Phage selection for bacterial cheats leads to population decline
While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environme...
Saved in:
| Published in: | Proceedings of the Royal Society B : Biological Sciences Vol. 282; no. 1818; p. 20152207 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
07.11.2015
|
| Subjects: | |
| ISSN: | 1471-2954, 1471-2954 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. |
|---|---|
| AbstractList | While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies.While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies. |
| Author | Hochberg, Michael E Torres-Barceló, Clara Vasse, Marie |
| Author_xml | – sequence: 1 givenname: Marie surname: Vasse fullname: Vasse, Marie organization: Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France – sequence: 2 givenname: Clara surname: Torres-Barceló fullname: Torres-Barceló, Clara organization: Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France – sequence: 3 givenname: Michael E surname: Hochberg fullname: Hochberg, Michael E email: mhochber@univ-montp2.fr organization: Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA mhochber@univ-montp2.fr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26538598$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjzlPAzEYRC0URA5oKZFLmg0-4qsDReGQIkEB9crHZ7LIWS_r3YJ_TwRBopopnt5o5mjS5hYQuqRkSYnRN33p3JIRKpaMEXWCZnSlaMWMWE3-9Smal_JBCDFCizM0ZVJwLYyeoduXnX0HXCCBH5rc4ph77KwfoG9swn4Hdig4gQ0FDxl3uRuT_QED-NS0cI5Oo00FLo65QG_3m9f1Y7V9fnha320rL4QcKk9kCKvo7WGWc0Mji06I6IE7ygJTjkQTrQZJuQSnlCWBcakFiTwy4zxboOtfb9fnzxHKUO-b4iEl20IeS00Vp0obLuUBvTqio9tDqLu-2dv-q_57zb4BMPtblw |
| ContentType | Journal Article |
| Copyright | 2015 The Author(s). |
| Copyright_xml | – notice: 2015 The Author(s). |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1098/rspb.2015.2207 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| EISSN | 1471-2954 |
| ExternalDocumentID | 26538598 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 29P 2WC 36Y 4.4 5RE 85S AACGO AANCE ABBHK ABPLY ABTLG ABXSQ ACHIC ACIWK ACNCT ACPRK ACQIA ADBBV ADIYS ADQXQ ADULT AEUPB AEXZC AFRAH ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS AQVQM BAWUL BTFSW CGR CS3 CUY CVF DCCCD DIK E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KQ8 MRS NPM O9- OK1 RPM SA0 TR2 W8F ~02 5VS 7X8 ICLEN RRY V1E |
| ID | FETCH-LOGICAL-c556t-c06dd4fca8593391f2fb55fce3b12d27b0f9fa8e6136eb77a0d236850f3f29bc2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364850200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2954 |
| IngestDate | Sun Nov 09 11:48:44 EST 2025 Thu Apr 03 07:07:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1818 |
| Keywords | Pseudomonas aeruginosa collective behaviour experimental evolution bacteriophage siderophores cooperation |
| Language | English |
| License | 2015 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-c06dd4fca8593391f2fb55fce3b12d27b0f9fa8e6136eb77a0d236850f3f29bc2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2015.2207 |
| PMID | 26538598 |
| PQID | 1731789366 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1731789366 pubmed_primary_26538598 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-11-07 |
| PublicationDateYYYYMMDD | 2015-11-07 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Proceedings of the Royal Society B : Biological Sciences |
| PublicationTitleAlternate | Proc Biol Sci |
| PublicationYear | 2015 |
| References | 18276890 - Science. 2008 Feb 15;319(5865):952-4 22158817 - Science. 2011 Dec 9;334(6061):1398-401 18180746 - ISME J. 2008 Jan;2(1):49-55 23823495 - ISME J. 2013 Nov;7(11):2242-4 16043697 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11076-81 17158317 - Science. 2006 Dec 8;314(5805):1560-3 19070624 - J Theor Biol. 2009 Mar 7;257(1):45-51 13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7 25315099 - Oecologia. 2014 Nov;176(3):607-11 22807479 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12828-33 18704225 - Mol Biosyst. 2008 Sep;4(9):882-8 12410303 - Nature. 2002 Oct 31;419(6910):899-903 25259735 - PLoS One. 2014;9(9):e106628 5875341 - J Theor Biol. 1964 Jul;7(1):1-16 19170825 - J Evol Biol. 2009 Mar;22(3):589-98 22639835 - Ecol Lett. 2012 Aug;15(8):841-6 23418497 - PLoS One. 2013;8(2):e56022 11018148 - Annu Rev Microbiol. 2000;54:881-941 19154373 - Evolution. 2009 Apr;63(4):939-49 20711357 - PLoS Pathog. 2010;6(8):e1000949 16980495 - J Bacteriol. 2006 Oct;188(19):6924-31 22615741 - PLoS One. 2012;7(5):e35833 16777748 - Proc Biol Sci. 2006 Jun 22;273(1593):1529-35 11935015 - Science. 2002 Apr 5;296(5565):72-5 23435883 - Appl Environ Microbiol. 2013 May;79(9):2862-71 12117903 - Infect Immun. 2002 Aug;70(8):3985-93 19232531 - J Microbiol Methods. 2009 May;77(2):207-13 16219778 - Genetics. 2006 Jan;172(1):17-26 23945212 - Biol Lett. 2013 Oct 23;9(5):20130548 25105060 - Bacteriophage. 2014 Jul 08;4:e29866 14977540 - Front Biosci. 2004 May 1;9:1228-339 15329720 - Nature. 2004 Aug 26;430(7003):1024-7 22566647 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):8259-63 23149686 - Mol Syst Biol. 2012;8:621 15184553 - Microbiology. 2004 Jun;150(Pt 6):1671-80 5875340 - J Theor Biol. 1964 Jul;7(1):17-52 20391997 - Ecology. 2010 Feb;91(2):334-40 25024215 - Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11109-14 19322247 - ISME J. 2009 Jun;3(6):666-74 18059461 - Nature. 2007 Dec 13;450(7172):1079-81 11997446 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):7072-7 22040156 - Environ Microbiol. 2012 Aug;14(8):1830-43 17702577 - Curr Biol. 2007 Aug 21;17(16):1414-9 11796431 - Chest. 2002 Jan;121(1):48-54 22077484 - J Anim Ecol. 2012 Mar;81(2):443-54 8550201 - Infect Immun. 1996 Feb;64(2):518-23 15816912 - Environ Microbiol. 2005 Apr;7(4):459-71 17879185 - Am Nat. 2007 Sep;170(3):331-42 11075711 - Proc Biol Sci. 2000 Oct 7;267(1456):1979-85 24046364 - Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16056-60 22168669 - J Evol Biol. 2012 Mar;25(3):473-84 5104951 - J Theor Biol. 1971 May;31(2):295-311 23422409 - MBio. 2013;4(1):e00362-12 17206590 - Am Nat. 2007 Jan;169(1):118-29 18479522 - BMC Biol. 2008;6:20 |
| References_xml | – reference: 15184553 - Microbiology. 2004 Jun;150(Pt 6):1671-80 – reference: 25315099 - Oecologia. 2014 Nov;176(3):607-11 – reference: 22566647 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):8259-63 – reference: 24046364 - Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16056-60 – reference: 25105060 - Bacteriophage. 2014 Jul 08;4:e29866 – reference: 17158317 - Science. 2006 Dec 8;314(5805):1560-3 – reference: 20391997 - Ecology. 2010 Feb;91(2):334-40 – reference: 15816912 - Environ Microbiol. 2005 Apr;7(4):459-71 – reference: 11997446 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):7072-7 – reference: 11075711 - Proc Biol Sci. 2000 Oct 7;267(1456):1979-85 – reference: 22615741 - PLoS One. 2012;7(5):e35833 – reference: 16777748 - Proc Biol Sci. 2006 Jun 22;273(1593):1529-35 – reference: 17702577 - Curr Biol. 2007 Aug 21;17(16):1414-9 – reference: 22639835 - Ecol Lett. 2012 Aug;15(8):841-6 – reference: 16219778 - Genetics. 2006 Jan;172(1):17-26 – reference: 11935015 - Science. 2002 Apr 5;296(5565):72-5 – reference: 8550201 - Infect Immun. 1996 Feb;64(2):518-23 – reference: 22040156 - Environ Microbiol. 2012 Aug;14(8):1830-43 – reference: 25024215 - Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):11109-14 – reference: 25259735 - PLoS One. 2014;9(9):e106628 – reference: 15329720 - Nature. 2004 Aug 26;430(7003):1024-7 – reference: 13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7 – reference: 23149686 - Mol Syst Biol. 2012;8:621 – reference: 18059461 - Nature. 2007 Dec 13;450(7172):1079-81 – reference: 5104951 - J Theor Biol. 1971 May;31(2):295-311 – reference: 19232531 - J Microbiol Methods. 2009 May;77(2):207-13 – reference: 18704225 - Mol Biosyst. 2008 Sep;4(9):882-8 – reference: 5875341 - J Theor Biol. 1964 Jul;7(1):1-16 – reference: 18479522 - BMC Biol. 2008;6:20 – reference: 22077484 - J Anim Ecol. 2012 Mar;81(2):443-54 – reference: 16980495 - J Bacteriol. 2006 Oct;188(19):6924-31 – reference: 22168669 - J Evol Biol. 2012 Mar;25(3):473-84 – reference: 22158817 - Science. 2011 Dec 9;334(6061):1398-401 – reference: 19154373 - Evolution. 2009 Apr;63(4):939-49 – reference: 17206590 - Am Nat. 2007 Jan;169(1):118-29 – reference: 12117903 - Infect Immun. 2002 Aug;70(8):3985-93 – reference: 11796431 - Chest. 2002 Jan;121(1):48-54 – reference: 17879185 - Am Nat. 2007 Sep;170(3):331-42 – reference: 19070624 - J Theor Biol. 2009 Mar 7;257(1):45-51 – reference: 11018148 - Annu Rev Microbiol. 2000;54:881-941 – reference: 23418497 - PLoS One. 2013;8(2):e56022 – reference: 23945212 - Biol Lett. 2013 Oct 23;9(5):20130548 – reference: 12410303 - Nature. 2002 Oct 31;419(6910):899-903 – reference: 20711357 - PLoS Pathog. 2010;6(8):e1000949 – reference: 22807479 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12828-33 – reference: 23422409 - MBio. 2013;4(1):e00362-12 – reference: 5875340 - J Theor Biol. 1964 Jul;7(1):17-52 – reference: 23823495 - ISME J. 2013 Nov;7(11):2242-4 – reference: 18180746 - ISME J. 2008 Jan;2(1):49-55 – reference: 23435883 - Appl Environ Microbiol. 2013 May;79(9):2862-71 – reference: 18276890 - Science. 2008 Feb 15;319(5865):952-4 – reference: 19170825 - J Evol Biol. 2009 Mar;22(3):589-98 – reference: 14977540 - Front Biosci. 2004 May 1;9:1228-339 – reference: 16043697 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11076-81 – reference: 19322247 - ISME J. 2009 Jun;3(6):666-74 |
| SSID | ssj0009585 |
| Score | 2.271102 |
| Snippet | While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 20152207 |
| SubjectTerms | Bacteriophages - physiology Biological Evolution Iron - metabolism Oligopeptides - biosynthesis Podoviridae - physiology Pseudomonas aeruginosa - genetics Pseudomonas aeruginosa - growth & development Pseudomonas aeruginosa - virology Selection, Genetic Siderophores - biosynthesis |
| Title | Phage selection for bacterial cheats leads to population decline |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26538598 https://www.proquest.com/docview/1731789366 |
| Volume | 282 |
| WOSCitedRecordID | wos000364850200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB3UVfCirp_rFxE86KFukjZJe1IRFy8ue1DYW2nSBAVpV7sK_nsnbXf1IgheemsIk8mbl6_3AE6NYkyFSgVR7i3MYm_zIigNnLCMGZVJRV1tNqGGw3g8TkbthlvVXqucYWIN1Hlp_B55H1tkCourlJeT18C7RvnT1dZCYxE6IVIZn9VqHP8Q3a0tORkCcODPs-aijXEfF43aX-wSF5xT9Tu9rMvMYP2_HdyAtZZgkusmI7qwYItNWGksJz83odtO5oqctYrT51twNXpCWCFV7YmDA0WQyRLd6DhjW8YDdkVeMB0qMi3JZG76RXLrn1babXgc3D7c3AWttUJghJDTwFCZ55EzmZc7CxPmuNNCOGNDzXjOlaYucVlssdhLq5XKaM69VD11oeOJNnwHloqysHtAogwZVoQ0hjsZ6dgkoQmx5mmHK0Gb0KwHJ7N4pZi6_jwiK2z5XqXfEevBbhP0dNJobKRcIhKLJN7_w98HsOpHsn4hqA6h43Di2iNYNh_T5-rtuM4J_A5H91_i8b-x |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phage+selection+for+bacterial+cheats+leads+to+population+decline&rft.jtitle=Proceedings+of+the+Royal+Society+B+%3A+Biological+Sciences&rft.au=Vasse%2C+Marie&rft.au=Torres-Barcel%C3%B3%2C+Clara&rft.au=Hochberg%2C+Michael+E&rft.date=2015-11-07&rft.issn=1471-2954&rft.eissn=1471-2954&rft.volume=282&rft.issue=1818&rft.spage=20152207&rft_id=info:doi/10.1098%2Frspb.2015.2207&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2954&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2954&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2954&client=summon |