Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers

As a novel noninvasive therapeutic modality combining low‐intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue‐penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 8; číslo 10; s. 2002178 - n/a
Hlavní autoři: Gong, Zhuoran, Dai, Zhifei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.05.2021
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As a novel noninvasive therapeutic modality combining low‐intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue‐penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state‐of‐the‐art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial‐augmented SDT are in discussion, including porphyrin‐based nanomaterials, porphyrin‐like nanomaterials, inorganic nanomaterials, and organic–inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial‐based sonosensitizer, and multidisciplinary collaboration. As a novel noninvasive cancer therapeutic modality, sonodynamic therapy (SDT) is promising to clinical translation, in spite of several problems in equipment and sensitizer. The recent development in SDT in terms of living monitoring and high accuracy treatment system is highlighted and an overview is provided for advanced sonosensitizer design. The challenge in future clinical use is also discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202002178