Microglial subtypes: diversity within the microglial community
Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure t...
Uloženo v:
| Vydáno v: | The EMBO journal Ročník 38; číslo 17; s. e101997 - n/a |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
02.09.2019
Springer Nature B.V John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single‐cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or “subtype”) displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.
Graphical Abstract
Bertrand Joseph and colleagues discuss the complexities and heterogeneity of the resident macrophage cells that play key roles in CNS immune responses, suggesting function‐based categorizations and ways for further studies. |
|---|---|
| AbstractList | Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single‐cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or “subtype”) displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia. Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia. Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single‐cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or “subtype”) displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia. Bertrand Joseph and colleagues discuss the complexities and heterogeneity of the resident macrophage cells that play key roles in CNS immune responses, suggesting function‐based categorizations and ways for further studies. Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single‐cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or “subtype”) displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia. Graphical Abstract Bertrand Joseph and colleagues discuss the complexities and heterogeneity of the resident macrophage cells that play key roles in CNS immune responses, suggesting function‐based categorizations and ways for further studies. |
| Author | Stratoulias, Vassilis Venero, Jose Luis Joseph, Bertrand Tremblay, Marie‐Ève |
| AuthorAffiliation | 4 Department of Molecular Medicine Université Laval Quebec QC Canada 2 Departamento de Bioquímica y Biología Molecular Facultad de Farmacia Universidad de Sevilla Sevilla Spain 3 Instituto de Biomedicina de Sevilla‐Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla Spain 1 Toxicology Unit Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden 5 Axe Neurosciences Centre de Recherche du CHU de Québec‐Université Laval Quebec QC Canada |
| AuthorAffiliation_xml | – name: 2 Departamento de Bioquímica y Biología Molecular Facultad de Farmacia Universidad de Sevilla Sevilla Spain – name: 1 Toxicology Unit Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden – name: 5 Axe Neurosciences Centre de Recherche du CHU de Québec‐Université Laval Quebec QC Canada – name: 3 Instituto de Biomedicina de Sevilla‐Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla Spain – name: 4 Department of Molecular Medicine Université Laval Quebec QC Canada |
| Author_xml | – sequence: 1 givenname: Vassilis orcidid: 0000-0002-9724-6589 surname: Stratoulias fullname: Stratoulias, Vassilis organization: Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet – sequence: 2 givenname: Jose Luis surname: Venero fullname: Venero, Jose Luis organization: Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla‐Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla – sequence: 3 givenname: Marie‐Ève surname: Tremblay fullname: Tremblay, Marie‐Ève organization: Department of Molecular Medicine, Université Laval, Axe Neurosciences, Centre de Recherche du CHU de Québec‐Université Laval – sequence: 4 givenname: Bertrand orcidid: 0000-0001-5655-9979 surname: Joseph fullname: Joseph, Bertrand email: bertrand.joseph@ki.se organization: Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31373067$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:141888391$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNqFkUtvEzEUhS1URNPCnhUaiQ2bKX6MXwhVgqq81IoNrC2PfSdxmEdqzzTKv8clKSGVAFmWLd_vXB_7nKCjfugBoecEnxFOOX0NXb08o5hokqeWj9CMVAKXFEt-hGaYClJWROljdJLSEmPMlSRP0DEjTDIs5AydXwcXh3kbbFukqR43K0hvCh9uIaYwbop1GBehL8YFFN2edEPXTX2uP0WPG9smeLZbT9H3D5ffLj6VV18_fr54d1U6zqUsqXd5aALSa-4VOO4Fl7pWIKxjMjtnqhFWCs9903hMal1BJZn2NZZAHTtF5bZvWsNqqs0qhs7GjRlsMLujH3kHppJSc5X58y2fKx14B_0YbXsgO6z0YWHmw60RkkilcW7watcgDjcTpNF0ITloW9vDMCVDqVCM4Gw9oy8foMthin3-jkwpRgVWimbqxZ-Oflu5jyIDYgvkX04pQmNcGO0YhjuDoTUEm1-Zm7vMzT7zLMQPhPe9_yF5u5WsQwub__Lm8vr9lwM52aWRlf0c4v7Ff73yJ7d40ho |
| CitedBy_id | crossref_primary_10_1007_s12035_023_03339_2 crossref_primary_10_1093_chemse_bjac024 crossref_primary_10_1038_s41593_022_01095_5 crossref_primary_10_1007_s00441_020_03253_2 crossref_primary_10_1016_j_mcn_2022_103791 crossref_primary_10_3390_biomedicines11072035 crossref_primary_10_1016_j_bbi_2023_09_009 crossref_primary_10_1002_adma_202201322 crossref_primary_10_3390_ijms22041636 crossref_primary_10_1016_j_bbi_2023_09_006 crossref_primary_10_1016_j_brainres_2020_147132 crossref_primary_10_1016_j_bbi_2019_12_007 crossref_primary_10_3389_fphar_2022_838261 crossref_primary_10_3389_fpsyt_2024_1364201 crossref_primary_10_1073_pnas_2308187120 crossref_primary_10_3390_cells11101662 crossref_primary_10_1016_j_pneurobio_2021_102089 crossref_primary_10_1038_s41598_020_67649_4 crossref_primary_10_1186_s12974_020_02041_7 crossref_primary_10_3389_fimmu_2022_1013311 crossref_primary_10_1080_15622975_2021_1939154 crossref_primary_10_1155_2022_2479626 crossref_primary_10_1186_s12974_021_02308_7 crossref_primary_10_3389_fncel_2021_660523 crossref_primary_10_1093_jleuko_qiaf088 crossref_primary_10_1080_08923973_2021_2023174 crossref_primary_10_3389_fncel_2022_816439 crossref_primary_10_3389_fped_2022_883556 crossref_primary_10_1080_01616412_2025_2529560 crossref_primary_10_3390_ijms22052780 crossref_primary_10_1016_j_bbi_2020_08_034 crossref_primary_10_1167_iovs_66_11_26 crossref_primary_10_3389_fimmu_2020_00750 crossref_primary_10_1161_STROKEAHA_121_032613 crossref_primary_10_1016_j_drudis_2020_04_001 crossref_primary_10_1002_2211_5463_13735 crossref_primary_10_1016_j_bcp_2021_114532 crossref_primary_10_1016_j_cell_2024_01_012 crossref_primary_10_3389_fnmol_2021_630808 crossref_primary_10_1016_j_neubiorev_2023_105425 crossref_primary_10_4103_1673_5374_343902 crossref_primary_10_1515_biol_2022_0712 crossref_primary_10_1016_j_cobme_2022_100391 crossref_primary_10_3390_cells14171354 crossref_primary_10_1016_j_jneuroim_2023_578017 crossref_primary_10_1016_j_bbih_2021_100373 crossref_primary_10_1186_s12974_022_02519_6 crossref_primary_10_1016_j_imbio_2023_152761 crossref_primary_10_3390_ijms232214455 crossref_primary_10_1016_j_brainresbull_2023_110752 crossref_primary_10_1038_s41582_021_00463_2 crossref_primary_10_3390_cells11213364 crossref_primary_10_1186_s12974_024_03232_2 crossref_primary_10_1016_j_ejphar_2024_176756 crossref_primary_10_1016_j_nbd_2024_106663 crossref_primary_10_3390_cells10020391 crossref_primary_10_1002_pmic_202400298 crossref_primary_10_1016_j_npep_2025_102549 crossref_primary_10_3389_fncel_2023_1106547 crossref_primary_10_1002_ibra_12136 crossref_primary_10_3389_fnagi_2025_1642043 crossref_primary_10_1038_s41598_021_03416_3 crossref_primary_10_1016_j_bbi_2023_06_013 crossref_primary_10_1186_s12974_022_02595_8 crossref_primary_10_1177_1759091420925335 crossref_primary_10_1016_j_immuni_2024_05_005 crossref_primary_10_1038_s43587_023_00424_y crossref_primary_10_3389_fncel_2019_00522 crossref_primary_10_1007_s00018_022_04536_3 crossref_primary_10_3390_cells11081263 crossref_primary_10_1007_s12035_021_02545_0 crossref_primary_10_1186_s12974_022_02637_1 crossref_primary_10_3390_ijms25094679 crossref_primary_10_1186_s12974_022_02441_x crossref_primary_10_3390_brainsci14060558 crossref_primary_10_3390_cells11020242 crossref_primary_10_1177_17590914221145105 crossref_primary_10_1111_febs_16583 crossref_primary_10_3389_fneur_2021_660720 crossref_primary_10_3390_cells12182323 crossref_primary_10_1016_j_neuron_2022_10_020 crossref_primary_10_3389_fnagi_2022_825086 crossref_primary_10_1016_j_neuint_2021_105094 crossref_primary_10_3389_fnint_2024_1321872 crossref_primary_10_3390_cells9102277 crossref_primary_10_1016_j_ymthe_2020_12_009 crossref_primary_10_1146_annurev_genet_022223_093643 crossref_primary_10_12677_acm_2025_1582192 crossref_primary_10_31083_j_fbl2810269 crossref_primary_10_1016_j_nbd_2024_106481 crossref_primary_10_3389_fncel_2021_811061 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_3390_ijms231911076 crossref_primary_10_3390_jcm9020468 crossref_primary_10_1038_s41598_020_64173_3 crossref_primary_10_1177_08853282241268694 crossref_primary_10_1111_bph_17407 crossref_primary_10_3389_fnins_2021_616734 crossref_primary_10_1016_j_phymed_2025_156718 crossref_primary_10_1016_j_bbi_2025_05_027 crossref_primary_10_1186_s12974_020_01892_4 crossref_primary_10_1111_bpa_13118 crossref_primary_10_3390_ijms22168413 crossref_primary_10_3389_fncel_2022_984690 crossref_primary_10_1002_glia_24274 crossref_primary_10_3389_fimmu_2020_00430 crossref_primary_10_1038_s41590_023_01521_1 crossref_primary_10_3390_cells9102145 crossref_primary_10_1134_S002209302304021X crossref_primary_10_1002_glia_24279 crossref_primary_10_1016_j_clim_2023_109756 crossref_primary_10_1155_2023_5149306 crossref_primary_10_1016_j_jneumeth_2021_109359 crossref_primary_10_1016_j_tips_2021_11_006 crossref_primary_10_3389_fncel_2022_950819 crossref_primary_10_1002_jev2_12022 crossref_primary_10_3390_jcm8101719 crossref_primary_10_1155_2022_8903482 crossref_primary_10_1186_s12974_023_02987_4 crossref_primary_10_3389_fpsyt_2020_00264 crossref_primary_10_1186_s13024_025_00825_0 crossref_primary_10_1097_TP_0000000000004664 crossref_primary_10_3389_fncel_2021_658992 crossref_primary_10_1016_j_mam_2023_101193 crossref_primary_10_1186_s13041_024_01098_2 crossref_primary_10_1186_s40478_023_01701_y crossref_primary_10_3390_ijms22031091 crossref_primary_10_1038_s41380_024_02644_z crossref_primary_10_1007_s10719_022_10064_w crossref_primary_10_1007_s12010_025_05207_2 crossref_primary_10_3389_fnins_2024_1365737 crossref_primary_10_1016_j_bbi_2021_07_025 crossref_primary_10_1002_jnr_24626 crossref_primary_10_1111_ejn_15330 crossref_primary_10_3389_fncel_2020_592214 crossref_primary_10_1016_j_neuropharm_2024_109968 crossref_primary_10_1186_s40478_020_00989_4 crossref_primary_10_1016_j_mad_2021_111473 crossref_primary_10_3389_fpsyt_2022_945548 crossref_primary_10_1016_j_pnpbp_2020_109858 crossref_primary_10_1016_j_tins_2023_05_001 crossref_primary_10_1080_17501911_2025_2518909 crossref_primary_10_3390_ijms26010234 crossref_primary_10_1080_14737175_2020_1750955 crossref_primary_10_1093_jleuko_qiae098 crossref_primary_10_1016_j_ymgme_2020_12_291 crossref_primary_10_1096_fj_202300462RR crossref_primary_10_1371_journal_pcbi_1010758 crossref_primary_10_3389_fcell_2022_852752 crossref_primary_10_1038_s41593_022_01167_6 crossref_primary_10_1038_s41467_023_40370_2 crossref_primary_10_4103_1673_5374_369099 crossref_primary_10_1016_j_gene_2020_145152 crossref_primary_10_3389_fnins_2020_00903 crossref_primary_10_1186_s12974_024_03328_9 crossref_primary_10_1186_s12974_022_02655_z crossref_primary_10_1002_jnr_24761 crossref_primary_10_3390_ijms23063307 crossref_primary_10_1002_btm2_10265 crossref_primary_10_1007_s11033_020_06092_0 crossref_primary_10_1111_cns_14512 crossref_primary_10_3390_biomedicines10020419 crossref_primary_10_1016_j_neubiorev_2025_106091 crossref_primary_10_1016_j_neuint_2020_104715 crossref_primary_10_3390_ph17070831 crossref_primary_10_3390_ijms26167767 crossref_primary_10_1186_s13293_025_00699_3 crossref_primary_10_1111_brv_12797 crossref_primary_10_3389_fnagi_2025_1644532 crossref_primary_10_3389_fncel_2021_722028 crossref_primary_10_3390_ijms21249441 crossref_primary_10_1177_0271678X241270237 crossref_primary_10_3390_ijms22052256 crossref_primary_10_1038_s41577_025_01188_9 crossref_primary_10_7554_eLife_57495 crossref_primary_10_1038_s41419_022_05058_3 crossref_primary_10_3389_fncel_2022_839396 crossref_primary_10_1002_glia_24122 crossref_primary_10_3389_fncel_2021_670298 crossref_primary_10_1186_s12974_020_02019_5 crossref_primary_10_3389_fncel_2024_1317125 crossref_primary_10_3389_fimmu_2021_639613 crossref_primary_10_1007_s00109_024_02437_5 crossref_primary_10_1038_s41380_021_01361_1 crossref_primary_10_1038_s41592_022_01547_7 crossref_primary_10_1080_14728222_2020_1738391 crossref_primary_10_3390_ijms23105404 crossref_primary_10_3390_ijms21113764 crossref_primary_10_3390_cells9010099 crossref_primary_10_1016_j_heliyon_2023_e14713 crossref_primary_10_1186_s13036_024_00449_w crossref_primary_10_3389_fncel_2022_802411 crossref_primary_10_1002_adfm_202401485 crossref_primary_10_3389_fnins_2022_848648 crossref_primary_10_1016_j_bbi_2024_05_006 crossref_primary_10_3389_fimmu_2025_1648278 crossref_primary_10_1186_s12979_022_00300_0 crossref_primary_10_1016_j_biopsych_2021_10_020 crossref_primary_10_2139_ssrn_3811833 crossref_primary_10_1016_S1474_4422_20_30140_X crossref_primary_10_1007_s00401_020_02200_3 crossref_primary_10_1016_j_it_2022_06_003 crossref_primary_10_3389_fncel_2020_00198 crossref_primary_10_47855_jal9020_2025_1_2 crossref_primary_10_1111_ejn_14969 crossref_primary_10_1186_s13195_021_00828_1 crossref_primary_10_14348_molcells_2021_0060 crossref_primary_10_47855_jal9020_2025_1_1 crossref_primary_10_3389_fnins_2022_911430 crossref_primary_10_1016_j_bbi_2023_07_023 crossref_primary_10_1080_20013078_2020_1727637 crossref_primary_10_1016_j_neuropharm_2020_108157 crossref_primary_10_1038_s41419_023_05689_0 crossref_primary_10_3233_JAD_200098 crossref_primary_10_1016_j_neuroscience_2023_10_009 crossref_primary_10_1186_s13024_020_00375_7 crossref_primary_10_1186_s13062_021_00297_4 crossref_primary_10_1016_j_neures_2021_09_005 crossref_primary_10_3389_fncel_2020_628347 crossref_primary_10_1016_j_bbcan_2025_189328 crossref_primary_10_1016_j_expneurol_2024_115125 crossref_primary_10_1038_s41591_024_03150_z crossref_primary_10_1016_j_brs_2025_03_012 crossref_primary_10_1186_s42490_022_00064_0 crossref_primary_10_3389_fneur_2020_00087 crossref_primary_10_1002_glia_24217 crossref_primary_10_1016_j_bbih_2021_100301 crossref_primary_10_1111_imr_13081 crossref_primary_10_3389_fncel_2022_878987 crossref_primary_10_1111_cns_13620 crossref_primary_10_1161_STROKEAHA_122_039138 crossref_primary_10_3389_fimmu_2020_00456 crossref_primary_10_7554_eLife_66738 crossref_primary_10_1186_s40478_021_01297_1 crossref_primary_10_1177_10815589241261293 crossref_primary_10_1186_s12974_024_03296_0 crossref_primary_10_1038_s41380_019_0609_8 crossref_primary_10_1134_S0022093024060036 crossref_primary_10_3389_fcell_2021_629503 crossref_primary_10_1093_jnen_nlab083 crossref_primary_10_1186_s12974_024_03157_w crossref_primary_10_1016_j_ymthe_2025_03_002 crossref_primary_10_1016_j_jneuroim_2022_577832 crossref_primary_10_3390_ijms241814236 crossref_primary_10_1016_j_alcohol_2022_04_006 crossref_primary_10_3389_fncel_2021_647378 crossref_primary_10_4103_1673_5374_300430 crossref_primary_10_1177_13872877251374353 crossref_primary_10_3390_biomedicines12071420 crossref_primary_10_1016_j_neubiorev_2021_12_020 crossref_primary_10_1007_s00401_023_02585_x crossref_primary_10_1186_s12974_020_01884_4 crossref_primary_10_1186_s13024_021_00506_8 crossref_primary_10_1038_s42003_025_07511_3 crossref_primary_10_1007_s12975_020_00844_7 crossref_primary_10_1016_j_neuint_2021_104960 crossref_primary_10_3390_ijms22031356 crossref_primary_10_3390_cells11132091 crossref_primary_10_1097_PSY_0000000000001256 crossref_primary_10_3390_pharmaceutics13101624 crossref_primary_10_1155_2022_4564471 crossref_primary_10_1126_science_abf6805 crossref_primary_10_1038_s41467_022_35753_w crossref_primary_10_1126_science_abm1741 crossref_primary_10_1186_s12987_024_00548_2 crossref_primary_10_3389_fcell_2024_1368021 crossref_primary_10_1186_s13024_022_00566_4 crossref_primary_10_3389_fnagi_2022_1039780 crossref_primary_10_1016_j_pharmthera_2020_107684 crossref_primary_10_1111_cns_70395 crossref_primary_10_3389_fphar_2020_603979 crossref_primary_10_1002_glia_24313 crossref_primary_10_1016_j_pediatrneurol_2021_04_010 crossref_primary_10_3389_fncel_2022_1015556 crossref_primary_10_3389_fncel_2020_00246 crossref_primary_10_1093_stcltm_szad030 crossref_primary_10_1177_1073858420974336 crossref_primary_10_1177_17590914221135697 crossref_primary_10_1007_s12031_025_02380_1 crossref_primary_10_1016_j_heliyon_2024_e29713 crossref_primary_10_1007_s13365_023_01161_z crossref_primary_10_3390_cells9071717 crossref_primary_10_3389_fimmu_2021_683026 crossref_primary_10_1016_j_biomaterials_2020_120177 crossref_primary_10_1016_j_heliyon_2024_e35869 crossref_primary_10_1016_j_neuroscience_2020_03_041 crossref_primary_10_1111_apha_13674 crossref_primary_10_3390_antiox13121529 crossref_primary_10_3389_fimmu_2022_1006897 crossref_primary_10_1038_s41598_021_93590_1 crossref_primary_10_1016_j_brainres_2023_148315 crossref_primary_10_1186_s40478_023_01672_0 crossref_primary_10_1111_odi_14674 crossref_primary_10_1242_dev_200425 crossref_primary_10_3390_cells11152364 crossref_primary_10_3389_fncel_2020_592607 crossref_primary_10_3390_cells13221834 crossref_primary_10_3390_ijms25158332 crossref_primary_10_1002_advs_202305484 crossref_primary_10_3390_cells13181554 crossref_primary_10_3389_fphar_2020_01012 crossref_primary_10_1038_s41593_023_01326_3 crossref_primary_10_3389_fncel_2020_00274 crossref_primary_10_3390_ijms22031495 crossref_primary_10_1002_mnfr_202300156 crossref_primary_10_1016_j_bbi_2025_07_022 crossref_primary_10_1016_j_gde_2020_06_013 crossref_primary_10_1186_s13024_025_00867_4 crossref_primary_10_1016_j_nbd_2024_106742 crossref_primary_10_1016_j_exer_2020_108217 crossref_primary_10_1007_s10787_024_01550_8 crossref_primary_10_1111_pde_14657 crossref_primary_10_1042_BST20190081 crossref_primary_10_1111_jnc_15993 crossref_primary_10_1016_j_prostaglandins_2023_106760 crossref_primary_10_3389_fcell_2020_626541 crossref_primary_10_1007_s11064_022_03772_0 crossref_primary_10_3389_fimmu_2020_590280 crossref_primary_10_3389_fpsyt_2020_00789 crossref_primary_10_1002_1873_3468_13980 crossref_primary_10_1111_febs_70126 crossref_primary_10_1007_s13311_021_01179_3 crossref_primary_10_3390_ijms231810722 crossref_primary_10_1186_s12974_023_02901_y crossref_primary_10_1002_glia_24535 crossref_primary_10_1016_j_coi_2022_102181 crossref_primary_10_1016_j_neuroscience_2021_05_027 crossref_primary_10_1016_j_phrs_2022_106145 crossref_primary_10_1186_s12929_021_00728_4 crossref_primary_10_3389_fncel_2024_1505048 crossref_primary_10_3390_cells12030343 crossref_primary_10_3389_fnmol_2021_749737 crossref_primary_10_1186_s13059_024_03339_y crossref_primary_10_1016_j_bbadis_2022_166597 crossref_primary_10_1111_jnc_15760 crossref_primary_10_3390_cells11213429 crossref_primary_10_1186_s40478_023_01535_8 crossref_primary_10_1038_s41598_022_23477_2 crossref_primary_10_1021_acschemneuro_5c00221 crossref_primary_10_3390_ijms222313101 crossref_primary_10_1016_j_drudis_2022_06_015 crossref_primary_10_3390_biom15070942 crossref_primary_10_4103_1673_5374_353484 crossref_primary_10_1128_MCB_00467_19 crossref_primary_10_1016_j_ghres_2025_100007 crossref_primary_10_1016_j_celrep_2024_115204 crossref_primary_10_3390_biom14070833 |
| Cites_doi | 10.1126/science.1110647 10.1371/journal.pone.0066969 10.1038/icb.2015.48 10.1016/j.cell.2010.03.055 10.1016/j.celrep.2017.09.039 10.1002/glia.23287 10.1016/j.celrep.2016.12.041 10.2353/ajpath.2007.060783 10.1038/mp.2017.180 10.1016/j.ejphar.2015.04.021 10.1126/science.aaf4238 10.1016/j.exer.2005.04.008 10.1016/j.celrep.2018.05.066 10.1038/nn.4631 10.1016/j.devcel.2015.08.018 10.12703/P6-13 10.3389/fnagi.2017.00194 10.1038/nn.4597 10.1093/glycob/cwj115 10.1038/s41586-018-0023-4 10.1007/s00401-014-1330-y 10.1016/j.neulet.2014.07.018 10.1126/science.aad8670 10.1038/nbt.3973 10.1186/s12974-017-0840-7 10.1002/glia.22966 10.1177/41.4.8450191 10.3389/fimmu.2015.00463 10.1016/j.neuron.2017.06.020 10.1186/s12974-015-0332-6 10.1002/(SICI)1098-1136(199611)18:3<255::AID-GLIA9>3.0.CO;2-Y 10.1016/j.cell.2007.10.036 10.32607/20758251-2015-7-2-42-47 10.1038/s41593-018-0192-3 10.1016/j.ajpath.2015.07.016 10.1101/gr.190595.115 10.1016/j.ajhg.2019.03.010 10.1038/nn.3599 10.1038/s41598-018-20643-3 10.1038/nmeth.4407 10.1002/glia.23176 10.3389/fncel.2013.00065 10.2174/187152711794488575 10.1523/JNEUROSCI.1268-12.2013 10.3389/fncel.2018.00523 10.1016/j.neuint.2016.01.003 10.1186/s13041-016-0263-x 10.1016/j.bbi.2018.06.007 10.1038/nn2015 10.1182/blood.V99.1.111 10.1016/S0304-3940(98)00813-1 10.1016/j.immuni.2015.03.011 10.1016/j.immuni.2017.08.008 10.1016/j.pneurobio.2008.06.001 10.1038/cdd.2010.60 10.1016/j.immuni.2015.01.012 10.1523/JNEUROSCI.22-11-04611.2002 10.1038/cddis.2013.479 10.3390/ijms18040769 10.1038/s41467-018-05016-8 10.1186/1742-2094-11-57 10.3389/fncel.2018.00243 10.1038/nn2014 10.1523/JNEUROSCI.1217-15.2015 10.1002/dneu.22572 10.1016/j.immuni.2018.11.004 10.1016/j.celrep.2017.07.004 10.1038/nn.3318 10.1016/j.bbi.2015.07.024 10.1371/journal.pone.0026317 10.3389/fnmol.2018.00013 10.1016/0306-4522(92)90500-2 10.1046/j.1471-4159.2002.01243.x 10.1038/s41593-018-0100-x 10.1016/0306-4522(90)90229-W 10.1002/(SICI)1097-4547(19990901)57:5<616::AID-JNR4>3.0.CO;2-E 10.1016/j.neuron.2014.02.040 10.1038/s41593-018-0090-8 10.1155/2015/689404 10.1038/s41586-019-0924-x 10.3389/fncel.2014.00129 10.1016/j.cell.2014.11.023 10.3389/fnana.2015.00045 10.1002/cne.21668 10.1523/JNEUROSCI.0535-13.2013 10.3389/fnmol.2017.00421 10.1155/2013/762303 10.1002/glia.22409 10.1186/s40478-018-0584-3 10.1038/nn.3554 10.1016/j.neurobiolaging.2013.05.001 10.1002/glia.20663 10.1016/j.bbadis.2016.07.007 10.1016/j.immuni.2015.11.022 10.1002/glia.10154 10.1126/science.1190929 10.1016/j.neuron.2018.12.006 10.1038/nrn.2016.7 10.15252/embj.201696056 10.1016/j.neurobiolaging.2014.06.004 10.1084/jem.20120412 10.1093/jnen/59.3.177 10.1126/science.aat7554 10.1523/JNEUROSCI.3751-14.2015 10.1002/ana.24304 10.1126/science.aaa1934 10.1016/j.celrep.2017.11.058 10.1038/ncomms14556 10.1002/jnr.23242 10.1038/nn.4338 10.1038/s41590-018-0110-6 10.1016/j.celrep.2014.07.042 10.1126/science.aal3222 10.1113/JP272134 10.1111/ejn.13256 10.1038/ni.3423 10.3389/fncel.2014.00101 10.1038/nn.4547 10.1523/JNEUROSCI.4668-14.2015 10.1038/nm.4397 10.1016/S0165-3806(99)00113-3 10.1126/science.1194637 10.1089/rej.2006.9096 10.1371/journal.pbio.1000527 10.1016/j.cels.2017.03.006 10.1073/pnas.1525528113 10.1016/j.immuni.2015.07.016 10.1016/j.molmed.2017.03.008 10.7554/eLife.42025 10.1038/nn.4222 10.1016/j.immuni.2018.01.011 10.1016/j.celrep.2018.04.001 10.3389/fncel.2015.00084 10.1186/s13041-017-0307-x 10.1016/j.neuron.2012.03.026 10.4049/jimmunol.168.1.44 10.1038/s41421-018-0011-8 10.1111/j.1471-4159.2011.07630.x 10.1242/dev.152306 10.1016/j.cell.2017.05.018 10.1016/j.ydbio.2012.03.026 10.1038/nn.2887 10.1016/j.neuron.2018.05.014 10.1016/S0165-5728(97)00251-8 10.1002/glia.22287 10.1523/JNEUROSCI.1619-13.2014 10.1038/ni.2360 10.1007/s00429-019-01834-8 10.3389/fncel.2015.00037 10.1126/science.1219179 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2019 The Authors. Published under the terms of the CC BY 4.0 license 2019 The Authors. Published under the terms of the CC BY 4.0 license. 2019 EMBO |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2019 EMBO |
| DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTPV AOWAS D8T ZZAVC |
| DOI | 10.15252/embj.2019101997 |
| DatabaseName | SpringerOpen Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Vassilis Stratoulias et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | oai_swepub_ki_se_477958 PMC6717890 31373067 10_15252_embj_2019101997 EMBJ2019101997 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Sigrid Juséliuksen Säätiö (Sigrid Jusélius Stiftelse) funderid: 10.13039/501100006306 – fundername: Canada Research Chair (Tier 2) of Neuroimmune Plasticity in Health and Therapy – fundername: Cancerfonden (Swedish Cancer Society) funderid: 10.13039/501100002794 – fundername: Karolinska Institutet Foundation – fundername: Barncancerfonden (Swedish Childhood Cancer Foundation) funderid: 10.13039/501100006313 – fundername: Swedish Cancer Foundation funderid: 10.13039/100012538 – fundername: Hjärnfonden (Swedish Brain Foundation) funderid: 10.13039/501100003792 – fundername: Spanish Ministerio de Ciencia, Innovación y Universidades grantid: FEDER/UE RTI2018‐098645‐B‐100 – fundername: TracInflam grant from ERA‐NET NEURON Neuroinflammation – fundername: Swedish Research Council funderid: 10.13039/501100004359 – fundername: Swedish Cancer Foundation – fundername: Barncancerfonden (Swedish Childhood Cancer Foundation) – fundername: Cancerfonden (Swedish Cancer Society) – fundername: Sigrid Juséliuksen Säätiö (Sigrid Jusélius Stiftelse) – fundername: Hjärnfonden (Swedish Brain Foundation) – fundername: Swedish Research Council – fundername: Spanish Ministerio de Ciencia, Innovación y Universidades funderid: FEDER/UE RTI2018‐098645‐B‐100 – fundername: Spanish Ministerio de Ciencia, Innovación y Universidades grantid: FEDER/UE RTI2018-098645-B-100 – fundername: TracInflam grant from ERA-NET NEURON Neuroinflammation |
| GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AAMMB AASML AAYXX ABZEH AEFGJ AGXDD AIDQK AIDYY AJAOE CITATION NAO O8X CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K ESTFP FR3 H94 K9. M7N P64 RC3 7X8 5PM .55 3O- 4.4 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 AANHP ABUWG ACBWZ ACKIV ACRPL ACYXJ ADNMO ADTPV AEUYN AFFHD AFKRA AGQPQ AI. AOWAS ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU COF D1J D8T DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH H13 HCIFZ HMCUK HVGLF H~9 LH4 LK8 LW6 M1P M2O M7P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP ZZAVC |
| ID | FETCH-LOGICAL-c5577-2dcdcd91e7d95d8ec5d6579b8e6ac3799738f6a76d5dffd01b94e4739db07e2c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 382 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Nov 25 03:37:23 EST 2025 Tue Sep 30 16:46:25 EDT 2025 Wed Oct 01 12:47:36 EDT 2025 Mon Oct 06 18:04:56 EDT 2025 Mon Jul 21 06:06:36 EDT 2025 Tue Nov 18 19:56:10 EST 2025 Sat Nov 29 03:03:07 EST 2025 Wed Jan 22 16:39:11 EST 2025 Fri Feb 21 02:37:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | homeostasis disease microglia heterogeneity subtypes |
| Language | English |
| License | Attribution 2019 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5577-2dcdcd91e7d95d8ec5d6579b8e6ac3799738f6a76d5dffd01b94e4739db07e2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-9724-6589 0000-0001-5655-9979 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019101997 |
| PMID | 31373067 |
| PQID | 2283260882 |
| PQPubID | 35985 |
| PageCount | 18 |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_477958 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6717890 proquest_miscellaneous_2268310799 proquest_journals_2283260882 pubmed_primary_31373067 crossref_citationtrail_10_15252_embj_2019101997 crossref_primary_10_15252_embj_2019101997 wiley_primary_10_15252_embj_2019101997_EMBJ2019101997 springer_journals_10_15252_embj_2019101997 |
| PublicationCentury | 2000 |
| PublicationDate | 02 September 2019 |
| PublicationDateYYYYMMDD | 2019-09-02 |
| PublicationDate_xml | – month: 09 year: 2019 text: 02 September 2019 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
| References | Sato‐Hashimoto, Nozu, Toriba, Horikoshi, Akaike, Kawamoto, Hirose, Hayashi, Nagai, Shimizu (CR119) 2019; 8 Martinez, Gordon (CR86) 2014; 6 Krasemann, Madore, Cialic, Baufeld, Calcagno, El Fatimy, Beckers, O'Loughlin, Xu, Fanek (CR80) 2017; 47 Mildner, Schmidt, Nitsche, Merkler, Hanisch, Mack, Heikenwalder, Brück, Priller, Prinz (CR94) 2007; 10 Wang, Szretter, Vermi, Gilfillan, Rossini, Cella, Barrow, Diamond, Colonna (CR143) 2012; 13 Ransohoff (CR109) 2016; 19 Shinjo, Imagama, Ito, Ando, Nishida, Ishiguro, Kadomatsu (CR127) 2014; 579 Forabosco, Ramasamy, Trabzuni, Walker, Smith, Bras, Levine, Hardy, Pocock, Guerreiro (CR39) 2013; 34 Milior, Lecours, Samson, Bisht, Poggini, Pagani, Deflorio, Lauro, Alboni, Limatola (CR95) 2016; 55 Shigemoto‐Mogami, Hoshikawa, Goldman, Sekino, Sato (CR126) 2014; 34 Ajami, Bennett, Krieger, McNagny, Rossi (CR3) 2011; 14 Schafer, Lehrman, Kautzman, Koyama, Mardinly, Yamasaki, Ransohoff, Greenberg, Barres, Stevens (CR120) 2012; 74 Scheffel, Regen, Van Rossum, Seifert, Ribes, Nau, Parsa, Harris, Boddeke, Chuang (CR121) 2012; 60 Schulz, Gomez Perdiguero, Chorro, Szabo‐Rogers, Cagnard, Kierdorf, Prinz, Wu, Jacobsen, Pollard (CR123) 2012; 336 Cho, Cheong, Kim, Abe, Murakami, Cho (CR24) 2013; 2013 Lawson, Perry, Dri, Gordon (CR81) 1990; 39 Lenz, Nugent, Haliyur, McCarthy (CR83) 2013; 33 Huang, Xu, Xiong, Qin, Sun, Yang, Yuan, Zhao, Wang, Liang (CR64) 2018; 4 Wogram, Wendt, Matyash, Pivneva, Draguhn, Kettenmann (CR150) 2016; 43 Hoeffel, Chen, Lavin, Low, Almeida, See, Beaudin, Lum, Low, Forsberg (CR62) 2015; 42 Jander, Stoll (CR68) 1996; 148 Härtlova, Erttmann, Raffi, Schmalz, Resch, Anugula, Lienenklaus, Nilsson, Kröger, Nilsson (CR59) 2015; 42 Huang, Xu, Xiong, Sun, Qin, Hu, Wang, Zhao, Liang, Wu (CR65) 2018; 21 Erblich, Zhu, Etgen, Dobrenis, Pollard (CR34) 2011; 6 Tay, Mai, Dautzenberg, Fernández‐Klett, Lin, Sagar, Drougard, Stempfl, Ardura‐Fabregat, Staszewski (CR134) 2017; 20 Grabert, Michoel, Karavolos, Clohisey, Baillie, Stevens, Freeman, Summers, McColl (CR49) 2016; 19 Elmore, Najafi, Koike, Dagher, Spangenberg, Rice, Kitazawa, Matusow, Nguyen, West (CR32) 2014; 82 Zhang, Muramatsu, Murase, Yuasa, Uchimura, Kadomatsu (CR156) 2006; 16 Olah, Biber, Vinet, Boddeke (CR101) 2011; 10 Chen, Tvrdik, Peden, Cho, Wu, Spangrude, Capecchi (CR21) 2010; 141 Zhang, Lam, Tso (CR155) 2005; 81 Río‐Hortega (CR117) 1920; XVIII Zeisel, Muñoz‐Manchado, Codeluppi, Lönnerberg, La Manno, Juréus, Marques, Munguba, He, Betsholtz (CR154) 2015; 347 Stowell, Wong, Batchelor, Mendes, Lamantia, Whitelaw, Majewska (CR131) 2018; 78 Kan, Lee, Wilson, Everhart, Brown, Hoofnagle, Jansen, Vitek, Gunn, Colton (CR75) 2015; 35 Habib, Avraham‐Davidi, Basu, Burks, Shekhar, Hofree, Choudhury, Aguet, Gelfand, Ardlie (CR53) 2017; 14 Ajami, Bennett, Krieger, Tetzlaff, Rossi (CR2) 2007; 10 Wlodarczyk, Cédile, Jensen, Jasson, Mony, Khorooshi, Owens (CR147) 2015; 6 Clevers, Rafelski, Elowitz, Klein, Shendure, Trapnell, Lein, Lundberg, Uhlen, Martinez‐Arias (CR501) 2017; 4 Doorn, Brevé, Drukarch, Boddeke, Huitinga, Lucassen, van Dam (CR30) 2015; 9 Mass, Ballesteros, Farlik, Halbritter, Günther, Crozet, Jacome‐Galarza, Händler, Klughammer, Kobayashi (CR87) 2016; 353 Eyo, Mo, Yi, Murugan, Liu, Yarlagadda, Margolis, Xu, Wu (CR35) 2018; 23 Butovsky, Jedrychowski, Moore, Cialic, Lanser, Gabriely, Koeglsperger, Dake, Wu, Doykan (CR18) 2014; 17 Medrano‐Fernández, Barco (CR93) 2016; 9 Li, Cheng, Zhou, Darmanis, Neff, Okamoto, Gulati, Bennett, Sun, Clarke (CR84) 2019; 101 Luo, Elwood, Britschgi, Villeda, Zhang, Ding, Zhu, Alabsi, Getachew, Narasimhan (CR85) 2013; 210 Matcovitch‐Natan, Winter, Giladi, Vargas Aguilar, Spinrad, Sarrazin, Ben‐Yehuda, David, Zelada González, Perrin (CR89) 2016; 353 Ferrero, Mahony, Dupuis, Yvernogeau, Di Ruggiero, Miserocchi, Caron, Robin, Traver, Bertrand (CR36) 2018; 24 Ginhoux, Greter, Leboeuf, Nandi, See, Gokhan, Mehler, Conway, Ng, Stanley (CR45) 2010; 330 de Haas, Boddeke, Biber (CR52) 2008; 56 Remington, Babcock, Zehntner, Owens (CR111) 2007; 170 Wlodarczyk, Løbner, Cédile, Owens (CR146) 2014; 11 Nandi, Gokhan, Dai, Wei, Enikolopov, Lin, Mehler, Stanley (CR98) 2012; 367 Matsui, Ohgomori, Natori, Miyamoto, Kusunoki, Sakamoto, Ishiguro, Imagama, Kadomatsu (CR91) 2013; 4 Sheng, Ruedl, Karjalainen (CR125) 2015; 43 Schwarz, Sholar, Bilbo (CR124) 2012; 120 Flowers, Bell‐Temin, Jalloh, Stevens, Bickford (CR38) 2017; 14 Kiyofuji, Kurauchi, Hisatsune, Seki, Mishima, Katsuki (CR78) 2015; 760 Ribeiro Xavier, Kress, Goldman, Lacerda de Menezes, Nedergaard (CR113) 2015; 35 Bennett, Bennett, Yaqoob, Mulinyawe, Grant, Hayden Gephart, Plowey, Barres (CR11) 2018; 98 Nagarajan, Jones, West, Marc, Capecchi (CR97) 2018; 23 Bennett, Bennett, Liddelow, Ajami, Zamanian, Fernhoff, Mulinyawe, Bohlen, Adil, Tucker (CR10) 2016; 113 Réu, Khosravi, Bernard, Mold, Salehpour, Alkass, Perl, Tisdale, Possnert, Druid (CR112) 2017; 20 Salter, Stevens (CR118) 2017; 23 Askew, Li, Olmos‐Alonso, Garcia‐Moreno, Liang, Richardson, Tipton, Chapman, Riecken, Beccari (CR7) 2017; 18 Graeber (CR50) 2010; 330 Cheray, Joseph (CR22) 2018; 12 Yeh, Hansen, Sheng (CR153) 2017; 23 Butovsky, Jedrychowski, Cialic, Krasemann, Murugaiyan, Fanek, Greco, Wu, Doykan, Kiner (CR19) 2015; 77 Trapnell (CR137) 2015; 25 Bisht, Sharma, Lecours, Gabriela Sánchez, El Hajj, Milior, Olmos‐Alonso, Gómez‐Nicola, Luheshi, Vallières (CR15) 2016; 64 Wang, Berezovska, Fedoroff (CR142) 1999; 57 Lawson, Perry, Gordon (CR82) 1992; 48 Wendeln, Degenhardt, Kaurani, Gertig, Ulas, Jain, Wagner, Häsler, Wild, Skodras (CR145) 2018; 556 Ajami, Samusik, Wieghofer, Ho, Crotti, Bjornson, Prinz, Fantl, Nolan, Steinman (CR4) 2018; 21 Alliot, Godin, Pessac (CR5) 1999; 117 De Biase, Schuebel, Fusfeld, Jair, Hawes, Cimbro, Zhang, Liu, Shen, Xi (CR28) 2017; 95 Hoogland, Houbolt, van Westerloo, van Gool, van de Beek (CR63) 2015; 12 Masuda, Sankowski, Staszewski, Böttcher, Amann, Scheiwe, Nessler, Kunz, van Loo, Coenen (CR88) 2019; 566 Kierdorf, Erny, Goldmann, Sander, Schulz, Perdiguero, Wieghofer, Heinrich, Riemke, Hölscher (CR77) 2013; 16 Oosterhof, Chang, Karimiani, Kuil, Jensen, Daza, Young, Astle, van der Linde, Shivaram (CR102) 2019; 104 Eon Kuek, Leffler, Mackay, Hulett (CR33) 2016; 94 Pimentel‐Coelho, Michaud, Rivest (CR108) 2013; 33 Ravasi, Wells, Forest, Underhill, Wainwright, Aderem, Grimmond, Hume (CR110) 2002; 168 Arnoux, Audinat (CR6) 2015; 2015 Hui, St‐Pierre, Detuncq, Aumailley, Dubois, Couture, Skuk, Marette, Tremblay, Lebel (CR67) 2018; 73 Hirano, Ohgomori, Kobayashi, Tanaka, Matsumoto, Natori, Matsuyama, Uchimura, Sakamoto, Takeuchi (CR61) 2013; 8 Kamphuis, Kooijman, Schetters, Orre, Hol (CR74) 2016; 1862 Ayata, Badimon, Strasburger, Duff, Montgomery, Loh, Ebert, Pimenova, Ramirez, Chan (CR8) 2018; 21 Boutej, Rahimian, Thammisetty, Béland, Lalancette‐Hébert, Kriz (CR16) 2017; 21 Wlodarczyk, Benmamar‐Badel, Cédile, Jensen, Kramer, Elsborg, Owens (CR149) 2018; 12 Goldmann, Wieghofer, Jordão, Prutek, Hagemeyer, Frenzel, Amann, Staszewski, Kierdorf, Krueger (CR46) 2016; 17 Jordão, Sankowski, Brendecke, Sagar Locatelli, Tai, Tay, Schramm, Armbruster, Hagemeyer, Groß (CR72) 2019; 363 Joost, Jordão, Mages, Prinz, Bechmann, Krueger (CR71) 2019; 224 Gusel'nikova, Korzhevskiy (CR51) 2015; 7 Squarzoni, Oller, Hoeffel, Pont‐Lezica, Rostaing, Low, Bessis, Ginhoux, Garel (CR129) 2014; 8 Paolicelli, Bisht, Tremblay (CR104) 2014; 8 Tay, Béchade, D'Andrea, St‐Pierre, Henry, Roumier, Tremblay (CR133) 2017; 10 Bertolotto, Caterson, Canavese, Migheli, Schiffer (CR12) 1993; 41 Füger, Hefendehl, Veeraraghavalu, Wendeln, Schlosser, Obermüller, Wegenast‐Braun, Neher, Martus, Kohsaka (CR41) 2017; 20 Gosselin, Link, Romanoski, Fonseca, Eichenfield, Spann, Stender, Chun, Garner, Geissmann (CR47) 2014; 159 Koellhoffer, McCullough, Ritzel (CR79) 2017; 18 Jones, Tuszynski (CR70) 2002; 22 Tremblay, Lecours, Samson, Sánchez‐Zafra, Sierra (CR140) 2015; 9 Streit (CR132) 2002; 40 Perdiguero, Klapproth, Schulz, Busch, de Bruijn, Rodewald, Geissmann (CR106) 2015; 43 Weil, Norman, DeVries, Nelson (CR144) 2008; 86 Stevens, Allen, Vazquez, Howell, Christopherson, Nouri, Micheva, Mehalow, Huberman, Stafford (CR130) 2007; 131 Kamigaki, Hide, Yanase, Shiraki, Harada, Tanaka, Seki, Shirafuji, Tanaka, Hide (CR73) 2016; 93 Keren‐Shaul, Spinrad, Weiner, Matcovitch‐Natan, Dvir‐Szternfeld, Ulland, David, Baruch, Lara‐Astaiso, Toth (CR76) 2017; 169 Hui, St‐Pierre, El Hajj, Remy, Hébert, Luheshi, Srivastava, Tremblay (CR66) 2018; 11 Dorfman, Krull, Douglass, Fasnacht, Lara‐Lince, Meek, Shi, Damian, Nguyen, Matsen (CR31) 2017; 8 Gosselin, Skola, Coufal, Holtman, Schlachetzki, Sajti, Jaeger, O'Connor, Fitzpatrick, Pasillas (CR48) 2017; 356 Gertig, Hanisch (CR44) 2014; 8 McCluskey, Lampson (CR92) 2000; 59 Flanary, Sammons, Nguyen, Walker, Streit (CR37) 2007; 10 Xu, Zhu, He, Wu, Jin, Yu, Qu, Wen (CR152) 2015; 34 Crain, Nikodemova, Watters (CR26) 2013; 91 Nimmerjahn, Kirchhoff, Helmchen (CR99) 2005; 308 Orre, Kamphuis, Osborn, Jansen, Kooijman, Bossers, Hol (CR103) 2014; 35 Spittau (CR128) 2017; 9 CR14 Han, Harris, Zhang (CR56) 2017; 10 Baalman, Marin, Ho, Godoy, Cherian, Robertson, Rasband (CR9) 2015; 35 Bulloch, Miller, Gal‐Toth, Milner, Gottfried‐Blackmore, Waters, Kaunzner, Liu, Lindquist, Nussenzweig (CR17) 2008; 508 Galatro, Holtman, Lerario, Vainchtein, Brouwer, Sola, Veras, Pereira, Leite, Möller (CR43) 2017; 20 Chihara, Suzu, Hassan, Chutiwitoonchai, Hiyoshi, Motoyoshi, Kimura, Okada (CR23) 2010; 17 Tay, Sagar, Grün, Prinz (CR136) 2018; 6 Tremblay, Lowery, Majewska (CR138) 2010; 8 Cartier, Lewis, Zhang, Rossi (CR20) 2014; 128 De, Van Deren, Peden, Hockin, Boulet, Titen, Capecchi (CR29) 2018; 145 Jander, Stoll (CR69) 1996; 18 Bertolotto, Agresti, Castello, Manzardo, Riccio (CR13) 1998; 85 Foyez, Takeda‐Uchimura, Ishigaki, Narentuya, Sobue, Kadomatsu, Uchimura (CR40) 2015; 185 Paris, Savage, Escobar, Abiega, Gagnon, Hui, Tremblay, Sierra, Valero (CR105) 2018; 66 Tay, Savage, Hui, Bisht, Tremblay (CR135) 2017; 595 Hanamsagar, Alter, Block, Sullivan, Bolton, Bilbo (CR57) 2017; 65 Peterson, Zhang, Kumar, Wong, Li, Wilson, Moore, McClanahan, Sadekova, Klappenbach ( 2012; 120 2013; 4 1996a; 148 2010; 17 2008; 508 2015; 77 2002; 99 2019; 566 1998; 85 2013; 7 2012; 367 2013; 8 2012; 13 1919a; VIII 2018; 48 2018; 6 2018; 9 2014; 128 2018; 8 2013; 2013 2007; 170 2002; 83 1999; 57 2016; 43 1992; 48 2014; 17 2017; 169 2014; 11 2010; 8 2019; 8 1920; XVIII 2017b; 20 2016; 19 1990; 39 1996b; 18 2017; 65 2015; 760 1993; 41 2013; 91 2019; 104 2008; 56 2019; 224 2016; 94 2016; 93 1919c; VIII 2017a; 10 1998; 257 2005; 81 2018b; 21 2018; 23 2007; 10 2016; 17 2018; 21 2011; 6 2014; 159 2019; 101 2018; 24 2018; 19 2015; 2015 2010; 330 2013; 210 1919b; VIII 2014; 35 1999; 117 2018; 12 2018; 98 2014; 34 2016; 9 2015; 35 2015; 185 2012; 60 2015; 34 2017; 8 2014; 579 2017; 4 2015; 347 2017; 47 2010; 141 2011; 10 2011; 14 2017; 356 2017; 9 2019; 363 2013; 16 2000; 59 2017; 36 2002; 40 2015; 42 2017; 35 2015; 43 2007; 131 2016; 113 2016; 353 2005; 308 2018; 78 2014; 8 2012; 336 2014; 6 2015; 12 2017; 20 2015; 6 2018b; 73 2006; 16 2017; 21 2018; 145 2017; 23 2016; 1862 2015; 9 2018; 66 2014; 82 2015; 7 2012; 74 2016; 55 2017; 95 2015; 25 2018a; 11 2013; 33 2017; 14 2018; 556 2013; 34 2002; 168 2017; 10 2002; 22 2016; 64 2017; 18 2018; 50 2018a; 4 2017c; 595 2008; 86 e_1_2_4_84_1 e_1_2_4_61_1 e_1_2_4_80_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_65_1 e_1_2_4_127_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_88_1 e_1_2_4_108_1 e_1_2_4_100_1 e_1_2_4_123_1 e_1_2_4_146_1 e_1_2_4_104_1 e_1_2_4_142_1 Río‐Hortega P (e_1_2_4_116_1) 1919 e_1_2_4_5_1 e_1_2_4_9_1 e_1_2_4_96_1 e_1_2_4_73_1 e_1_2_4_50_1 e_1_2_4_92_1 e_1_2_4_31_1 e_1_2_4_77_1 e_1_2_4_12_1 e_1_2_4_54_1 e_1_2_4_139_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_58_1 e_1_2_4_112_1 e_1_2_4_135_1 e_1_2_4_39_1 e_1_2_4_131_1 e_1_2_4_154_1 e_1_2_4_85_1 e_1_2_4_62_1 e_1_2_4_81_1 e_1_2_4_20_1 e_1_2_4_66_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_149_1 e_1_2_4_107_1 e_1_2_4_47_1 e_1_2_4_89_1 e_1_2_4_28_1 e_1_2_4_145_1 e_1_2_4_126_1 e_1_2_4_103_1 e_1_2_4_141_1 e_1_2_4_122_1 e_1_2_4_2_1 Río‐Hortega P (e_1_2_4_115_1) 1919 e_1_2_4_70_1 e_1_2_4_93_1 e_1_2_4_6_1 e_1_2_4_51_1 e_1_2_4_74_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_78_1 Río‐Hortega P (e_1_2_4_118_1) 1920 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_97_1 e_1_2_4_138_1 e_1_2_4_119_1 e_1_2_4_17_1 e_1_2_4_134_1 e_1_2_4_157_1 e_1_2_4_130_1 e_1_2_4_111_1 e_1_2_4_153_1 e_1_2_4_151_1 e_1_2_4_82_1 e_1_2_4_40_1 e_1_2_4_63_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_67_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_86_1 e_1_2_4_106_1 e_1_2_4_129_1 e_1_2_4_29_1 e_1_2_4_125_1 e_1_2_4_148_1 Río‐Hortega P (e_1_2_4_117_1) 1919 e_1_2_4_102_1 e_1_2_4_121_1 e_1_2_4_144_1 e_1_2_4_140_1 e_1_2_4_3_1 e_1_2_4_7_1 e_1_2_4_94_1 e_1_2_4_52_1 e_1_2_4_90_1 e_1_2_4_71_1 e_1_2_4_10_1 e_1_2_4_56_1 e_1_2_4_33_1 e_1_2_4_75_1 e_1_2_4_14_1 e_1_2_4_98_1 e_1_2_4_37_1 e_1_2_4_79_1 e_1_2_4_18_1 e_1_2_4_114_1 e_1_2_4_137_1 e_1_2_4_156_1 e_1_2_4_110_1 e_1_2_4_133_1 e_1_2_4_152_1 e_1_2_4_150_1 e_1_2_4_83_1 e_1_2_4_41_1 e_1_2_4_60_1 e_1_2_4_109_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_64_1 e_1_2_4_105_1 e_1_2_4_49_1 e_1_2_4_87_1 e_1_2_4_128_1 e_1_2_4_26_1 e_1_2_4_68_1 e_1_2_4_124_1 e_1_2_4_147_1 e_1_2_4_120_1 e_1_2_4_101_1 e_1_2_4_143_1 e_1_2_4_4_1 e_1_2_4_95_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_72_1 e_1_2_4_91_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 Jander S (e_1_2_4_69_1) 1996; 148 e_1_2_4_76_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_99_1 e_1_2_4_113_1 e_1_2_4_19_1 e_1_2_4_136_1 e_1_2_4_155_1 e_1_2_4_132_1 |
| References_xml | – volume: 6 start-page: 463 year: 2015 ident: CR147 article-title: Pathologic and protective roles for microglial subsets and bone marrow‐ and blood‐derived myeloid cells in central nervous system inflammation publication-title: Front Immunol – volume: 65 start-page: 1504 year: 2017 end-page: 1520 ident: CR57 article-title: Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity publication-title: Glia – volume: 8 start-page: e42025 year: 2019 ident: CR119 article-title: Microglial SIRPα regulates the emergence of CD11c publication-title: Elife – volume: 353 start-page: aad8670 year: 2016 ident: CR89 article-title: Microglia development follows a stepwise program to regulate brain homeostasis publication-title: Science – volume: 21 start-page: 366 year: 2017 end-page: 380 ident: CR90 article-title: Temporal tracking of microglia activation in neurodegeneration at single‐cell resolution publication-title: Cell Rep – volume: 6 start-page: 13 year: 2014 ident: CR86 article-title: The M1 and M2 paradigm of macrophage activation: time for reassessment publication-title: F1000Prime Rep – volume: 8 start-page: 129 year: 2014 ident: CR104 article-title: Fractalkine regulation of microglial physiology and consequences on the brain and behavior publication-title: Front Cell Neurosci – volume: 43 start-page: 1023 year: 2015 end-page: 1024 ident: CR106 article-title: The origin of tissue‐resident macrophages: when an erythro‐myeloid progenitor is an erythro‐myeloid progenitor publication-title: Immunity – volume: 224 start-page: 1301 year: 2019 end-page: 1314 ident: CR71 article-title: Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue publication-title: Brain Struct Funct – volume: 60 start-page: 541 year: 2012 end-page: 558 ident: CR139 article-title: Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices publication-title: Glia – volume: 95 start-page: 341 year: 2017 end-page: 356 ident: CR28 article-title: Local cues establish and maintain region‐specific phenotypes of basal ganglia microglia publication-title: Neuron – volume: 145 start-page: dev152306 year: 2018 ident: CR29 article-title: Two distinct ontogenies confer heterogeneity to mouse brain microglia publication-title: Development – volume: 34 start-page: 632 year: 2015 end-page: 641 ident: CR152 article-title: Temporal‐spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish publication-title: Dev Cell – volume: XVIII start-page: 37 year: 1920 end-page: 82 ident: CR117 article-title: Estudios sobre la neuroglia. La microglía y su transformación en células en bastoncito y cuerpos gránulo‐adiposos publication-title: Trab Lab Invest Biol Univ Madrid – volume: 9 start-page: 194 year: 2017 ident: CR128 article-title: Aging microglia‐phenotypes, functions and implications for age‐related neurodegenerative diseases publication-title: Front Aging Neurosci – volume: 101 start-page: 207 year: 2019 end-page: 223 ident: CR84 article-title: Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single‐cell RNA sequencing publication-title: Neuron – volume: 7 start-page: 42 year: 2015 end-page: 47 ident: CR51 article-title: NeuN as a neuronal nuclear antigen and neuron differentiation marker publication-title: Acta Naturae – volume: 11 start-page: 57 year: 2014 ident: CR146 article-title: Comparison of microglia and infiltrating CD11c cells as antigen presenting cells for T cell proliferation and cytokine response publication-title: J Neuroinflammation – volume: 10 start-page: 61 year: 2007 end-page: 74 ident: CR37 article-title: Evidence that aging and amyloid promote microglial cell senescence publication-title: Rejuvenation Res – volume: 12 start-page: 243 year: 2018 ident: CR22 article-title: Epigenetics control microglia plasticity publication-title: Front Cell Neurosci – volume: 21 start-page: 3220 year: 2017 end-page: 3233 ident: CR16 article-title: Diverging mRNA and protein networks in activated microglia reveal SRSF3 suppresses translation of highly upregulated innate immune transcripts publication-title: Cell Rep – volume: 8 start-page: 1271 year: 2014 end-page: 1279 ident: CR129 article-title: Microglia modulate wiring of the embryonic forebrain publication-title: Cell Rep – volume: 10 start-page: 108 year: 2011 end-page: 118 ident: CR101 article-title: Microglia phenotype diversity publication-title: CNS Neurol Disord Drug Targets – volume: 356 start-page: eaal3222 year: 2017 ident: CR48 article-title: An environment‐dependent transcriptional network specifies human microglia identity publication-title: Science – volume: 42 start-page: 665 year: 2015 end-page: 678 ident: CR62 article-title: C‐Myb(+) erythro‐myeloid progenitor‐derived fetal monocytes give rise to adult tissue‐resident macrophages publication-title: Immunity – volume: 595 start-page: 1929 year: 2017 end-page: 1945 ident: CR135 article-title: Microglia across the lifespan: from origin to function in brain development, plasticity and cognition publication-title: J Physiol – volume: 77 start-page: 75 year: 2015 end-page: 99 ident: CR19 article-title: Targeting miR‐155 restores abnormal microglia and attenuates disease in SOD1 mice publication-title: Ann Neurol – volume: 8 start-page: 2203 year: 2018 ident: CR42 article-title: Brain region‐dependent heterogeneity and dose‐dependent difference in transient microglia population increase during Lipopolysaccharide‐induced inflammation publication-title: Sci Rep – volume: 353 start-page: aaf4238 year: 2016 ident: CR87 article-title: Specification of tissue‐resident macrophages during organogenesis publication-title: Science – volume: 9 start-page: 45 year: 2015 ident: CR140 article-title: From the Cajal alumni Achúcarro and Río‐Hortega to the rediscovery of never‐resting microglia publication-title: Front Neuroanat – volume: 47 start-page: 566 year: 2017 end-page: 581 ident: CR80 article-title: The TREM2‐APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases publication-title: Immunity – volume: 4 start-page: e946 year: 2013 ident: CR91 article-title: Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis publication-title: Cell Death Dis – volume: 20 start-page: 779 year: 2017 end-page: 784 ident: CR112 article-title: The lifespan and turnover of microglia in the human brain publication-title: Cell Rep – volume: 14 start-page: 955 year: 2017 end-page: 958 ident: CR53 article-title: Massively parallel single‐nucleus RNA‐seq with DroNc‐seq publication-title: Nat Methods – volume: 85 start-page: 69 year: 1998 end-page: 77 ident: CR13 article-title: 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma publication-title: J Neuroimmunol – volume: 210 start-page: 157 year: 2013 end-page: 172 ident: CR85 article-title: Colony‐stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival publication-title: J Exp Med – volume: 93 start-page: 82 year: 2016 end-page: 94 ident: CR73 article-title: The Toll‐like receptor 4‐activated neuroprotective microglia subpopulation survives via granulocyte macrophage colony‐stimulating factor and JAK2/STAT5 signaling publication-title: Neurochem Int – volume: 760 start-page: 129 year: 2015 end-page: 135 ident: CR78 article-title: A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase‐1 expression publication-title: Eur J Pharmacol – volume: 168 start-page: 44 year: 2002 end-page: 50 ident: CR110 article-title: Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene‐autonomous transcriptional probability of individual inducible genes publication-title: J Immunol – volume: 9 start-page: 37 year: 2015 ident: CR151 article-title: Ontogeny of CX3CR151‐EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone publication-title: Front Cell Neurosci – volume: 56 start-page: 888 year: 2008 end-page: 894 ident: CR52 article-title: Region‐specific expression of immunoregulatory proteins on microglia in the healthy CNS publication-title: Glia – volume: 4 start-page: 255 year: 2017 end-page: 259 ident: CR501 article-title: What is your conceptual definition of “cell type” in the context of a mature organism? publication-title: Cell Syst – volume: 169 start-page: 1276 year: 2017 end-page: 1290 ident: CR76 article-title: A unique microglia type associated with restricting development of Alzheimer's disease publication-title: Cell – volume: 120 start-page: 948 year: 2012 end-page: 963 ident: CR124 article-title: Sex differences in microglial colonization of the developing rat brain publication-title: J Neurochem – volume: 16 start-page: 702 year: 2006 end-page: 710 ident: CR156 article-title: N‐Acetylglucosamine 6‐O‐sulfotransferase‐1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury publication-title: Glycobiology – volume: 74 start-page: 691 year: 2012 end-page: 705 ident: CR120 article-title: Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner publication-title: Neuron – volume: 117 start-page: 145 year: 1999 end-page: 152 ident: CR5 article-title: Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain publication-title: Brain Res Dev Brain Res – volume: 35 start-page: 2746 year: 2014 end-page: 2760 ident: CR103 article-title: Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction publication-title: Neurobiol Aging – volume: 8 start-page: e66969 year: 2013 ident: CR61 article-title: Ablation of keratan sulfate accelerates early phase pathogenesis of ALS publication-title: PLoS One – volume: 330 start-page: 841 year: 2010 end-page: 845 ident: CR45 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science – volume: 330 start-page: 783 year: 2010 end-page: 788 ident: CR50 article-title: Changing face of microglia publication-title: Science – volume: 34 start-page: 2231 year: 2014 end-page: 2243 ident: CR126 article-title: Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone publication-title: J Neurosci – volume: 1862 start-page: 1847 year: 2016 end-page: 1860 ident: CR74 article-title: Transcriptional profiling of CD11c‐positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer's disease publication-title: Biochim Biophys Acta – volume: 128 start-page: 363 year: 2014 end-page: 380 ident: CR20 article-title: The role of microglia in human disease: therapeutic tool or target? publication-title: Acta Neuropathol – volume: 18 start-page: 391 year: 2017 end-page: 405 ident: CR7 article-title: Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain publication-title: Cell Rep – volume: 35 start-page: 11848 year: 2015 end-page: 11861 ident: CR113 article-title: A distinct population of microglia supports adult neurogenesis in the subventricular zone publication-title: J Neurosci – volume: 43 start-page: 382 year: 2015 end-page: 393 ident: CR125 article-title: Most tissue‐resident macrophages except microglia are derived from fetal hematopoietic stem cells publication-title: Immunity – volume: 8 start-page: e1000527 year: 2010 ident: CR138 article-title: Microglial interactions with synapses are modulated by visual experience publication-title: PLoS Biol – volume: 24 start-page: 130 year: 2018 end-page: 141 ident: CR36 article-title: Embryonic microglia derive from primitive macrophages and are replaced by cmyb‐dependent definitive microglia in zebrafish publication-title: Cell Rep – volume: 21 start-page: 1049 year: 2018 end-page: 1060 ident: CR8 article-title: Epigenetic regulation of brain region‐specific microglia clearance activity publication-title: Nat Neurosci – volume: 66 start-page: 828 year: 2018 end-page: 845 ident: CR105 article-title: ProMoIJ: a new tool for automatic three‐dimensional analysis of microglial process motility publication-title: Glia – volume: 10 start-page: 1544 year: 2007 end-page: 1553 ident: CR94 article-title: Microglia in the adult brain arise from Ly‐6ChiCCR94+ monocytes only under defined host conditions publication-title: Nat Neurosci – volume: 48 start-page: 405 year: 1992 end-page: 415 ident: CR82 article-title: Turnover of resident microglia in the normal adult mouse brain publication-title: Neuroscience – volume: 57 start-page: 616 year: 1999 end-page: 632 ident: CR142 article-title: Expression of colony stimulating factor‐1 receptor (CSF‐1R) by CNS neurons in mice publication-title: J Neurosci Res – volume: 508 start-page: 687 year: 2008 end-page: 710 ident: CR17 article-title: CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain publication-title: J Comp Neurol – volume: 23 start-page: 1018 year: 2017 end-page: 1027 ident: CR118 article-title: Microglia emerge as central players in brain disease publication-title: Nat Med – volume: 20 start-page: 1371 year: 2017 end-page: 1376 ident: CR41 article-title: Microglia turnover with aging and in an Alzheimer's model via long‐term single‐cell imaging publication-title: Nat Neurosci – volume: 33 start-page: 11556 year: 2013 end-page: 11572 ident: CR108 article-title: Evidence for a gender‐specific protective role of innate immune receptors in a model of perinatal brain injury publication-title: J Neurosci – volume: 9 start-page: 83 year: 2016 ident: CR93 article-title: Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders publication-title: Mol Brain – volume: VIII start-page: 69 year: 1919 end-page: 109 ident: CR115 article-title: El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo‐adiposos) publication-title: Bol Soc Esp Biol – volume: 257 start-page: 127 year: 1998 end-page: 130 ident: CR141 article-title: Immunocytochemical evidence for a distinct GFAP‐negative subpopulation of astrocytes in the adult rat hippocampus publication-title: Neurosci Lett – volume: 42 start-page: 332 year: 2015 end-page: 343 ident: CR59 article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity publication-title: Immunity – volume: 14 start-page: 96 year: 2017 ident: CR38 article-title: Proteomic analysis of aged microglia: shifts in transcription, bioenergetics, and nutrient response publication-title: J Neuroinflammation – volume: 336 start-page: 86 year: 2012 end-page: 90 ident: CR123 article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells publication-title: Science – volume: 86 start-page: 48 year: 2008 end-page: 59 ident: CR144 article-title: The injured nervous system: a Darwinian perspective publication-title: Prog Neurobiol – volume: 23 start-page: 959 year: 2018 end-page: 966 ident: CR35 article-title: P2Y12R‐dependent translocation mechanisms gate the changing microglial landscape publication-title: Cell Rep – volume: 579 start-page: 80 year: 2014 end-page: 85 ident: CR127 article-title: Keratan sulfate expression is associated with activation of a subpopulation of microglia/macrophages in Wallerian degeneration publication-title: Neurosci Lett – volume: 35 start-page: 936 year: 2017 end-page: 939 ident: CR107 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat Biotechnol – volume: VIII start-page: 155 year: 1919 end-page: 166 ident: CR114 article-title: El “tercer elemento de los centros nerviosos”. IV. Poder fagocitario y movilidad de la microglía publication-title: Bol Soc Esp Biol – volume: 185 start-page: 3053 year: 2015 end-page: 3065 ident: CR40 article-title: Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis publication-title: Am J Pathol – volume: 308 start-page: 1314 year: 2005 end-page: 1318 ident: CR99 article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma publication-title: Science – volume: 10 start-page: 421 year: 2017 ident: CR133 article-title: Microglia gone rogue: impacts on psychiatric disorders across the lifespan publication-title: Front Mol Neurosci – volume: 17 start-page: 1917 year: 2010 end-page: 1927 ident: CR23 article-title: IL‐34 and M‐CSF share the receptor Fms but are not identical in biological activity and signal activation publication-title: Cell Death Differ – volume: 17 start-page: 131 year: 2014 end-page: 143 ident: CR18 article-title: Identification of a unique TGF‐β‐dependent molecular and functional signature in microglia publication-title: Nat Neurosci – volume: 35 start-page: 2283 year: 2015 end-page: 2292 ident: CR9 article-title: Axon initial segment‐associated microglia publication-title: J Neurosci – volume: 9 start-page: 2595 year: 2018 ident: CR100 article-title: Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift publication-title: Nat Commun – volume: 23 start-page: 1 year: 2018 end-page: 10 ident: CR97 article-title: Corticostriatal circuit defects in Hoxb8 mutant mice publication-title: Mol Psychiatry – volume: 2013 start-page: 762303 year: 2013 ident: CR24 article-title: Site‐specific distribution of CD68‐positive microglial cells in the brains of human midterm fetuses: a topographical relationship with growing axons publication-title: Biomed Res Int – volume: 347 start-page: 1138 year: 2015 end-page: 1142 ident: CR154 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq publication-title: Science – volume: 10 start-page: 25 year: 2017 ident: CR56 article-title: An updated assessment of microglia depletion: current concepts and future directions publication-title: Mol Brain – volume: 34 start-page: 2699 year: 2013 end-page: 2714 ident: CR39 article-title: Insights into TREM2 biology by network analysis of human brain gene expression data publication-title: Neurobiol Aging – volume: 82 start-page: 380 year: 2014 end-page: 397 ident: CR32 article-title: Colony‐stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain publication-title: Neuron – volume: 141 start-page: 775 year: 2010 end-page: 785 ident: CR21 article-title: Hematopoietic origin of pathological grooming in Hoxb8 mutant mice publication-title: Cell – volume: 8 start-page: 101 year: 2014 ident: CR44 article-title: Microglial diversity by responses and responders publication-title: Front Cell Neurosci – volume: 39 start-page: 151 year: 1990 end-page: 170 ident: CR81 article-title: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain publication-title: Neuroscience – volume: 33 start-page: 2761 year: 2013 end-page: 2772 ident: CR83 article-title: Microglia are essential to masculinization of brain and behavior publication-title: J Neurosci – volume: 50 start-page: 253 year: 2018 end-page: 271 ident: CR55 article-title: Single‐cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell‐state changes publication-title: Immunity – volume: 98 start-page: 1170 year: 2018 end-page: 1183 ident: CR11 article-title: A combination of ontogeny and CNS environment establishes microglial identity publication-title: Neuron – volume: 148 start-page: 71 year: 1996 end-page: 78 ident: CR68 article-title: Downregulation of microglial keratan sulfate proteoglycans coincident with lymphomonocytic infiltration of the rat central nervous system publication-title: Am J Pathol – volume: 9 start-page: 84 year: 2015 ident: CR30 article-title: Brain region‐specific gene expression profiles in freshly isolated rat microglia publication-title: Front Cell Neurosci – volume: 19 start-page: 504 year: 2016 end-page: 516 ident: CR49 article-title: Microglial brain region‐dependent diversity and selective regional sensitivities to aging publication-title: Nat Neurosci – volume: 556 start-page: 332 year: 2018 end-page: 338 ident: CR145 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature – volume: 40 start-page: 133 year: 2002 end-page: 139 ident: CR132 article-title: Microglia as neuroprotective, immunocompetent cells of the CNS publication-title: Glia – volume: 6 start-page: e26317 year: 2011 ident: CR34 article-title: Absence of colony stimulation factor‐1 receptor results in loss of microglia, disrupted brain development and olfactory deficits publication-title: PLoS One – volume: 7 start-page: 65 year: 2013 ident: CR58 article-title: Functional diversity of microglia ‐ how heterogeneous are they to begin with? publication-title: Front Cell Neurosci – volume: 12 start-page: 523 year: 2018 ident: CR149 article-title: CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE publication-title: Front Cell Neurosci – volume: 35 start-page: 5969 year: 2015 end-page: 5982 ident: CR75 article-title: Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease publication-title: J Neurosci – volume: 64 start-page: 826 year: 2016 end-page: 839 ident: CR15 article-title: Dark microglia: a new phenotype predominantly associated with pathological states publication-title: Glia – volume: 20 start-page: 793 year: 2017 end-page: 803 ident: CR134 article-title: A new fate mapping system reveals context‐dependent random or clonal expansion of microglia publication-title: Nat Neurosci – volume: 43 start-page: 1523 year: 2016 end-page: 1534 ident: CR150 article-title: Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron publication-title: Eur J Neurosci – volume: 83 start-page: 1309 year: 2002 end-page: 1320 ident: CR122 article-title: Heterogeneous expression of the triggering receptor expressed on myeloid cells‐2 on adult murine microglia publication-title: J Neurochem – volume: 22 start-page: 4611 year: 2002 end-page: 4624 ident: CR70 article-title: Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors publication-title: J Neurosci – volume: VIII start-page: 108 year: 1919 end-page: 115 ident: CR116 article-title: El “tercer elemento” de los centros nerviosos. III. Naturaleza probable de la microglía publication-title: Bol Soc Esp Biol – volume: 14 start-page: 1142 year: 2011 end-page: 1149 ident: CR3 article-title: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool publication-title: Nat Neurosci – volume: 18 start-page: E769 year: 2017 ident: CR79 article-title: Old maids: aging and its impact on microglia function publication-title: Int J Mol Sci – volume: 2015 start-page: 689404 year: 2015 ident: CR6 article-title: Fractalkine signaling and microglia functions in the developing brain publication-title: Neural Plast – volume: 59 start-page: 177 year: 2000 end-page: 187 ident: CR92 article-title: Local neurochemicals and site‐specific immune regulation in the CNS publication-title: J Neuropathol Exp Neurol – volume: 41 start-page: 481 year: 1993 end-page: 487 ident: CR12 article-title: Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain publication-title: J Histochem Cytochem – volume: 99 start-page: 111 year: 2002 end-page: 120 ident: CR27 article-title: Targeted disruption of the mouse colony‐stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects publication-title: Blood – volume: 367 start-page: 100 year: 2012 end-page: 113 ident: CR98 article-title: The CSF‐1 receptor ligands IL‐34 and CSF‐1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation publication-title: Dev Biol – volume: 55 start-page: 114 year: 2016 end-page: 125 ident: CR95 article-title: Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress publication-title: Brain Behav Immun – volume: 78 start-page: 627 year: 2018 end-page: 644 ident: CR131 article-title: Cerebellar microglia are dynamically unique and survey Purkinje neurons publication-title: Dev Neurobiol – volume: 21 start-page: 541 year: 2018 end-page: 551 ident: CR4 article-title: Single‐cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models publication-title: Nat Neurosci – volume: 20 start-page: 1162 year: 2017 end-page: 1171 ident: CR43 article-title: Transcriptomic analysis of purified human cortical microglia reveals age‐associated changes publication-title: Nat Neurosci – volume: 113 start-page: E1738 year: 2016 end-page: E1746 ident: CR10 article-title: New tools for studying microglia in the mouse and human CNS publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 987 year: 2016 end-page: 991 ident: CR109 article-title: A polarizing question: do M1 and M2 microglia exist? publication-title: Nat Neurosci – ident: CR14 – volume: 17 start-page: 201 year: 2016 end-page: 207 ident: CR25 article-title: TREM2 variants: new keys to decipher Alzheimer disease pathogenesis publication-title: Nat Rev Neurosci – volume: 13 start-page: 753 year: 2012 end-page: 760 ident: CR143 article-title: IL‐34 is a tissue‐restricted ligand of CSF1R required for the development of Langerhans cells and microglia publication-title: Nat Immunol – volume: 18 start-page: 255 year: 1996 end-page: 260 ident: CR69 article-title: Strain‐specific expression of microglial keratan sulfate proteoglycans in the normal rat central nervous system: inverse correlation with constitutive expression of major histocompatibility complex class II antigens publication-title: Glia – volume: 19 start-page: 636 year: 2018 end-page: 644 ident: CR54 article-title: Re‐evaluating microglia expression profiles using RiboTag and cell isolation strategies publication-title: Nat Immunol – volume: 16 start-page: 1896 year: 2013 end-page: 1905 ident: CR60 article-title: The microglial sensome revealed by direct RNA sequencing publication-title: Nat Neurosci – volume: 36 start-page: 3292 year: 2017 end-page: 3308 ident: CR148 article-title: A novel microglial subset plays a key role in myelinogenesis in developing brain publication-title: EMBO J – volume: 159 start-page: 1327 year: 2014 end-page: 1340 ident: CR47 article-title: Environment drives selection and function of enhancers controlling tissue‐specific macrophage identities publication-title: Cell – volume: 170 start-page: 1713 year: 2007 end-page: 1724 ident: CR111 article-title: Microglial recruitment, activation, and proliferation in response to primary demyelination publication-title: Am J Pathol – volume: 6 start-page: 87 year: 2018 ident: CR136 article-title: Unique microglia recovery population revealed by single‐cell RNAseq following neurodegeneration publication-title: Acta Neuropathol Commun – volume: 10 start-page: 1538 year: 2007 end-page: 1543 ident: CR2 article-title: Local self‐renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat Neurosci – volume: 91 start-page: 1143 year: 2013 end-page: 1151 ident: CR26 article-title: Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice publication-title: J Neurosci Res – volume: 104 start-page: 936 year: 2019 end-page: 947 ident: CR102 article-title: Homozygous mutations in CSF1R cause a pediatric‐onset leukoencephalopathy and can result in congenital absence of microglia publication-title: Am J Hum Genet – volume: 131 start-page: 1164 year: 2007 end-page: 1178 ident: CR130 article-title: The classical complement cascade mediates CNS synapse elimination publication-title: Cell – volume: 12 start-page: 114 year: 2015 ident: CR63 article-title: Systemic inflammation and microglial activation: systematic review of animal experiments publication-title: J Neuroinflammation – volume: 363 start-page: eaat7554 year: 2019 ident: CR72 article-title: Single‐cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation publication-title: Science – volume: 21 start-page: 530 year: 2018 end-page: 540 ident: CR65 article-title: Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion publication-title: Nat Neurosci – volume: 60 start-page: 1930 year: 2012 end-page: 1943 ident: CR121 article-title: Toll‐like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia publication-title: Glia – volume: 23 start-page: 512 year: 2017 end-page: 533 ident: CR153 article-title: TREM2, microglia, and neurodegenerative diseases publication-title: Trends Mol Med – volume: 4 start-page: 9 year: 2018 ident: CR64 article-title: Dual extra‐retinal origins of microglia in the model of retinal microglia repopulation publication-title: Cell Discov – volume: 566 start-page: 388 year: 2019 end-page: 392 ident: CR88 article-title: Spatial and temporal heterogeneity of mouse and human microglia at single‐cell resolution publication-title: Nature – volume: 94 start-page: 11 year: 2016 end-page: 23 ident: CR33 article-title: The MS4A family: counting past 1, 2 and 3 publication-title: Immunol Cell Biol – volume: 17 start-page: 797 year: 2016 end-page: 805 ident: CR46 article-title: Origin, fate and dynamics of macrophages at central nervous system interfaces publication-title: Nat Immunol – volume: 8 start-page: 14556 year: 2017 ident: CR31 article-title: Sex differences in microglial CX3CR32 signalling determine obesity susceptibility in mice publication-title: Nat Commun – volume: 81 start-page: 700 year: 2005 end-page: 709 ident: CR155 article-title: Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury publication-title: Exp Eye Res – volume: 25 start-page: 1491 year: 2015 end-page: 1498 ident: CR137 article-title: Defining cell types and states with single‐cell genomics publication-title: Genome Res – volume: 73 start-page: 450 year: 2018 end-page: 469 ident: CR67 article-title: Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome publication-title: Brain Behav Immun – volume: 48 start-page: 380 year: 2018 end-page: 395 ident: CR96 article-title: High‐dimensional single‐cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease publication-title: Immunity – volume: 16 start-page: 273 year: 2013 end-page: 280 ident: CR77 article-title: Microglia emerge from erythromyeloid precursors via Pu.1‐ and Irf8‐dependent pathways publication-title: Nat Neurosci – volume: 11 start-page: 13 year: 2018 ident: CR66 article-title: Prenatal immune challenge in mice leads to partly sex‐dependent behavioral, microglial, and molecular abnormalities associated with Schizophrenia publication-title: Front Mol Neurosci – volume: 64 start-page: 826 year: 2016 end-page: 839 article-title: Dark microglia: a new phenotype predominantly associated with pathological states publication-title: Glia – volume: 104 start-page: 936 year: 2019 end-page: 947 article-title: Homozygous mutations in CSF1R cause a pediatric‐onset leukoencephalopathy and can result in congenital absence of microglia publication-title: Am J Hum Genet – volume: 35 start-page: 11848 year: 2015 end-page: 11861 article-title: A distinct population of microglia supports adult neurogenesis in the subventricular zone publication-title: J Neurosci – volume: 10 start-page: 421 year: 2017a article-title: Microglia gone rogue: impacts on psychiatric disorders across the lifespan publication-title: Front Mol Neurosci – volume: 7 start-page: 65 year: 2013 article-title: Functional diversity of microglia ‐ how heterogeneous are they to begin with? publication-title: Front Cell Neurosci – volume: 6 start-page: 13 year: 2014 article-title: The M1 and M2 paradigm of macrophage activation: time for reassessment publication-title: F1000Prime Rep – volume: 224 start-page: 1301 year: 2019 end-page: 1314 article-title: Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue publication-title: Brain Struct Funct – volume: 19 start-page: 987 year: 2016 end-page: 991 article-title: A polarizing question: do M1 and M2 microglia exist? publication-title: Nat Neurosci – volume: 148 start-page: 71 year: 1996a end-page: 78 article-title: Downregulation of microglial keratan sulfate proteoglycans coincident with lymphomonocytic infiltration of the rat central nervous system publication-title: Am J Pathol – volume: 59 start-page: 177 year: 2000 end-page: 187 article-title: Local neurochemicals and site‐specific immune regulation in the CNS publication-title: J Neuropathol Exp Neurol – volume: 23 start-page: 1018 year: 2017 end-page: 1027 article-title: Microglia emerge as central players in brain disease publication-title: Nat Med – volume: 117 start-page: 145 year: 1999 end-page: 152 article-title: Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain publication-title: Brain Res Dev Brain Res – volume: 170 start-page: 1713 year: 2007 end-page: 1724 article-title: Microglial recruitment, activation, and proliferation in response to primary demyelination publication-title: Am J Pathol – volume: 42 start-page: 332 year: 2015 end-page: 343 article-title: DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti‐microbial innate immunity publication-title: Immunity – volume: 9 start-page: 194 year: 2017 article-title: Aging microglia‐phenotypes, functions and implications for age‐related neurodegenerative diseases publication-title: Front Aging Neurosci – volume: 8 start-page: e1000527 year: 2010 article-title: Microglial interactions with synapses are modulated by visual experience publication-title: PLoS Biol – volume: 128 start-page: 363 year: 2014 end-page: 380 article-title: The role of microglia in human disease: therapeutic tool or target? publication-title: Acta Neuropathol – volume: 21 start-page: 530 year: 2018b end-page: 540 article-title: Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion publication-title: Nat Neurosci – volume: 74 start-page: 691 year: 2012 end-page: 705 article-title: Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner publication-title: Neuron – volume: 8 start-page: e66969 year: 2013 article-title: Ablation of keratan sulfate accelerates early phase pathogenesis of ALS publication-title: PLoS One – volume: 34 start-page: 632 year: 2015 end-page: 641 article-title: Temporal‐spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish publication-title: Dev Cell – volume: 17 start-page: 201 year: 2016 end-page: 207 article-title: TREM2 variants: new keys to decipher Alzheimer disease pathogenesis publication-title: Nat Rev Neurosci – volume: 57 start-page: 616 year: 1999 end-page: 632 article-title: Expression of colony stimulating factor‐1 receptor (CSF‐1R) by CNS neurons in mice publication-title: J Neurosci Res – volume: 18 start-page: 391 year: 2017 end-page: 405 article-title: Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain publication-title: Cell Rep – volume: 43 start-page: 382 year: 2015 end-page: 393 article-title: Most tissue‐resident macrophages except microglia are derived from fetal hematopoietic stem cells publication-title: Immunity – volume: 34 start-page: 2699 year: 2013 end-page: 2714 article-title: Insights into TREM2 biology by network analysis of human brain gene expression data publication-title: Neurobiol Aging – volume: 83 start-page: 1309 year: 2002 end-page: 1320 article-title: Heterogeneous expression of the triggering receptor expressed on myeloid cells‐2 on adult murine microglia publication-title: J Neurochem – volume: 40 start-page: 133 year: 2002 end-page: 139 article-title: Microglia as neuroprotective, immunocompetent cells of the CNS publication-title: Glia – volume: 356 start-page: eaal3222 year: 2017 article-title: An environment‐dependent transcriptional network specifies human microglia identity publication-title: Science – volume: VIII start-page: 108 year: 1919c end-page: 115 article-title: El “tercer elemento” de los centros nerviosos. III. Naturaleza probable de la microglía publication-title: Bol Soc Esp Biol – volume: 94 start-page: 11 year: 2016 end-page: 23 article-title: The MS4A family: counting past 1, 2 and 3 publication-title: Immunol Cell Biol – volume: 35 start-page: 5969 year: 2015 end-page: 5982 article-title: Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease publication-title: J Neurosci – volume: 336 start-page: 86 year: 2012 end-page: 90 article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells publication-title: Science – volume: 9 start-page: 37 year: 2015 article-title: Ontogeny of CX3CR151‐EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone publication-title: Front Cell Neurosci – volume: 50 start-page: 253 year: 2018 end-page: 271 article-title: Single‐cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell‐state changes publication-title: Immunity – volume: 18 start-page: E769 year: 2017 article-title: Old maids: aging and its impact on microglia function publication-title: Int J Mol Sci – volume: 330 start-page: 783 year: 2010 end-page: 788 article-title: Changing face of microglia publication-title: Science – volume: 145 start-page: dev152306 year: 2018 article-title: Two distinct ontogenies confer heterogeneity to mouse brain microglia publication-title: Development – volume: 8 start-page: 129 year: 2014 article-title: Fractalkine regulation of microglial physiology and consequences on the brain and behavior publication-title: Front Cell Neurosci – volume: VIII start-page: 69 year: 1919b end-page: 109 article-title: El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo‐adiposos) publication-title: Bol Soc Esp Biol – volume: 12 start-page: 523 year: 2018 article-title: CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE publication-title: Front Cell Neurosci – volume: 2015 start-page: 689404 year: 2015 article-title: Fractalkine signaling and microglia functions in the developing brain publication-title: Neural Plast – volume: 77 start-page: 75 year: 2015 end-page: 99 article-title: Targeting miR‐155 restores abnormal microglia and attenuates disease in SOD1 mice publication-title: Ann Neurol – volume: 22 start-page: 4611 year: 2002 end-page: 4624 article-title: Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors publication-title: J Neurosci – volume: 168 start-page: 44 year: 2002 end-page: 50 article-title: Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene‐autonomous transcriptional probability of individual inducible genes publication-title: J Immunol – volume: 131 start-page: 1164 year: 2007 end-page: 1178 article-title: The classical complement cascade mediates CNS synapse elimination publication-title: Cell – volume: 11 start-page: 13 year: 2018a article-title: Prenatal immune challenge in mice leads to partly sex‐dependent behavioral, microglial, and molecular abnormalities associated with Schizophrenia publication-title: Front Mol Neurosci – volume: 8 start-page: 2203 year: 2018 article-title: Brain region‐dependent heterogeneity and dose‐dependent difference in transient microglia population increase during Lipopolysaccharide‐induced inflammation publication-title: Sci Rep – volume: 82 start-page: 380 year: 2014 end-page: 397 article-title: Colony‐stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain publication-title: Neuron – volume: 91 start-page: 1143 year: 2013 end-page: 1151 article-title: Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice publication-title: J Neurosci Res – volume: 10 start-page: 25 year: 2017 article-title: An updated assessment of microglia depletion: current concepts and future directions publication-title: Mol Brain – volume: 8 start-page: e42025 year: 2019 article-title: Microglial SIRPα regulates the emergence of CD11c publication-title: Elife – volume: 23 start-page: 959 year: 2018 end-page: 966 article-title: P2Y12R‐dependent translocation mechanisms gate the changing microglial landscape publication-title: Cell Rep – volume: 10 start-page: 1538 year: 2007 end-page: 1543 article-title: Local self‐renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat Neurosci – volume: 113 start-page: E1738 year: 2016 end-page: E1746 article-title: New tools for studying microglia in the mouse and human CNS publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 45 year: 2015 article-title: From the Cajal alumni Achúcarro and Río‐Hortega to the rediscovery of never‐resting microglia publication-title: Front Neuroanat – volume: 9 start-page: 84 year: 2015 article-title: Brain region‐specific gene expression profiles in freshly isolated rat microglia publication-title: Front Cell Neurosci – volume: 17 start-page: 797 year: 2016 end-page: 805 article-title: Origin, fate and dynamics of macrophages at central nervous system interfaces publication-title: Nat Immunol – volume: 78 start-page: 627 year: 2018 end-page: 644 article-title: Cerebellar microglia are dynamically unique and survey Purkinje neurons publication-title: Dev Neurobiol – volume: 308 start-page: 1314 year: 2005 end-page: 1318 article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma publication-title: Science – volume: XVIII start-page: 37 year: 1920 end-page: 82 article-title: Estudios sobre la neuroglia. La microglía y su transformación en células en bastoncito y cuerpos gránulo‐adiposos publication-title: Trab Lab Invest Biol Univ Madrid – volume: 48 start-page: 405 year: 1992 end-page: 415 article-title: Turnover of resident microglia in the normal adult mouse brain publication-title: Neuroscience – volume: 353 start-page: aaf4238 year: 2016 article-title: Specification of tissue‐resident macrophages during organogenesis publication-title: Science – volume: 257 start-page: 127 year: 1998 end-page: 130 article-title: Immunocytochemical evidence for a distinct GFAP‐negative subpopulation of astrocytes in the adult rat hippocampus publication-title: Neurosci Lett – volume: 330 start-page: 841 year: 2010 end-page: 845 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science – volume: 21 start-page: 366 year: 2017 end-page: 380 article-title: Temporal tracking of microglia activation in neurodegeneration at single‐cell resolution publication-title: Cell Rep – volume: 579 start-page: 80 year: 2014 end-page: 85 article-title: Keratan sulfate expression is associated with activation of a subpopulation of microglia/macrophages in Wallerian degeneration publication-title: Neurosci Lett – volume: 8 start-page: 101 year: 2014 article-title: Microglial diversity by responses and responders publication-title: Front Cell Neurosci – volume: 169 start-page: 1276 year: 2017 end-page: 1290 article-title: A unique microglia type associated with restricting development of Alzheimer's disease publication-title: Cell – volume: VIII start-page: 155 year: 1919a end-page: 166 article-title: El “tercer elemento de los centros nerviosos”. IV. Poder fagocitario y movilidad de la microglía publication-title: Bol Soc Esp Biol – volume: 6 start-page: 87 year: 2018 article-title: Unique microglia recovery population revealed by single‐cell RNAseq following neurodegeneration publication-title: Acta Neuropathol Commun – volume: 43 start-page: 1523 year: 2016 end-page: 1534 article-title: Satellite microglia show spontaneous electrical activity that is uncorrelated with activity of the attached neuron publication-title: Eur J Neurosci – volume: 1862 start-page: 1847 year: 2016 end-page: 1860 article-title: Transcriptional profiling of CD11c‐positive microglia accumulating around amyloid plaques in a mouse model for Alzheimer's disease publication-title: Biochim Biophys Acta – volume: 508 start-page: 687 year: 2008 end-page: 710 article-title: CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain publication-title: J Comp Neurol – volume: 141 start-page: 775 year: 2010 end-page: 785 article-title: Hematopoietic origin of pathological grooming in Hoxb8 mutant mice publication-title: Cell – volume: 347 start-page: 1138 year: 2015 end-page: 1142 article-title: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single‐cell RNA‐seq publication-title: Science – volume: 60 start-page: 541 year: 2012 end-page: 558 article-title: Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices publication-title: Glia – volume: 85 start-page: 69 year: 1998 end-page: 77 article-title: 5D4 keratan sulfate epitope identifies a subset of ramified microglia in normal central nervous system parenchyma publication-title: J Neuroimmunol – volume: 81 start-page: 700 year: 2005 end-page: 709 article-title: Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury publication-title: Exp Eye Res – volume: 98 start-page: 1170 year: 2018 end-page: 1183 article-title: A combination of ontogeny and CNS environment establishes microglial identity publication-title: Neuron – volume: 18 start-page: 255 year: 1996b end-page: 260 article-title: Strain‐specific expression of microglial keratan sulfate proteoglycans in the normal rat central nervous system: inverse correlation with constitutive expression of major histocompatibility complex class II antigens publication-title: Glia – volume: 8 start-page: 1271 year: 2014 end-page: 1279 article-title: Microglia modulate wiring of the embryonic forebrain publication-title: Cell Rep – volume: 20 start-page: 1371 year: 2017 end-page: 1376 article-title: Microglia turnover with aging and in an Alzheimer's model via long‐term single‐cell imaging publication-title: Nat Neurosci – volume: 367 start-page: 100 year: 2012 end-page: 113 article-title: The CSF‐1 receptor ligands IL‐34 and CSF‐1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation publication-title: Dev Biol – volume: 14 start-page: 1142 year: 2011 end-page: 1149 article-title: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool publication-title: Nat Neurosci – volume: 19 start-page: 504 year: 2016 end-page: 516 article-title: Microglial brain region‐dependent diversity and selective regional sensitivities to aging publication-title: Nat Neurosci – volume: 6 start-page: e26317 year: 2011 article-title: Absence of colony stimulation factor‐1 receptor results in loss of microglia, disrupted brain development and olfactory deficits publication-title: PLoS One – volume: 65 start-page: 1504 year: 2017 end-page: 1520 article-title: Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity publication-title: Glia – volume: 210 start-page: 157 year: 2013 end-page: 172 article-title: Colony‐stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival publication-title: J Exp Med – volume: 21 start-page: 1049 year: 2018 end-page: 1060 article-title: Epigenetic regulation of brain region‐specific microglia clearance activity publication-title: Nat Neurosci – volume: 17 start-page: 1917 year: 2010 end-page: 1927 article-title: IL‐34 and M‐CSF share the receptor Fms but are not identical in biological activity and signal activation publication-title: Cell Death Differ – volume: 12 start-page: 114 year: 2015 article-title: Systemic inflammation and microglial activation: systematic review of animal experiments publication-title: J Neuroinflammation – volume: 56 start-page: 888 year: 2008 end-page: 894 article-title: Region‐specific expression of immunoregulatory proteins on microglia in the healthy CNS publication-title: Glia – volume: 16 start-page: 702 year: 2006 end-page: 710 article-title: N‐Acetylglucosamine 6‐O‐sulfotransferase‐1 is required for brain keratan sulfate biosynthesis and glial scar formation after brain injury publication-title: Glycobiology – volume: 8 start-page: 14556 year: 2017 article-title: Sex differences in microglial CX3CR32 signalling determine obesity susceptibility in mice publication-title: Nat Commun – volume: 101 start-page: 207 year: 2019 end-page: 223 article-title: Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single‐cell RNA sequencing publication-title: Neuron – volume: 66 start-page: 828 year: 2018 end-page: 845 article-title: ProMoIJ: a new tool for automatic three‐dimensional analysis of microglial process motility publication-title: Glia – volume: 16 start-page: 1896 year: 2013 end-page: 1905 article-title: The microglial sensome revealed by direct RNA sequencing publication-title: Nat Neurosci – volume: 35 start-page: 936 year: 2017 end-page: 939 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat Biotechnol – volume: 42 start-page: 665 year: 2015 end-page: 678 article-title: C‐Myb(+) erythro‐myeloid progenitor‐derived fetal monocytes give rise to adult tissue‐resident macrophages publication-title: Immunity – volume: 20 start-page: 1162 year: 2017 end-page: 1171 article-title: Transcriptomic analysis of purified human cortical microglia reveals age‐associated changes publication-title: Nat Neurosci – volume: 48 start-page: 380 year: 2018 end-page: 395 article-title: High‐dimensional single‐cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease publication-title: Immunity – volume: 21 start-page: 541 year: 2018 end-page: 551 article-title: Single‐cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models publication-title: Nat Neurosci – volume: 159 start-page: 1327 year: 2014 end-page: 1340 article-title: Environment drives selection and function of enhancers controlling tissue‐specific macrophage identities publication-title: Cell – volume: 13 start-page: 753 year: 2012 end-page: 760 article-title: IL‐34 is a tissue‐restricted ligand of CSF1R required for the development of Langerhans cells and microglia publication-title: Nat Immunol – volume: 19 start-page: 636 year: 2018 end-page: 644 article-title: Re‐evaluating microglia expression profiles using RiboTag and cell isolation strategies publication-title: Nat Immunol – volume: 33 start-page: 2761 year: 2013 end-page: 2772 article-title: Microglia are essential to masculinization of brain and behavior publication-title: J Neurosci – volume: 353 start-page: aad8670 year: 2016 article-title: Microglia development follows a stepwise program to regulate brain homeostasis publication-title: Science – volume: 35 start-page: 2746 year: 2014 end-page: 2760 article-title: Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction publication-title: Neurobiol Aging – volume: 10 start-page: 108 year: 2011 end-page: 118 article-title: Microglia phenotype diversity publication-title: CNS Neurol Disord Drug Targets – volume: 17 start-page: 131 year: 2014 end-page: 143 article-title: Identification of a unique TGF‐β‐dependent molecular and functional signature in microglia publication-title: Nat Neurosci – volume: 20 start-page: 793 year: 2017b end-page: 803 article-title: A new fate mapping system reveals context‐dependent random or clonal expansion of microglia publication-title: Nat Neurosci – volume: 21 start-page: 3220 year: 2017 end-page: 3233 article-title: Diverging mRNA and protein networks in activated microglia reveal SRSF3 suppresses translation of highly upregulated innate immune transcripts publication-title: Cell Rep – volume: 34 start-page: 2231 year: 2014 end-page: 2243 article-title: Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone publication-title: J Neurosci – volume: 10 start-page: 61 year: 2007 end-page: 74 article-title: Evidence that aging and amyloid promote microglial cell senescence publication-title: Rejuvenation Res – volume: 55 start-page: 114 year: 2016 end-page: 125 article-title: Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress publication-title: Brain Behav Immun – volume: 566 start-page: 388 year: 2019 end-page: 392 article-title: Spatial and temporal heterogeneity of mouse and human microglia at single‐cell resolution publication-title: Nature – volume: 23 start-page: 512 year: 2017 end-page: 533 article-title: TREM2, microglia, and neurodegenerative diseases publication-title: Trends Mol Med – volume: 43 start-page: 1023 year: 2015 end-page: 1024 article-title: The origin of tissue‐resident macrophages: when an erythro‐myeloid progenitor is an erythro‐myeloid progenitor publication-title: Immunity – volume: 20 start-page: 779 year: 2017 end-page: 784 article-title: The lifespan and turnover of microglia in the human brain publication-title: Cell Rep – volume: 4 start-page: 255 year: 2017 end-page: 259 article-title: What is your conceptual definition of “cell type” in the context of a mature organism? publication-title: Cell Syst – volume: 10 start-page: 1544 year: 2007 end-page: 1553 article-title: Microglia in the adult brain arise from Ly‐6ChiCCR94+ monocytes only under defined host conditions publication-title: Nat Neurosci – volume: 35 start-page: 2283 year: 2015 end-page: 2292 article-title: Axon initial segment‐associated microglia publication-title: J Neurosci – volume: 14 start-page: 955 year: 2017 end-page: 958 article-title: Massively parallel single‐nucleus RNA‐seq with DroNc‐seq publication-title: Nat Methods – volume: 760 start-page: 129 year: 2015 end-page: 135 article-title: A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase‐1 expression publication-title: Eur J Pharmacol – volume: 4 start-page: e946 year: 2013 article-title: Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis publication-title: Cell Death Dis – volume: 7 start-page: 42 year: 2015 end-page: 47 article-title: NeuN as a neuronal nuclear antigen and neuron differentiation marker publication-title: Acta Naturae – volume: 16 start-page: 273 year: 2013 end-page: 280 article-title: Microglia emerge from erythromyeloid precursors via Pu.1‐ and Irf8‐dependent pathways publication-title: Nat Neurosci – volume: 4 start-page: 9 year: 2018a article-title: Dual extra‐retinal origins of microglia in the model of retinal microglia repopulation publication-title: Cell Discov – volume: 36 start-page: 3292 year: 2017 end-page: 3308 article-title: A novel microglial subset plays a key role in myelinogenesis in developing brain publication-title: EMBO J – volume: 12 start-page: 243 year: 2018 article-title: Epigenetics control microglia plasticity publication-title: Front Cell Neurosci – volume: 363 start-page: eaat7554 year: 2019 article-title: Single‐cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation publication-title: Science – volume: 86 start-page: 48 year: 2008 end-page: 59 article-title: The injured nervous system: a Darwinian perspective publication-title: Prog Neurobiol – volume: 185 start-page: 3053 year: 2015 end-page: 3065 article-title: Microglial keratan sulfate epitope elicits in central nervous tissues of transgenic model mice and patients with amyotrophic lateral sclerosis publication-title: Am J Pathol – volume: 95 start-page: 341 year: 2017 end-page: 356 article-title: Local cues establish and maintain region‐specific phenotypes of basal ganglia microglia publication-title: Neuron – volume: 93 start-page: 82 year: 2016 end-page: 94 article-title: The Toll‐like receptor 4‐activated neuroprotective microglia subpopulation survives via granulocyte macrophage colony‐stimulating factor and JAK2/STAT5 signaling publication-title: Neurochem Int – volume: 595 start-page: 1929 year: 2017c end-page: 1945 article-title: Microglia across the lifespan: from origin to function in brain development, plasticity and cognition publication-title: J Physiol – volume: 2013 start-page: 762303 year: 2013 article-title: Site‐specific distribution of CD68‐positive microglial cells in the brains of human midterm fetuses: a topographical relationship with growing axons publication-title: Biomed Res Int – volume: 11 start-page: 57 year: 2014 article-title: Comparison of microglia and infiltrating CD11c cells as antigen presenting cells for T cell proliferation and cytokine response publication-title: J Neuroinflammation – volume: 9 start-page: 83 year: 2016 article-title: Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders publication-title: Mol Brain – volume: 120 start-page: 948 year: 2012 end-page: 963 article-title: Sex differences in microglial colonization of the developing rat brain publication-title: J Neurochem – volume: 9 start-page: 2595 year: 2018 article-title: Transcriptional synergy as an emergent property defining cell subpopulation identity enables population shift publication-title: Nat Commun – volume: 25 start-page: 1491 year: 2015 end-page: 1498 article-title: Defining cell types and states with single‐cell genomics publication-title: Genome Res – volume: 24 start-page: 130 year: 2018 end-page: 141 article-title: Embryonic microglia derive from primitive macrophages and are replaced by cmyb‐dependent definitive microglia in zebrafish publication-title: Cell Rep – volume: 73 start-page: 450 year: 2018b end-page: 469 article-title: Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome publication-title: Brain Behav Immun – volume: 33 start-page: 11556 year: 2013 end-page: 11572 article-title: Evidence for a gender‐specific protective role of innate immune receptors in a model of perinatal brain injury publication-title: J Neurosci – volume: 41 start-page: 481 year: 1993 end-page: 487 article-title: Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain publication-title: J Histochem Cytochem – volume: 6 start-page: 463 year: 2015 article-title: Pathologic and protective roles for microglial subsets and bone marrow‐ and blood‐derived myeloid cells in central nervous system inflammation publication-title: Front Immunol – volume: 39 start-page: 151 year: 1990 end-page: 170 article-title: Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain publication-title: Neuroscience – volume: 60 start-page: 1930 year: 2012 end-page: 1943 article-title: Toll‐like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia publication-title: Glia – volume: 556 start-page: 332 year: 2018 end-page: 338 article-title: Innate immune memory in the brain shapes neurological disease hallmarks publication-title: Nature – volume: 47 start-page: 566 year: 2017 end-page: 581 article-title: The TREM2‐APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases publication-title: Immunity – volume: 23 start-page: 1 year: 2018 end-page: 10 article-title: Corticostriatal circuit defects in Hoxb8 mutant mice publication-title: Mol Psychiatry – volume: 99 start-page: 111 year: 2002 end-page: 120 article-title: Targeted disruption of the mouse colony‐stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects publication-title: Blood – volume: 14 start-page: 96 year: 2017 article-title: Proteomic analysis of aged microglia: shifts in transcription, bioenergetics, and nutrient response publication-title: J Neuroinflammation – ident: e_1_2_4_100_1 doi: 10.1126/science.1110647 – ident: e_1_2_4_62_1 doi: 10.1371/journal.pone.0066969 – ident: e_1_2_4_34_1 doi: 10.1038/icb.2015.48 – ident: e_1_2_4_21_1 doi: 10.1016/j.cell.2010.03.055 – ident: e_1_2_4_91_1 doi: 10.1016/j.celrep.2017.09.039 – ident: e_1_2_4_106_1 doi: 10.1002/glia.23287 – ident: e_1_2_4_7_1 doi: 10.1016/j.celrep.2016.12.041 – ident: e_1_2_4_112_1 doi: 10.2353/ajpath.2007.060783 – ident: e_1_2_4_98_1 doi: 10.1038/mp.2017.180 – ident: e_1_2_4_79_1 doi: 10.1016/j.ejphar.2015.04.021 – ident: e_1_2_4_88_1 doi: 10.1126/science.aaf4238 – ident: e_1_2_4_156_1 doi: 10.1016/j.exer.2005.04.008 – ident: e_1_2_4_37_1 doi: 10.1016/j.celrep.2018.05.066 – ident: e_1_2_4_42_1 doi: 10.1038/nn.4631 – ident: e_1_2_4_153_1 doi: 10.1016/j.devcel.2015.08.018 – ident: e_1_2_4_87_1 doi: 10.12703/P6-13 – ident: e_1_2_4_129_1 doi: 10.3389/fnagi.2017.00194 – ident: e_1_2_4_44_1 doi: 10.1038/nn.4597 – ident: e_1_2_4_157_1 doi: 10.1093/glycob/cwj115 – ident: e_1_2_4_146_1 doi: 10.1038/s41586-018-0023-4 – ident: e_1_2_4_20_1 doi: 10.1007/s00401-014-1330-y – ident: e_1_2_4_128_1 doi: 10.1016/j.neulet.2014.07.018 – ident: e_1_2_4_90_1 doi: 10.1126/science.aad8670 – ident: e_1_2_4_108_1 doi: 10.1038/nbt.3973 – ident: e_1_2_4_39_1 doi: 10.1186/s12974-017-0840-7 – ident: e_1_2_4_15_1 doi: 10.1002/glia.22966 – ident: e_1_2_4_12_1 doi: 10.1177/41.4.8450191 – ident: e_1_2_4_148_1 doi: 10.3389/fimmu.2015.00463 – ident: e_1_2_4_29_1 doi: 10.1016/j.neuron.2017.06.020 – ident: e_1_2_4_64_1 doi: 10.1186/s12974-015-0332-6 – start-page: 69 year: 1919 ident: e_1_2_4_116_1 article-title: El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo‐adiposos) publication-title: Bol Soc Esp Biol – ident: e_1_2_4_70_1 doi: 10.1002/(SICI)1098-1136(199611)18:3<255::AID-GLIA9>3.0.CO;2-Y – ident: e_1_2_4_131_1 doi: 10.1016/j.cell.2007.10.036 – ident: e_1_2_4_52_1 doi: 10.32607/20758251-2015-7-2-42-47 – ident: e_1_2_4_8_1 doi: 10.1038/s41593-018-0192-3 – ident: e_1_2_4_41_1 doi: 10.1016/j.ajpath.2015.07.016 – ident: e_1_2_4_138_1 doi: 10.1101/gr.190595.115 – ident: e_1_2_4_103_1 doi: 10.1016/j.ajhg.2019.03.010 – ident: e_1_2_4_18_1 doi: 10.1038/nn.3599 – ident: e_1_2_4_43_1 doi: 10.1038/s41598-018-20643-3 – ident: e_1_2_4_54_1 doi: 10.1038/nmeth.4407 – ident: e_1_2_4_58_1 doi: 10.1002/glia.23176 – ident: e_1_2_4_59_1 doi: 10.3389/fncel.2013.00065 – ident: e_1_2_4_102_1 doi: 10.2174/187152711794488575 – ident: e_1_2_4_84_1 doi: 10.1523/JNEUROSCI.1268-12.2013 – ident: e_1_2_4_150_1 doi: 10.3389/fncel.2018.00523 – ident: e_1_2_4_74_1 doi: 10.1016/j.neuint.2016.01.003 – ident: e_1_2_4_94_1 doi: 10.1186/s13041-016-0263-x – ident: e_1_2_4_68_1 doi: 10.1016/j.bbi.2018.06.007 – ident: e_1_2_4_95_1 doi: 10.1038/nn2015 – ident: e_1_2_4_28_1 doi: 10.1182/blood.V99.1.111 – ident: e_1_2_4_142_1 doi: 10.1016/S0304-3940(98)00813-1 – ident: e_1_2_4_63_1 doi: 10.1016/j.immuni.2015.03.011 – ident: e_1_2_4_81_1 doi: 10.1016/j.immuni.2017.08.008 – ident: e_1_2_4_145_1 doi: 10.1016/j.pneurobio.2008.06.001 – ident: e_1_2_4_23_1 doi: 10.1038/cdd.2010.60 – ident: e_1_2_4_60_1 doi: 10.1016/j.immuni.2015.01.012 – ident: e_1_2_4_71_1 doi: 10.1523/JNEUROSCI.22-11-04611.2002 – ident: e_1_2_4_92_1 doi: 10.1038/cddis.2013.479 – ident: e_1_2_4_80_1 doi: 10.3390/ijms18040769 – ident: e_1_2_4_101_1 doi: 10.1038/s41467-018-05016-8 – ident: e_1_2_4_147_1 doi: 10.1186/1742-2094-11-57 – ident: e_1_2_4_22_1 doi: 10.3389/fncel.2018.00243 – ident: e_1_2_4_2_1 doi: 10.1038/nn2014 – ident: e_1_2_4_114_1 doi: 10.1523/JNEUROSCI.1217-15.2015 – ident: e_1_2_4_132_1 doi: 10.1002/dneu.22572 – ident: e_1_2_4_56_1 doi: 10.1016/j.immuni.2018.11.004 – ident: e_1_2_4_113_1 doi: 10.1016/j.celrep.2017.07.004 – ident: e_1_2_4_78_1 doi: 10.1038/nn.3318 – ident: e_1_2_4_96_1 doi: 10.1016/j.bbi.2015.07.024 – ident: e_1_2_4_35_1 doi: 10.1371/journal.pone.0026317 – ident: e_1_2_4_67_1 doi: 10.3389/fnmol.2018.00013 – ident: e_1_2_4_83_1 doi: 10.1016/0306-4522(92)90500-2 – ident: e_1_2_4_123_1 doi: 10.1046/j.1471-4159.2002.01243.x – ident: e_1_2_4_4_1 doi: 10.1038/s41593-018-0100-x – ident: e_1_2_4_82_1 doi: 10.1016/0306-4522(90)90229-W – ident: e_1_2_4_143_1 doi: 10.1002/(SICI)1097-4547(19990901)57:5<616::AID-JNR4>3.0.CO;2-E – ident: e_1_2_4_33_1 doi: 10.1016/j.neuron.2014.02.040 – ident: e_1_2_4_66_1 doi: 10.1038/s41593-018-0090-8 – ident: e_1_2_4_6_1 doi: 10.1155/2015/689404 – ident: e_1_2_4_89_1 doi: 10.1038/s41586-019-0924-x – ident: e_1_2_4_105_1 doi: 10.3389/fncel.2014.00129 – ident: e_1_2_4_14_1 – ident: e_1_2_4_48_1 doi: 10.1016/j.cell.2014.11.023 – ident: e_1_2_4_141_1 doi: 10.3389/fnana.2015.00045 – ident: e_1_2_4_17_1 doi: 10.1002/cne.21668 – ident: e_1_2_4_109_1 doi: 10.1523/JNEUROSCI.0535-13.2013 – ident: e_1_2_4_134_1 doi: 10.3389/fnmol.2017.00421 – ident: e_1_2_4_24_1 doi: 10.1155/2013/762303 – ident: e_1_2_4_122_1 doi: 10.1002/glia.22409 – ident: e_1_2_4_137_1 doi: 10.1186/s40478-018-0584-3 – ident: e_1_2_4_61_1 doi: 10.1038/nn.3554 – ident: e_1_2_4_40_1 doi: 10.1016/j.neurobiolaging.2013.05.001 – start-page: 37 year: 1920 ident: e_1_2_4_118_1 article-title: Estudios sobre la neuroglia. La microglía y su transformación en células en bastoncito y cuerpos gránulo‐adiposos publication-title: Trab Lab Invest Biol Univ Madrid – ident: e_1_2_4_53_1 doi: 10.1002/glia.20663 – ident: e_1_2_4_75_1 doi: 10.1016/j.bbadis.2016.07.007 – ident: e_1_2_4_107_1 doi: 10.1016/j.immuni.2015.11.022 – ident: e_1_2_4_133_1 doi: 10.1002/glia.10154 – ident: e_1_2_4_51_1 doi: 10.1126/science.1190929 – ident: e_1_2_4_85_1 doi: 10.1016/j.neuron.2018.12.006 – ident: e_1_2_4_26_1 doi: 10.1038/nrn.2016.7 – ident: e_1_2_4_149_1 doi: 10.15252/embj.201696056 – ident: e_1_2_4_104_1 doi: 10.1016/j.neurobiolaging.2014.06.004 – ident: e_1_2_4_86_1 doi: 10.1084/jem.20120412 – ident: e_1_2_4_93_1 doi: 10.1093/jnen/59.3.177 – ident: e_1_2_4_73_1 doi: 10.1126/science.aat7554 – ident: e_1_2_4_9_1 doi: 10.1523/JNEUROSCI.3751-14.2015 – ident: e_1_2_4_19_1 doi: 10.1002/ana.24304 – ident: e_1_2_4_155_1 doi: 10.1126/science.aaa1934 – ident: e_1_2_4_16_1 doi: 10.1016/j.celrep.2017.11.058 – ident: e_1_2_4_32_1 doi: 10.1038/ncomms14556 – ident: e_1_2_4_27_1 doi: 10.1002/jnr.23242 – ident: e_1_2_4_110_1 doi: 10.1038/nn.4338 – ident: e_1_2_4_55_1 doi: 10.1038/s41590-018-0110-6 – ident: e_1_2_4_130_1 doi: 10.1016/j.celrep.2014.07.042 – ident: e_1_2_4_49_1 doi: 10.1126/science.aal3222 – ident: e_1_2_4_136_1 doi: 10.1113/JP272134 – ident: e_1_2_4_151_1 doi: 10.1111/ejn.13256 – ident: e_1_2_4_47_1 doi: 10.1038/ni.3423 – ident: e_1_2_4_45_1 doi: 10.3389/fncel.2014.00101 – ident: e_1_2_4_135_1 doi: 10.1038/nn.4547 – ident: e_1_2_4_76_1 doi: 10.1523/JNEUROSCI.4668-14.2015 – ident: e_1_2_4_119_1 doi: 10.1038/nm.4397 – ident: e_1_2_4_5_1 doi: 10.1016/S0165-3806(99)00113-3 – ident: e_1_2_4_46_1 doi: 10.1126/science.1194637 – ident: e_1_2_4_38_1 doi: 10.1089/rej.2006.9096 – ident: e_1_2_4_139_1 doi: 10.1371/journal.pbio.1000527 – ident: e_1_2_4_25_1 doi: 10.1016/j.cels.2017.03.006 – ident: e_1_2_4_10_1 doi: 10.1073/pnas.1525528113 – ident: e_1_2_4_126_1 doi: 10.1016/j.immuni.2015.07.016 – ident: e_1_2_4_154_1 doi: 10.1016/j.molmed.2017.03.008 – ident: e_1_2_4_120_1 doi: 10.7554/eLife.42025 – ident: e_1_2_4_50_1 doi: 10.1038/nn.4222 – volume: 148 start-page: 71 year: 1996 ident: e_1_2_4_69_1 article-title: Downregulation of microglial keratan sulfate proteoglycans coincident with lymphomonocytic infiltration of the rat central nervous system publication-title: Am J Pathol – ident: e_1_2_4_97_1 doi: 10.1016/j.immuni.2018.01.011 – ident: e_1_2_4_36_1 doi: 10.1016/j.celrep.2018.04.001 – ident: e_1_2_4_31_1 doi: 10.3389/fncel.2015.00084 – ident: e_1_2_4_57_1 doi: 10.1186/s13041-017-0307-x – ident: e_1_2_4_121_1 doi: 10.1016/j.neuron.2012.03.026 – ident: e_1_2_4_111_1 doi: 10.4049/jimmunol.168.1.44 – ident: e_1_2_4_65_1 doi: 10.1038/s41421-018-0011-8 – start-page: 155 year: 1919 ident: e_1_2_4_115_1 article-title: El “tercer elemento de los centros nerviosos”. IV. Poder fagocitario y movilidad de la microglía publication-title: Bol Soc Esp Biol – ident: e_1_2_4_125_1 doi: 10.1111/j.1471-4159.2011.07630.x – ident: e_1_2_4_30_1 doi: 10.1242/dev.152306 – ident: e_1_2_4_77_1 doi: 10.1016/j.cell.2017.05.018 – ident: e_1_2_4_99_1 doi: 10.1016/j.ydbio.2012.03.026 – ident: e_1_2_4_3_1 doi: 10.1038/nn.2887 – ident: e_1_2_4_11_1 doi: 10.1016/j.neuron.2018.05.014 – ident: e_1_2_4_13_1 doi: 10.1016/S0165-5728(97)00251-8 – ident: e_1_2_4_140_1 doi: 10.1002/glia.22287 – ident: e_1_2_4_127_1 doi: 10.1523/JNEUROSCI.1619-13.2014 – ident: e_1_2_4_144_1 doi: 10.1038/ni.2360 – ident: e_1_2_4_72_1 doi: 10.1007/s00429-019-01834-8 – start-page: 108 year: 1919 ident: e_1_2_4_117_1 article-title: El “tercer elemento” de los centros nerviosos. III. Naturaleza probable de la microglía publication-title: Bol Soc Esp Biol – ident: e_1_2_4_152_1 doi: 10.3389/fncel.2015.00037 – ident: e_1_2_4_124_1 doi: 10.1126/science.1219179 |
| SSID | ssj0005871 |
| Score | 2.6961467 |
| SecondaryResourceType | review_article |
| Snippet | Microglia are brain‐resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across... Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across... |
| SourceID | swepub pubmedcentral proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e101997 |
| SubjectTerms | Animals Cell Plasticity Central nervous system Communities disease EMBO19 EMBO27 Functionals Heterogeneity homeostasis Humans Macrophages Microglia Microglia - classification Microglia - immunology Multitasking Phenotype Phenotypes Plastic properties Plasticity Review subtypes |
| Title | Microglial subtypes: diversity within the microglial community |
| URI | https://link.springer.com/article/10.15252/embj.2019101997 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2019101997 https://www.ncbi.nlm.nih.gov/pubmed/31373067 https://www.proquest.com/docview/2283260882 https://www.proquest.com/docview/2268310799 https://pubmed.ncbi.nlm.nih.gov/PMC6717890 http://kipublications.ki.se/Default.aspx?queryparsed=id:141888391 |
| Volume | 38 |
| WOSCitedRecordID | wos000479988800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9UwFD_o5tAvPjYfnXNUkIFCWXvz9oOg2y4q7iLi8H4rbZK6O7dO1nuF_ffLSV-rYwoihdA0jyan5zQ5ycnvALwgJo81brLyTBYRLeIiyqmOI6mLRFnBqTCZdzYhJhM5narLZ2FqfIhuwQ0lw_-vUcCzvGo99iBqqD3Jj9A2yw14aC1xE5aThEh03zCin3szD-mVLr_OQhOpmq1KrGP7txqGQ9OV-eZVs8lu77TDGR1Ocf0YNb73P3p3H-42M9Twbc1SD-CGLVdhpfZZeb4Kt3daF3Fr8GYfzfm-HzseDqtFjsu51evQtKYeIS7yzsrQzTHDkz6nrs-kzM8fwsF47-vO-6hxyBBpxoSIRka7SyVWGMWMtJoZzoTKpeWZJsI1k8iCZ4IbZorCxEmuqKWCKMcQwo40eQRL5Wlpn0DoxF4mOjZcFIRyg2CkLuAyt0wxN0IGsN1-i1Q3aOXoNOM4Ra0FaZQihdKeQgG87Er8rJE6_pB3o_28aSOzVYpAQE67cypHAM-7ZEdR3ELJSnu6wDwcPbO5rgbwuOaG7mUkIQIVsADEgE-6DIjkPUwpZ4ce0Zs7pVpip1-1HNU36_o-bNU8N6i_efTD3dmUCqGYDIB5TvsrVdK9_Xcf--j6P5Z7Cncw4g3xRhuwND9b2GdwS_-az6qzTS-dLhRTuQnLu1_GB59c7NuHyQVQLz0L |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qVepL1dpqtNUIRbAQLrnsZx8EPVpa7R0-tNi3Jdnd1NM2ld6d0P_enc0XsVRBJBCS7Eeyk5nszOzkNwDbqcljjYusLBNFRIq4iHKi40joIpGWM8JN5pNN8MlEnJ7Kz0swav6FqfAhWocbSob_XqOAo0O6SdmDsKH2Iv-GwVluxsNwiTtwlzh9A_M3fDmcdHEewltd3tFCEiHrtUrsY_BbD_256YbCeTNusl08bYFG-zqun6T2H_6X4T2C1VpHDd9XTPUYlmy5BverrJXXa7AyapLEPYF3YwzoOzt3XBzOFjk6dGe7oWmCPUJ0807L0GmZ4UVXU1d_pcyv1-Fkf-94dBDVKRkiTSnn0dBot8nEciOpEVZTwyiXubAs0yl3j5mKgmWcGWqKwsRJLoklPJWOJbgd6nQDlsvL0j6D0Am-SHRsGC9SwgzCkbodE7mlkro5MoBB8zKUrvHKMW3GuUK7BWmkkEKqo1AAb9sWPyqsjj_U3Wzer6qldqYQCsjZd87oCOB1W-woiosoWWkvF1iHYW42N9QAnlbs0N4sTVKOJlgAvMcobQXE8u6XlNOvHtObObNa4KB3GpbqHuv2MbypmK7Xf33puzuyinAuqQiAelb7K1XU3vjDx-70-T-2ewUrB8fjI3V0OPn0Ah5ggQ_LG27C8vxqYbfgnv45n86uXnpR_QUfZj3M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEB_qVa1ffFRto1UjiFAhNLns0w-CXnv4aI8iFvptSfbRnm3T0rsT-t-7kyexqCASCMm-sjs7k93Znf0NwKvU5LHGTVaWCRcRF7soJzqOhHaJtJwRbrLS2QSfTMThodxfglFzFqbCh2gX3FAyyv81Cri9MK5x2YOwofYs_47GWX7EQ3OJG7BM0JfMAJa3v44PdjtLD1HqXeVSC0mErHcrsZStX8roj07XppzXLSfb7dMWarQ_yy2HqfG9_9LA-3C3nqWG7yu2egBLtliFW5XfyqtVWBk1buIewrs9NOk7OvV8HM4WOS7pzt6GpjH3CHGhd1qEfp4ZnnUpdXUuZX71CA7GO99GH6PaKUOkKeU8GhrtL5lYbiQ1wmpqGOUyF5ZlOuW-mqlwLOPMUOOciZNcEkt4Kj1TcDvU6WMYFOeFXYfQi75IdGwYdylhBgFJ_Y2J3FJJ_SgZwFbTGUrXiOXoOONUoeaCNFJIIdVRKIDNNsdFhdbxh7QbTf-qWm5nCsGAvIbn1Y4AXrbRnqK4jZIV9nyBaRh6Z_NNDWCtYof2Y2mSclTCAuA9RmkTIJp3P6aYHpeo3swr1gIb_aZhqa5av2_D64rpeuXXQSf-ySrCuaQiAFqy2l-ponb2PnzuXp_8Y74XcHt_e6x2P02-PIU7GF7a5Q03YDC_XNhncFP_mE9nl89rWf0JVwk-dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+subtypes%3A+diversity+within+the+microglial+community&rft.jtitle=The+EMBO+journal&rft.au=Stratoulias%2C+V&rft.au=Luis%2C+Venero+J&rft.au=Tremblay%2C+M-E&rft.au=Joseph%2C+B&rft.date=2019-09-02&rft.issn=0261-4189&rft.volume=38&rft.issue=17&rft_id=info:doi/10.15252%2Fembj.2019101997&rft.externalDocID=oai_swepub_ki_se_477958 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |