Eigenvector Centrality Dynamics From Resting-State fMRI: Gender and Age Differences in Healthy Subjects

With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroscience Ročník 13; s. 648
Hlavní autor: Wink, Alle Meije
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 27.06.2019
Frontiers Media S.A
Témata:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as brain maps. This paper studies the use of centrality dynamics for measuring group differences in imaging studies. Imaging data were used from a publicly available imaging study, which included resting fMRI data. After warping the images to a standard space and masking cortical regions, ECM were computed in a sliding window. The dual regression method was used to identify dynamic centrality differences inside well-known resting-state networks between gender and age groups. Gender-related differences were found in the medial and lateral visual, motor, default mode, and executive control RSN, where male subjects had more consistent centrality variations within the network. Age-related differences between the youngest and oldest subjects, based on a median split, were found in the medial visual, executive control and left frontoparietal networks, where younger subjects had more consistent centrality variations within the network. Our findings show that centrality dynamics can be used to identify between-group functional brain network centrality differences, and that age and gender distributions studies need to be taken into account in functional imaging studies.
AbstractList With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as brain maps. This paper studies the use of centrality dynamics for measuring group differences in imaging studies. Imaging data were used from a publicly available imaging study, which included resting fMRI data. After warping the images to a standard space and masking cortical regions, ECM were computed in a sliding window. The dual regression method was used to identify dynamic centrality differences inside well-known resting-state networks between gender and age groups. Gender-related differences were found in the medial and lateral visual, motor, default mode, and executive control RSN, where male subjects had more consistent centrality variations within the network. Age-related differences between the youngest and oldest subjects, based on a median split, were found in the medial visual, executive control and left frontoparietal networks, where younger subjects had more consistent centrality variations within the network. Our findings show that centrality dynamics can be used to identify between-group functional brain network centrality differences, and that age and gender distributions studies need to be taken into account in functional imaging studies.
With the increasing use of functional brain network properties as markers of brain disorders, efficient visualisation and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as brain maps. This paper studies the use of centrality dynamics for measuring group differences in imaging studies. Imaging data were used from a publicly available imaging study, which included resting fMRI data. After warping the images to a standard space and masking cortical regions, ECM were computed in a sliding window. The dual regression method was used to identify dynamic centrality differences inside well-known resting state networks between gender and age groups. Gender-related differences were found in the medial and lateral visual, motor, default mode, and executive control RSN, where male subjects had more consistent centrality variations within the network. Age-related differences between the youngest and oldest subjects, based on a median split, were found in the medial visual, executive control and left frontoparietal networks, where younger subjects had more consistent centrality variations within the network. Our findings show that centrality dynamics can be used to identify between-group functional brain network centrality differences, and that age and gender distributions studies need to be taken into account in functional imaging studies.
With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as brain maps. This paper studies the use of centrality dynamics for measuring group differences in imaging studies. Imaging data were used from a publicly available imaging study, which included resting fMRI data. After warping the images to a standard space and masking cortical regions, ECM were computed in a sliding window. The dual regression method was used to identify dynamic centrality differences inside well-known resting-state networks between gender and age groups. Gender-related differences were found in the medial and lateral visual, motor, default mode, and executive control RSN, where male subjects had more consistent centrality variations within the network. Age-related differences between the youngest and oldest subjects, based on a median split, were found in the medial visual, executive control and left frontoparietal networks, where younger subjects had more consistent centrality variations within the network. Our findings show that centrality dynamics can be used to identify between-group functional brain network centrality differences, and that age and gender distributions studies need to be taken into account in functional imaging studies.With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become essential. Eigenvector centrality mapping (ECM) of functional MRI (fMRI) data enables the representation of per-node graph theoretical measures as brain maps. This paper studies the use of centrality dynamics for measuring group differences in imaging studies. Imaging data were used from a publicly available imaging study, which included resting fMRI data. After warping the images to a standard space and masking cortical regions, ECM were computed in a sliding window. The dual regression method was used to identify dynamic centrality differences inside well-known resting-state networks between gender and age groups. Gender-related differences were found in the medial and lateral visual, motor, default mode, and executive control RSN, where male subjects had more consistent centrality variations within the network. Age-related differences between the youngest and oldest subjects, based on a median split, were found in the medial visual, executive control and left frontoparietal networks, where younger subjects had more consistent centrality variations within the network. Our findings show that centrality dynamics can be used to identify between-group functional brain network centrality differences, and that age and gender distributions studies need to be taken into account in functional imaging studies.
Author Wink, Alle Meije
AuthorAffiliation Radiology and Nuclear Medicine, Amsterdam University Medical Center , Amsterdam , Netherlands
AuthorAffiliation_xml – name: Radiology and Nuclear Medicine, Amsterdam University Medical Center , Amsterdam , Netherlands
Author_xml – sequence: 1
  givenname: Alle Meije
  surname: Wink
  fullname: Wink, Alle Meije
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31316335$$D View this record in MEDLINE/PubMed
BookMark eNp1kktr3DAUhU1JaB7tvqsi6KabmephyVYXhTB5DaQUkha6E7J05WiwpUSyA_Pv65lJShLISkI69-Nw7jkq9kIMUBSfCJ4zVstvLviQ5xQTOcdYlPW74pAIQWclZ3_3nt0PiqOcV5OE1iV9XxwwwohgjB8W7ZlvITyAGWJCCwhD0p0f1uh0HXTvTUbnKfboGvLgQzu7GfQAyP28Xn5HFxAsJKSDRSctoFPvHCQIBjLyAV2C7obbNboZm9UEzx-Kfae7DB8fz-Piz_nZ78Xl7OrXxXJxcjUznIth5irpMNgGyspaS2hNbQ1SY0IbzWwJEjsmWK05B8skMOssaFo31hhbN8ax42K549qoV-ou-V6ntYraq-1DTK3SafCmA0VrWQqQxnJWllXFG1JabZ2hhhJRUTyxfuxYd2PTgzW7dF5AX_4Ef6va-KCEwJKRDeDrIyDF-3HKUPU-G-g6HSCOWVHKpSRMcj5Jv7ySruKYwhSVogxXpCrJ1tHn547-W3na5yQQO4FJMecEThk_7czHjUHfKYLVpjhqWxy1KY7aFmcaxK8Gn9hvjvwD99PIbg
CitedBy_id crossref_primary_10_3233_JAD_230048
crossref_primary_10_1007_s10578_022_01432_6
crossref_primary_10_1016_j_neuroimage_2022_119125
crossref_primary_10_1186_s10194_021_01341_4
crossref_primary_10_1371_journal_pone_0326449
crossref_primary_10_1002_brb3_2334
crossref_primary_10_1016_j_physrep_2019_12_004
crossref_primary_10_3390_cancers15020556
crossref_primary_10_1038_s41380_021_01421_6
crossref_primary_10_1016_j_bpsc_2024_07_021
crossref_primary_10_1212_WNL_0000000000012341
crossref_primary_10_3389_fnins_2023_1206604
crossref_primary_10_1007_s00429_021_02435_0
Cites_doi 10.1016/S1053-8119(09)71511-3
10.1002/hbm.1058
10.1016/j.neuroimage.2014.03.042
10.1038/nn.4497
10.1089/brain.2011.0036
10.1371/journal.pone.0013701
10.1073/pnas.0911855107
10.1103/PhysRevE.79.061922
10.3389/fphys.2012.00015
10.3389/fpsyg.2015.00663
10.1016/j.neuroimage.2008.03.061
10.1016/j.neuroimage.2015.03.047
10.1142/S0129065717500137
10.1371/journal.pone.0010232
10.1523/JNEUROSCI.3874-05.2006
10.1177/1073858410386492
10.1371/journal.pone.0184661
10.1016/j.neuroimage.2015.11.055
10.1073/pnas.0905267106
10.3389/fnins.2016.00381
10.3389/fnagi.2014.00256
10.1073/pnas.0803652105
10.1016/j.neuroimage.2005.02.018
10.1002/hbm.22335
10.3389/fnagi.2013.00073
10.1073/pnas.0601417103
10.1016/j.neurobiolaging.2011.07.003
10.1016/j.neuroimage.2011.10.018
10.1371/journal.pone.0124577
10.1089/brain.2012.0087
10.1038/s41598-017-12993-12991
10.3389/fnins.2017.00115
10.1016/j.neuroscience.2016.09.034
10.1016/j.neuron.2013.07.035
10.1016/j.neuroimage.2016.12.061
10.1093/cercor/bhy109
10.1177/1352458513516892
10.1002/brb3.1080
10.3389/fnins.2016.00515
10.1002/hbm.23617
10.1002/hbm.21514
10.3389/fnhum.2015.00478
10.1212/WNL.0000000000003689
10.1371/journal.pcbi.1006196
10.1093/cercor/bhu012
10.1016/j.neuropsychologia.2012.05.025
10.1016/j.neuroimage.2013.08.048
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Wink. 2019 Wink
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Wink. 2019 Wink
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2019.00648
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_28946e9cd5344775b14dadfc2c216720
PMC6609310
31316335
10_3389_fnins_2019_00648
Genre Journal Article
GrantInformation_xml – fundername: Innovative Medicines Initiative
– fundername: Horizon 2020 Framework Programme
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-f79f0edbe47ddd1282d8e9a012ba3d4e90f3638a55ed39e3dfdea28bdccd8bcf3
IEDL.DBID M7P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473231900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:51:18 EDT 2025
Tue Nov 04 02:02:20 EST 2025
Fri Sep 05 10:08:50 EDT 2025
Fri Jul 25 11:49:57 EDT 2025
Thu Jan 02 23:04:07 EST 2025
Sat Nov 29 02:14:29 EST 2025
Tue Nov 18 22:27:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords graph theory – graph algorithms
imaging studies
age-related
trees
functional MRI (fMRI) methods
gender-related
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-f79f0edbe47ddd1282d8e9a012ba3d4e90f3638a55ed39e3dfdea28bdccd8bcf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Roberto Esposito, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Italy
Reviewed by: William Hedley Thompson, Karolinska Institute (KI), Sweden; Xiang Li, Massachusetts General Hospital, Harvard Medical School, United States
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
OpenAccessLink https://www.proquest.com/docview/2307174120?pq-origsite=%requestingapplication%
PMID 31316335
PQID 2307174120
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_28946e9cd5344775b14dadfc2c216720
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6609310
proquest_miscellaneous_2259913955
proquest_journals_2307174120
pubmed_primary_31316335
crossref_citationtrail_10_3389_fnins_2019_00648
crossref_primary_10_3389_fnins_2019_00648
PublicationCentury 2000
PublicationDate 2019-06-27
PublicationDateYYYYMMDD 2019-06-27
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-27
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Ashburner (B4) 2005; 26
Breakspear (B9) 2017; 20
Tagliazucchi (B41) 2016; 10
Preti (B31) 2017; 160
Duinkerken (B14) 2017; 38
Beckmann (B5) 2009; 47
Smith (B38) 2009; 44
Nickerson (B27) 2017; 11
Fletcher (B18) 2016; 28
Preti (B32) 2017; 7
Nichols (B26) 2002; 15
Allan (B2) 2015; 10
Campbell (B10) 2013; 5
Vidal-Piñeiro (B44) 2014; 6
Alonso-Nanclares (B3) 2008; 105
Kiviniemi (B23) 2011; 1
Esteban (B16) 2017; 12
Thompson (B42) 2018; 14
Wink (B46) 2018; 8
Power (B28) 2012; 59
Tagliazucchi (B40) 2012; 3
Biswal (B8) 2010; 107
Gong (B21) 2011; 17
Van Wijk (B43) 2010; 5
Zalesky (B47) 2015; 114
Zhen (B48) 2007
Smith (B37) 2009; 106
Fraiman (B19) 2009
Binnewijzend (B6) 2014; 35
Wink (B45) 2012; 2
Lohmann (B25) 2010; 5
Binnewijzend (B7) 2012; 33
Geerligs (B20) 2015; 25
Soares (B39) 2016; 10
Eijlers (B15) 2017; 88
Smith (B36) 2014; 95
Power (B30) 2013; 79
Campbell (B11) 2012; 50
Hindriks (B22) 2016; 127
Damoiseaux (B12) 2006; 103
Liao (B24) 2015; 9
Schoonheim (B35) 2014; 20
Power (B29) 2014; 84
Achard (B1) 2006; 26
Filippi (B17) 2013; 34
Sala-Llonch (B34) 2015; 6
Douw (B13) 2016; 339
Ritchie (B33) 2018; 28
References_xml – volume: 47
  year: 2009
  ident: B5
  article-title: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression.
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)71511-3
– volume: 15
  start-page: 1
  year: 2002
  ident: B26
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 95
  start-page: 1
  year: 2014
  ident: B36
  article-title: Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.042
– volume: 20
  start-page: 340
  year: 2017
  ident: B9
  article-title: Dynamic models of large-scale brain activity.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4497
– volume: 1
  start-page: 339
  year: 2011
  ident: B23
  article-title: A sliding time-window ICA reveals spatial variability of the default mode network in time.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0036
– volume: 5
  year: 2010
  ident: B43
  article-title: Comparing brain networks of different size and connectivity density using graph theory.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013701
– volume: 107
  start-page: 4734
  year: 2010
  ident: B8
  article-title: Toward discovery science of human brain function.
  publication-title: PNAS
  doi: 10.1073/pnas.0911855107
– year: 2009
  ident: B19
  article-title: Ising-like dynamics in large-scale functional brain networks.
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.79.061922
– volume: 3
  year: 2012
  ident: B40
  article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis.
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2012.00015
– volume: 6
  year: 2015
  ident: B34
  article-title: Reorganization of brain networks in aging: a review of functional connectivity studies.
  publication-title: Front. Psychol
  doi: 10.3389/fpsyg.2015.00663
– volume: 44
  start-page: 83
  year: 2009
  ident: B38
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 114
  start-page: 466
  year: 2015
  ident: B47
  article-title: Towards a statistical test for functional connectivity dynamics.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.047
– volume: 28
  year: 2016
  ident: B18
  article-title: From structure to activity: using centrality measures to predict neuronal activity.
  publication-title: Int. J. Neur. Syst.
  doi: 10.1142/S0129065717500137
– volume: 5
  year: 2010
  ident: B25
  article-title: Eigenvector centrality mapping for analyzing connectivity patterns in FMRI data of the human brain.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010232
– volume: 26
  start-page: 63
  year: 2006
  ident: B1
  article-title: A resilient and low-frequency and small-world human brain functional network with highly connected association cortical hubs.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3874-05.2006
– volume: 17
  start-page: 575
  year: 2011
  ident: B21
  article-title: Brain connectivity: gender makes a difference.
  publication-title: Neuroscientist
  doi: 10.1177/1073858410386492
– volume: 12
  year: 2017
  ident: B16
  article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184661
– volume: 127
  start-page: 242
  year: 2016
  ident: B22
  article-title: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.055
– volume: 106
  start-page: 13040
  year: 2009
  ident: B37
  article-title: Correspondence of the brain’s functional architecture during activation and rest.
  publication-title: PNAS
  doi: 10.1073/pnas.0905267106
– volume: 10
  year: 2016
  ident: B41
  article-title: The voxel-wise functional connectome can be efficiently derived from co-activations in a sparse spatio-temporal point-process.
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2016.00381
– volume: 6
  year: 2014
  ident: B44
  article-title: Decreased default mode network connectivity correlates with age-associated structural and cognitive changes.
  publication-title: Front. Aging Neurosci
  doi: 10.3389/fnagi.2014.00256
– volume: 105
  start-page: 14615
  year: 2008
  ident: B3
  article-title: Gender differences in human cortical synaptic density.
  publication-title: PNAS
  doi: 10.1073/pnas.0803652105
– volume: 26
  start-page: 839
  year: 2005
  ident: B4
  article-title: Unified segmentation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– year: 2007
  ident: B48
  article-title: Partial correlation mapping of brain functional connectivity with resting state fMRI
  publication-title: Proceedings of the SPIE 6511 Medical Imaging 2007: Physiology, Function, and Structure from Medical Images
– volume: 35
  start-page: 2383
  year: 2014
  ident: B6
  article-title: Brain network alterations in Alzheimer’s disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22335
– volume: 5
  year: 2013
  ident: B10
  article-title: Age differences in the intrinsic functional connectivity of default network subsystems.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00073
– volume: 103
  start-page: 13848
  year: 2006
  ident: B12
  article-title: Consistent resting-state networks across healthy subjects.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601417103
– volume: 33
  start-page: 2018
  year: 2012
  ident: B7
  article-title: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment.
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.07.003
– volume: 59
  start-page: 2142
  year: 2012
  ident: B28
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 10
  year: 2015
  ident: B2
  article-title: Functional connectivity in MRI is driven by spontaneous BOLD events.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124577
– volume: 2
  start-page: 265
  year: 2012
  ident: B45
  article-title: Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation.
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0087
– volume: 7
  year: 2017
  ident: B32
  article-title: Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12993-12991
– volume: 11
  year: 2017
  ident: B27
  article-title: Using dual regression to investigate network shape and amplitude in functional connectivity analyses.
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00115
– volume: 339
  start-page: 12
  year: 2016
  ident: B13
  article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.09.034
– volume: 79
  start-page: 798
  year: 2013
  ident: B30
  article-title: Evidence for hubs in human functional brain networks.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 160
  start-page: 41
  year: 2017
  ident: B31
  article-title: The dynamic functional connectome: state-of-the-art and perspectives.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 28
  start-page: 2959
  year: 2018
  ident: B33
  article-title: Sex differences in the adult human brain: evidence from 5216 UK biobank participants.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy109
– volume: 20
  start-page: 1058
  year: 2014
  ident: B35
  article-title: Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis.
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458513516892
– volume: 8
  year: 2018
  ident: B46
  article-title: Functional brain network centrality is related to APOE genotype in cognitively normal elderly.
  publication-title: Brain Behav.
  doi: 10.1002/brb3.1080
– volume: 10
  year: 2016
  ident: B39
  article-title: A hitchhiker’s guide to functional magnetic resonance imaging.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00515
– volume: 38
  start-page: 3623
  year: 2017
  ident: B14
  article-title: Altered eigenvector centrality is related to local resting-state network functional connectivity in patients with longstanding type 1 diabetes mellitus.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23617
– volume: 34
  start-page: 1330
  year: 2013
  ident: B17
  article-title: The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects.
  publication-title: Hum. Brain Map.
  doi: 10.1002/hbm.21514
– volume: 9
  year: 2015
  ident: B24
  article-title: Spontaneous functional network dynamics and associated structural substrates in the human brain.
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2015.00478
– volume: 88
  start-page: 952
  year: 2017
  ident: B15
  article-title: Increased default-mode network centrality in cognitively impaired multiple sclerosis patients.
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003689
– volume: 14
  year: 2018
  ident: B42
  article-title: Simulations to benchmark time-varying connectivity methods for fMRI.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006196
– volume: 25
  start-page: 1987
  year: 2015
  ident: B20
  article-title: A brain-wide study of age-related changes in functional connectivity.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu012
– volume: 50
  start-page: 2212
  year: 2012
  ident: B11
  article-title: Age differences in the frontoparietal cognitive control network: implications for distractibility.
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2012.05.025
– volume: 84
  start-page: 320
  year: 2014
  ident: B29
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.08.048
SSID ssj0062842
Score 2.2995265
Snippet With the increasing use of functional brain network properties as markers of brain disorders, efficient visualization and evaluation methods have become...
With the increasing use of functional brain network properties as markers of brain disorders, efficient visualisation and evaluation methods have become...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 648
SubjectTerms Age
Age differences
age-related
Brain mapping
Cortex
Datasets
Executive function
Functional magnetic resonance imaging
functional MRI (fMRI) methods
gender-related
graph theory – graph algorithms
imaging studies
Males
Multiple sclerosis
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Sensorimotor integration
Sex differences
Time series
trees
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxYELAsojUJCREBKHVdbr17q3QBvBgQpVIPW28voRIrUOStJK_fedsTdRghBcOO7aq_V6Hv5m7P2GkHcWZt4Ckq9iK0UlArOVZbKvNIBXqSwLUfW52IQ-O2svLsy3nVJfeCas0AOXiRtDQCBUMM5L5KbTsmfCWx9d4xqmdJOjdUA9m2Cq-GAFTrcpm5IQgplxTPOE3NwMySkV1vrZWYQyV_-fAObv5yR3Fp7pI_JwQIx0Ukb6mNwL6Qk5nCSIlq9u6Xuaz3Dm5PghmZ0iueZNzsTTIXELMJuelLrzKzpdLq7oOTJrpFmVgSaNX8-_HNNSUo7a5OlkFujJUDcFvAidJ1p-Vrql4GYwb7N6Sn5MT79_-lwNpRQqJ6VaV1GbWAffB6G997AmNb4NxsLq1FvuRTB15GCJVsrguQncRx9s0_beOd_2LvJn5CAtUnhBqLba1l7Ellkj2uhtDEZGuPTwnK7rERlv5rZzA884lru47CDeQGl0WRodSqPL0hiRD9snfhWOjb_0_Yji2vZDdux8A3SmG3Sm-5fOjMjRRtjdYLLwDo6hrWDY_HbbDMaGOyg2hcU19IFgEXlUpRyR50U3tiPhjAO25dCi97Rmb6j7LWn-MxN6K1UbgNkv_8e3vSIPcLbwNFujj8jBenkdXpP77mY9Xy3fZCu5A27gGe4
  priority: 102
  providerName: Directory of Open Access Journals
Title Eigenvector Centrality Dynamics From Resting-State fMRI: Gender and Age Differences in Healthy Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/31316335
https://www.proquest.com/docview/2307174120
https://www.proquest.com/docview/2259913955
https://pubmed.ncbi.nlm.nih.gov/PMC6609310
https://doaj.org/article/28946e9cd5344775b14dadfc2c216720
Volume 13
WOSCitedRecordID wos000473231900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZN0kMvfaUPt6lRoRR6WLwvSateitPYNAebxbTgnhatHo6h0aa2E8i_74x2beJScunFYEuLtTvS6JvR7PcR8kHBk1eA5CNXsDzKbaIilbA6EgBeGVeJdbwOYhNiOi3mc1l2Cbd1V1a59YnBUZtGY458gAXLgJ6TNP5y9TtC1Sg8Xe0kNA7IEbIkZKF0r9x6Yg6uN5x2cnwzCKB5e0wJQZkcOL_0yNadIF0lR_WfO9tSYO__F-T8u3LyzlY0fvK_N_GUPO5AKB22s-YZeWD9c3I89BCAX97SjzSUhYZ8-zFZjJCv8yYk92mXCwbkTs9aKfs1Ha-aSzpDsg6_iAJ2pW4yO_9MW5U6qryhw4WlZ50UCzgmuvS0ff_ploLnwlTQ-gX5MR59__ot6tQZIs0Y30ROSBdbU9tcGGNgm0tNYaWCDa9WmcmtjF0Gi1sxZk0mbWacsSotaqO1KWrtspfk0DfeviZUKKFik7siUTIvnFHOSubgq4HrRBz3yGBrnEp31OWooPGrghAGzVkFc1ZoziqYs0c-7a64amk77ul7ivbe9UPC7fBDs1pU3fqtIC7NuZXaMKRIFKxOcqOM06lOEy5SGOLJ1uJV5wXgP3bm7pH3u2ZYv3goo7xtrqEPxJ9IzcpYj7xqJ9duJFmSAVzOoEXsTbu9oe63-OVF4AjnPJaA3N_cP6y35BE-Byx9S8UJOdysru078lDfbJbrVZ8ciHnRJ0eno2k564dsBXxO0rIflhm0lOeT8ucfQTAwdQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwQv3AasMMBIgMRD1NwcJ0gIFbpq1daqmoY0noLjS6m0OqPthvqn-I2c4yTVitDe9sBjYyd13c9fzvE5_g4hbwTMvABL3jMpi71YB8ITASs8DsYrS0SgTVK4YhN8NEpPT7PxFvndnIXBtMqGEx1Rq1LiHnkHE5bBeg5C_9P5Tw-rRmF0tSmhUcHiUK9-gcu2-Djowf_7Ngz7-ydfDry6qoAnGUuWnuGZ8bUqdMyVUkDPoUp1JoCoCxGpWGe-iQCUgjGtokxHyigtwrRQUqq0kCaC594i2zGAPW2R7fFgOP7WcH8CZO_iqwmeRQJnoAqMghuYdYydWtQHD1AgM8F6Q1dehK5ewL-M3L9zNa-8_Pr3_7dpe0Du1WY27Vbr4iHZ0vYR2elasSxnK_qOusRXF1HYIZN9VCS9dOELWu92g29CeysrZlO5oP15OaPHKEdiJ56zzqkZHg8-0KoOHxVW0e5E015dbAaol04trU54rShwM252LR6Trzfyk5-Qli2t3iWUCy58FZs0EFmcGiWMzpiBjwru477fJp0GDLmsxdmxRshZDk4awid38MkRPrmDT5u8X99xXgmTXNP3M-Jr3Q8lxd2Fcj7Ja4bKwfOOE51JxVAEkrMiiJVQRoYyDBIewhD3GoTlNc_Bd6zh1Sav183AUBh2ElaXF9AHPGwUn2WsTZ5WYF6PJAoicAgiaOEbMN8Y6maLnf5wKuhJ4mfgmzy7flivyJ2Dk-FRfjQYHT4nd3FOMNEv5HuktZxf6BfktrxcThfzl_VSpuT7TS-DP2vOjj4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQYgLr_IIFDASIHFYZV9er5EQCqQRUSGKKpB6W7x-hJWItyRpUf4av44Z727UINRbDxwTexPH-fx5xjP-hpAXEmZegiUf2JylQWoiGciIlQEH45VlMjI2K32xCT6Z5MfHYrpDfnd3YTCtsuNET9S6VnhG3seEZbCeozjs2zYtYjocvTv5GWAFKYy0duU0GogcmvUvcN-Wb8dD-K9fxvHo4MuHj0FbYSBQjGWrwHJhQ6NLk3KtNVB1rHMjJJB2KROdGhHaBAAqGTM6ESbRVhsZ56VWSuelsgl87hVylaNouU8bnHa7QAa07yOtGd5KAregCZGCQyj61lUOlcIjlMrMsPLQuS3RVw74l7n7d9bmuW1wdOt_nsDb5GZrfNNBs1rukB3j7pK9gZOrer6mr6hPh_Vxhj0yO0Cd0jMf1KDtGTh4LHS4dnJeqSUdLeo5PUKREjcLvM1O7eej8RvaVOej0mk6mBk6bEvQACHTytHm3teaAmPjEdjyHvl6KT_5Ptl1tTMPCeWSy1CnNo-kSHOrpTWCWXip4Tkehj3S74BRqFayHSuH_CjAdUMoFR5KBUKp8FDqkdebJ04auZIL-r5HrG36odC4f6NezIqWtwrwx9PMCKUZSkNyVkapltqqWMVRxmMY4n6HtqJlP_iODdR65PmmGXgLg1HSmfoU-oDfjZK0jPXIgwbYm5EkUQJuQgItfAvyW0PdbnHVd6-NnmWhAI_l0cXDekauA_aLT-PJ4WNyA6cEs_9ivk92V4tT84RcU2erarl46tc0Jd8uew38AaMtlX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenvector+Centrality+Dynamics+From+Resting-State+fMRI%3A+Gender+and+Age+Differences+in+Healthy+Subjects&rft.jtitle=Frontiers+in+neuroscience&rft.au=Wink%2C+Alle+Meije&rft.date=2019-06-27&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2019.00648&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon