb9868af9499db17909ddfc90fea5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10288253 osti_scitechconnect_1971284 proquest_miscellaneous_2805519772 proquest_journals_2828590748 pubmed_primary_37088797 crossref_citationtrail_10_1002_advs_202300426 crossref_primary_10_1002_advs_202300426 wiley_primary_10_1002_advs_202300426_ADVS5537 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley Blackwell (John Wiley & Sons) John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Blackwell (John Wiley & Sons) – name: John Wiley and Sons Inc – name: Wiley |
| References | 2021; 9 2011; 115 2017; 8 2013; 3 2007; 129 2017; 4 2019; 5 2019; 2 2019; 11 2020; 142 2019; 10 2020; 11 2020; 10 2018; 20 2017; 9 2021; 13 2019; 80 2020; 5 2018; 8 2018; 2 2020; 3 2021; 12 2021; 11 2021; 33 2018; 359 2020; 152 2022; 5 2017; 16 2020; 92 2021; 877 2022; 12 2017 2019; 29 2016; 534 2022; 32 2022; 606 2014; 7 2016; 26 2022; 16 2019; 574 2022; 18 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 El‐Sayed H. A. (e_1_2_7_2_1) 2019; 2 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – start-page: 1 year: 2017 – volume: 80 start-page: 286 year: 2019 publication-title: Int. J. Refract. Met. Hard Mater. – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6373 year: 2020 publication-title: Nat. Commun. – volume: 574 start-page: 223 year: 2019 publication-title: Nature – volume: 16 year: 2022 publication-title: ACS Nano – volume: 16 start-page: 121 year: 2017 publication-title: Nat. Mater. – volume: 26 start-page: 5862 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 year: 2021 publication-title: Energy Technol. – volume: 20 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 237 year: 2019 publication-title: J. Electrochem. Soc. – volume: 115 start-page: 9074 year: 2011 publication-title: J. Phys. Chem. C – volume: 12 start-page: 4218 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 237 year: 2018 publication-title: Sustainable Energy Fuels – volume: 3 start-page: 6078 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 877 year: 2021 publication-title: J. Alloys Compd. – volume: 11 start-page: 1417 year: 2021 publication-title: Nanomaterials – volume: 5 start-page: 30 year: 2022 publication-title: Nat. Catal. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 2 start-page: 6322 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 92 start-page: 31 year: 2020 publication-title: Chem. Ing. Tech. – volume: 606 year: 2022 publication-title: Appl. Surf. Sci. – volume: 534 start-page: 227 year: 2016 publication-title: Nature – volume: 10 start-page: 2650 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 558 year: 2019 publication-title: ACS Cent. Sci. – volume: 5 start-page: 359 year: 2020 publication-title: Nat. Energy – volume: 3 start-page: 985 year: 2020 publication-title: Nat. Catal. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 3 start-page: 1455 year: 2013 publication-title: Sci. Rep. – volume: 7 start-page: 3135 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 457 year: 2017 publication-title: Nat. Chem. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2021 publication-title: Nanoscale – ident: e_1_2_7_12_1 doi: 10.1002/smll.202204255 – ident: e_1_2_7_16_1 doi: 10.1038/nature17981 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201601902 – ident: e_1_2_7_6_1 doi: 10.1002/cite.201900101 – ident: e_1_2_7_10_1 doi: 10.1021/acsanm.0c01282 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201702247 – ident: e_1_2_7_17_1 doi: 10.1126/science.aan5412 – ident: e_1_2_7_30_1 doi: 10.1038/nmat4764 – ident: e_1_2_7_8_1 doi: 10.1038/ncomms14586 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.9b14792 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.2c07787 – ident: e_1_2_7_15_1 doi: 10.1038/srep01455 – ident: e_1_2_7_25_1 doi: 10.1021/acscentsci.9b00053 – ident: e_1_2_7_5_1 doi: 10.1039/C4EE01303D – ident: e_1_2_7_13_1 doi: 10.1039/C8CP01413B – ident: e_1_2_7_29_1 doi: 10.1038/s41929-021-00723-w – ident: e_1_2_7_31_1 doi: 10.1021/jacs.0c06268 – ident: e_1_2_7_23_1 doi: 10.1038/s41467-019-10303-z – ident: e_1_2_7_24_1 doi: 10.1021/acsaem.9b00957 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.202001986 – ident: e_1_2_7_22_1 doi: 10.3390/nano11061417 – ident: e_1_2_7_43_1 doi: 10.1063/5.0006306 – ident: e_1_2_7_7_1 doi: 10.1002/admi.201700146 – ident: e_1_2_7_14_1 doi: 10.1016/j.ijrmhm.2019.02.005 – ident: e_1_2_7_41_1 doi: 10.1002/ente.202100688 – ident: e_1_2_7_35_1 doi: 10.1016/j.jallcom.2021.160221 – ident: e_1_2_7_34_1 doi: 10.1021/ja0742784 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-020-20084-5 – ident: e_1_2_7_1_1 doi: 10.1039/C7SE00337D – ident: e_1_2_7_40_1 doi: 10.1038/s41467-021-24453-6 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201901783 – ident: e_1_2_7_19_1 doi: 10.1016/j.apsusc.2022.154808 – ident: e_1_2_7_36_1 doi: 10.1039/D1NR02820K – ident: e_1_2_7_39_1 doi: 10.1002/adma.202103812 – ident: e_1_2_7_32_1 doi: 10.1038/nchem.2695 – ident: e_1_2_7_33_1 doi: 10.1021/jp111978m – volume: 2 start-page: 237 year: 2019 ident: e_1_2_7_2_1 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_9_1 doi: 10.1038/s41929-020-00525-6 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.202200742 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.202204643 – ident: e_1_2_7_27_1 doi: 10.1016/B978-0-12-849891-0.00001-1 – ident: e_1_2_7_21_1 doi: 10.1038/s41586-019-1617-1 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-020-0619-4 |
| SSID | ssj0001537418 |
| Score | 2.4115357 |
| Snippet | The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to being... The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being... Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to... Abstract The ability to synthesize compositionally complex nanostructures rapidly is a key to high‐throughput functional materials discovery. In addition to... |
| SourceID | doaj pubmedcentral osti proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2300426 |
| SubjectTerms | Alloys Carbon Carbon fibers Chloride Electrodes Entropy green hydrogen production high‐entropy oxides (HEO) high‐entropy oxyhydroxides (HEOH) high‐throughput synthesis intense pulse light Light Metals Morphology Nanoparticles noble metal‐free catalysts Oxides Oxygen Scanning electron microscopy Thermodynamics Transmission electron microscopy |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELojxDCzISEnCImsRxHB9LtRUHVFYUpN4sxw-6UpVUm90V-Q38aWbsbLQrQL1wihSPNs487G-y428IeQsY2DUlL1LmIUUpJcYc4w5SFe68sHkmjQ_NJsTFRX11Jec7rb6wJizSA0fFndiyco2sq1p75FGxDVJKSWu9kZl3OrCXAurZSabi-WCGtCxblsasONF2g-zcBQtZw94uFMj64dJBUP0NaP5ZL7mLY8NGdP6IPBwRJD2NMz8k91z7mByOMdrT9yOR9Icn5Nd8DRufpZ8xAaeXQwtgr1_0tPMUyzvoDKvUbwcKK2wXPuMM_aqn-GUWhq5DaQA9C_fhUfTUxEYTVLeWzpewaLY_QADQaqivHSjAX_rl5wAeSWeb0aPpVxdPTjwl389n384-pWPzhdRwLkRaaaeF8c66JmOQgzTWFKysQOVCmAqySl0UxlQa0hXpnJHM5FVdgl183jAhG_aMHLRd614QykvneG6wc5UtrXOyZDWvGkCm3hvIbxKSbo2hzMhMjg0yblTkVC4UGk9NxkvIu0n-NnJy_FPyI9p2kkIu7XADPEyNHqbu8rCEHKFnKIAkyKtrsADJrFQuBe7tCTneOowawx8mEHgBAZ3VCXkzDUPg4r8xunXdGmUyjqeGBbz_8-hf0zyZwMVfioTUe5639yL7I-3iOpCDI2CErJ-BUoOT3qEhBejnkkO0vPwfqjoiD_CXYyndMTlYLdfuFblvNqtFv3wdQvQ3Q-VDZg priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagy4ELsDzDLshISMAh2jSO4_iEdlddcUCl2gVpb1bix24llJSmrchv4E8z47iBiteBUyXbUTPxzPibyeQbQl4CBrZVxtOYOQhRMok2x7iFUIVbJ8w4kdr5ZhNiOi0uL-UsJNzaUFa59YneUZtGY478KPVUa3DgFW8XX2LsGoVvV0MLjZtkD5nKshHZO5lMZ-c_siycIT3Llq0xSY9Ks0GW7pT56GHnNPKk_fDTgHH9DnD-Wjf5M571B9LZ3f8V5R65E6AoPe51Z5_csPV9sh-MvaWvAyP1mwfk22wNJ6ih7zGSpxddDaixnbe0cRTrROgEy90XHQVX3fh8UNeuWoopXpi69jUG9NSPw1_RY913rKBlbehsCd63voIFAHt9oW5HAUfTD187UG062QTToOe2_wTjIfl0Nvl4-i4OXRxizbkQcV7aUmhnja0SBsFMZXTKstzBqNA5hKdlmmqdlxD3SGu1ZHqcF5kxzo0rJmTFHpFR3dT2CaE8s5aPNbbAMpmxVmas4HkFENc5DYFSROLtbiodKM6x08Zn1ZMzpwp3Xw27H5FXw_pFT-7xx5UnqBzDKiTl9gPN8koFG1cmy20li7woHVL-mArZzyRIomUC4vKIHKBqKcA2SNCrsZJJr9RYCgQJETncaosKfgRuYFCViLwYpsED4GudsrbNGtckHD8_FiD_415Bh_tkAk8RKSJS7KjujiC7M_X82rOMI_IsUs7goXot_8cTUgCjLjiY29O_y3FAbuM1fbXdIRmtlmv7jNzSm9W8XT4P9vsd0YlR0Q priority: 102 providerName: ProQuest |
| Title | Pulsed Light Synthesis of High Entropy Nanocatalysts with Enhanced Catalytic Activity and Prolonged Stability for Oxygen Evolution Reaction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202300426 https://www.ncbi.nlm.nih.gov/pubmed/37088797 https://www.proquest.com/docview/2828590748 https://www.proquest.com/docview/2805519772 https://www.osti.gov/biblio/1971284 https://pubmed.ncbi.nlm.nih.gov/PMC10288253 https://doaj.org/article/d46eb9868af9499db17909ddfc90fea5 |
| Volume | 10 |
| WOSCitedRecordID | wos000974556800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZg5YEXYPwMG5WRkICHaE1sx_bjNnViEuuiDcR4ihLb2SqhZGraiv4N_NPcOWm2ChBCvLiqfWpj987-7nr-jpA3gIFdwUUcshJcFK7R5phw4KoIV0objbQpfbEJOZmoiwud3rrF3_JD9AE3tAy_X6OB50Wzd0Mamtsl0m3HzLsBd8kgipjC4g0xT2-iLIIhPQtWmAPvOmSK8zVz4yje2_yIjZPJE_jDSw2G9jvw-WsO5W1s6w-no4f_P61H5EEHTOl-q0nb5I6rHpPtzvQb-q7jp37_hPxIF3CeWvoR_Xp6vqoAQzbThtYlxawROsbk9-sVhY279tGhVTNvKAZ8YejKZxzQQ98PX0X3TVu_guaVpekM9uLqEgQABPu03RUFVE1Pv69A0el42RkKPXPthYyn5PPR-NPhh7Cr6RAaIaQMk9zl0pTOumLEwLUprIkZT0rolSYBZzWPY2OSHLwg7ZzRzESJ4taWZVQwqQv2jGxVdeVeECq4cyIyWBDLcuuc5kyJpADAW5YG3KaAhOvfMzMd4TnW3fiWtVTNcYZrnfVrHZC3vfx1S_XxR8kDVI9eCim6fUc9u8w6i88sT1yhVaLyEgmAbIFcaBpmYvQIpisCsoPKlQHSQbpeg3lNZp5FWiJkCMjuWueybleBB_B0gwD6VEBe98OwH-CfPHnl6gXKjAReRpYw_-etivbPySSeKVoGRG0o78ZENkeq6ZXnHEccqmLBYFG99v5lhTIAVecCjO_lP8rvkPvY2Sbj7ZKt-WzhXpF7ZjmfNrOhN25o5YUaksHBeJKeDX0UBdqT-NS3MD5Ij0_Sr_Duy_HkJ398Wz0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQvwLiGDTASCHiI1tpxEj8gNEanVetKxTZpPIXEdrZKKClNW8hv4L_wGznHuUDF7WkPPFWynTR2zuU7zvF3CHkCGNgknmAuTyFE8STqHBcGQhVh0kD3ulKltthEMBqFp6dyvEa-NWdhMK2ysYnWUOtc4R75NrNUa-DwwlfTTy5WjcKvq00JjUosDkz5GUK24uXgDbzfp4zt9Y939926qoCrhAgC149NHKjUaJN0OYDrRCvGPT-F1kD5EC7FjCnlx4DDpTFKctXzQ0_rNO0lPJAJh_teIuseCHvYIevjweH4_Y9dHcGRDqZhh-yy7VgvkRWccRutrHg_WyQAfnJQ5t8B3F_zNH_Gz9YB7l3_35buBrlWQ226U-nGBlkz2U2yURuzgj6vGbdf3CJfxwtACJoOcaeCHpUZoOJiUtA8pZgHQ_uYzj8tKbii3O53lcW8oLiFDV3nNoeC7tp2-Cu6o6qKHDTONB3PwLtkZzAAYL1NRC4pxAn07ZcSVJf2l7Xq03emOmJym5xcyKLcIZ0sz8w9QoVnjOgpLPGlPW2M9Hgo_AQgfJoqCAQd4jbSE6mawh0riXyMKvJpFqG0Ra20OeRZO35akZf8ceRrFMZ2FJKO24Z8dhbVNizSnm8SGfphnCKlkU6Q3U3CTJTswnSFQzZRlCPAbkhArDBTS82jngwQBDlkq5HOqLaT8ACtaDrkcdsNFg4_W8WZyRc4pivweHUA879bKUT7nDxALykDh4QrqrIykdWebHJuWdQRWYdMcFhUq1X_WKEIYOKRAPW-__d5PCJX9o8Ph9FwMDrYJFfx-iqzcIt05rOFeUAuq-V8Uswe1raDkg8XrXPfARORsZE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXYFzDBhgJBHuI2tpxEj8gNLZWTJu6ioG0t5D4slVCSWm6Qn4D_4hfxznOBSpuT3vgqZLtpLFzLt9xjr9DyFPAwCYLBPO5hRAlkKhzXBgIVYSxkR70pbKu2EQ0HscnJ3KyRr61Z2EwrbK1ic5Q60LhHnmPOao1cHhxzzZpEZO90avZJx8rSOGX1racRi0iB6b6DOFb-XJ_D971M8ZGw3e7b_ymwoCvhIgiP0xNGilrtMn6HIB2phXjQWihNVIhhE4pY0qFKWByaYySXA3CONDa2kHGI5lxuO8lcjkKwClj2iA7-rG_IzgSw7Q8kX3WS_US-cEZd3HLih905QLgpwC1_h3U_TVj82ck7Vzh6Mb_vIg3yfUGgNOdWmM2yJrJb5GNxsSV9EXDw719m3ydnANu0PQQ9y_ocZUDVi6nJS0sxewYOsQk_1lFwUEVbhesKhclxY1t6DpzmRV017XDX9EdVdfpoGmu6WQOPic_hQEA9l16ckUheqBHXypQaDpcNgaBvjX1wZM75P2FLMpdsp4XublPqAiMEQOFhb90oI2RAY9FmAGwt1ZBeOgRv5WkRDXE7lhf5GNSU1KzBCUv6STPI8-78bOa0uSPI1-jYHajkIrcNRTz06SxbIkOQpPJOIxTi0RHOkPONwkzUbIP0xUe2USxTgDRIS2xwvwttUgGMkJo5JGtVlKTxnrCA3Ri6pEnXTfYPfyYleamOMcxfYGHriOY_71aObrn5BH6Thl5JF5Rm5WJrPbk0zPHrY54O2aCw6I6DfvHCiUAHo8FqPqDv8_jMbkKipYc7o8PNsk1vLxON9wi64v5uXlIrqjlYlrOHzkjQsmHi1a474ktuMs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+Light+Synthesis+of+High+Entropy+Nanocatalysts+with+Enhanced+Catalytic+Activity+and+Prolonged+Stability+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+science&rft.au=Abdelhafiz%2C+Ali&rft.au=Tanvir%2C+A.+N.+M.&rft.au=Zeng%2C+Minxiang&rft.au=Wang%2C+Baoming&rft.date=2023-06-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202300426&rft.externalDBID=10.1002%252Fadvs.202300426&rft.externalDocID=ADVS5537 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |