Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes

A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed N th row. We obtain an explicit double contour integral expression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields Jg. 160; H. 3-4; S. 429 - 487
1. Verfasser: Petrov, Leonid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Schlagworte:
ISSN:0178-8051, 1432-2064
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed N th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its q -deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007 ). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at level ..., ..., subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand-Tsetlin schemes with arbitrary fixed ...th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its ...-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263-302, 2007 ). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).[PUBLICATION ABSTRACT]
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at level ..., ..., subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand-Tsetlin schemes with arbitrary fixed ...th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its ...-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263-302, 2007). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).
A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m, m=1,…,N, subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed Nth row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its q-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).
A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed N th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its q -deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007 ). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).
Author Petrov, Leonid
Author_xml – sequence: 1
  givenname: Leonid
  surname: Petrov
  fullname: Petrov, Leonid
  email: lenia.petrov@gmail.com
  organization: Department of Mathematics, Northeastern University, Dobrushin Mathematics Laboratory, Kharkevich Institute for Information Transmission Problems
BookMark eNp9kc9KxDAQh4Os4Lr6AN4KXrxUJ3-atEdZdBUEL3oOaZpopG3WJCurJ9_BN_RJzLIeRNBTQub7ZYZv9tFk9KNB6AjDKQYQZxGAMSgB0xIqSsr1Dppili8EOJugKWBRlzVUeA_tx_gEAIQyMkXz8_g6LJNPTsfC2yKosfND0fs3Mz6YIrnejQ-xeHGqWJje5urn-8ddNCm_F1E_msHEA7RrVR_N4fc5Q_eXF3fzq_LmdnE9P78pdVXxVLa4ZkqYzgJtiBZt27TKCl4LobWlpulaAq2wVUdqXluNG8ubjhNCFQbdUEZn6GT77zL455WJSQ4uatP3ajR-FSXmjBBRQSMyevwLffKrMObpJOEcEyGytf8ozEnFBBecZgpvKR18jMFYuQxuUOFVYpAb-XIrX2b5ciNfrnNG_Mpol1RyfkxBuf7fJNkmY-6SVxB-zPRn6AsJ3ZrQ
CODEN PTRFEU
CitedBy_id crossref_primary_10_1007_s10240_016_0085_5
crossref_primary_10_1093_imrn_rnad299
crossref_primary_10_1142_S0129167X15500937
crossref_primary_10_1088_1742_5468_ab43d6
crossref_primary_10_1214_22_AIHP1357
crossref_primary_10_1002_cpa_21818
crossref_primary_10_1007_s10955_018_2170_2
crossref_primary_10_1002_cpa_22202
crossref_primary_10_1007_s11040_018_9265_5
crossref_primary_10_1016_j_jfa_2018_12_008
crossref_primary_10_1007_s00220_023_04832_4
crossref_primary_10_1007_s00220_022_04499_3
crossref_primary_10_1214_17_AIHP838
crossref_primary_10_1007_s00039_015_0323_x
crossref_primary_10_1088_1751_8121_aad028
crossref_primary_10_1215_00127094_2019_0023
crossref_primary_10_1007_s00220_019_03643_w
crossref_primary_10_1007_s00220_016_2801_x
crossref_primary_10_1214_17_AOP1244
crossref_primary_10_1214_22_AIHP1314
crossref_primary_10_1007_s10955_015_1330_x
crossref_primary_10_1093_imrn_rnab180
crossref_primary_10_1007_s00440_018_0853_x
crossref_primary_10_1088_1361_6544_ad1dbc
crossref_primary_10_1214_21_AAP1708
crossref_primary_10_1007_s00440_022_01129_w
crossref_primary_10_1111_sapm_12339
crossref_primary_10_1214_14_AOP955
crossref_primary_10_1093_imrn_rnab165
crossref_primary_10_1088_1751_8121_acedda
crossref_primary_10_1088_1742_5468_ab4fdd
crossref_primary_10_1214_24_AOP1706
crossref_primary_10_1214_18_AIHP887
crossref_primary_10_1007_s10955_016_1590_0
crossref_primary_10_1007_s00440_023_01238_0
crossref_primary_10_1215_00127094_2022_0075
crossref_primary_10_1214_18_AOP1315
crossref_primary_10_1007_s00029_024_00945_3
crossref_primary_10_1007_s00220_020_03779_0
crossref_primary_10_1112_tlm3_12039
crossref_primary_10_1112_plms_12638
crossref_primary_10_1007_s00220_020_03823_z
crossref_primary_10_1090_cams_52
crossref_primary_10_1214_14_AAP1021
crossref_primary_10_1112_jlms_12813
crossref_primary_10_1214_24_AOP1685
crossref_primary_10_1007_s00440_018_0886_1
Cites_doi 10.1215/S0012-7094-61-02826-5
10.17323/1609-4514-2006-6-3-553-566
10.1070/RM2000v055n05ABEH000321
10.1090/S0894-0347-00-00337-4
10.1007/BF02181243
10.1007/s10688-008-0027-1
10.1090/S0894-0347-03-00425-9
10.1007/s00220-008-0511-8
10.1016/j.aim.2008.06.012
10.1016/S0246-0203(97)80106-9
10.1007/s11511-007-0021-0
10.4007/annals.2006.163.1019
10.5802/aif.2155
10.1214/EJP.v13-541
10.1214/EJP.v17-1902
10.1007/s00029-010-0034-y
10.1088/0305-4470/31/29/005
10.1007/978-94-010-0524-1_6
10.1023/A:1019791415147
10.1007/s10955-007-9383-0
10.1214/154957806000000078
10.1016/j.aim.2008.11.008
10.1007/s00023-011-0120-5
10.1007/s004400100187
10.1007/s00220-006-0128-8
10.1093/oso/9780198534891.001.0001
10.17323/1609-4514-2009-9-4-749-774
10.1016/j.aim.2012.04.005
10.1023/A:1025703819894
10.37236/668
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2013.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2013.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
H8D
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00440-013-0532-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep (ProQuest)
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
Aerospace Database
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Aerospace Database
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
EISSN 1432-2064
EndPage 487
ExternalDocumentID 3498903141
10_1007_s00440_013_0532_x
Genre Feature
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7X
Z81
Z83
Z88
Z8R
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
H8D
JQ2
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c556t-b184a7edf0392c7bb9baf76877ccf3e9db20b7f5d2868fc19f69d6223a10c9343
IEDL.DBID K7-
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-8051
IngestDate Thu Sep 04 19:36:01 EDT 2025
Wed Nov 05 00:48:02 EST 2025
Tue Nov 04 21:45:59 EST 2025
Tue Nov 18 21:51:32 EST 2025
Sat Nov 29 02:39:52 EST 2025
Fri Feb 21 02:47:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords 60C05
82C22
60G55
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-b184a7edf0392c7bb9baf76877ccf3e9db20b7f5d2868fc19f69d6223a10c9343
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1007/s00440-013-0532-x
PQID 1625476763
PQPubID 47326
PageCount 59
ParticipantIDs proquest_miscellaneous_1642275097
proquest_journals_2661277100
proquest_journals_1625476763
crossref_primary_10_1007_s00440_013_0532_x
crossref_citationtrail_10_1007_s00440_013_0532_x
springer_journals_10_1007_s00440_013_0532_x
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Probability theory and related fields
PublicationTitleAbbrev Probab. Theory Relat. Fields
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2+1 dimensions (2008). arXiv:0804.3035 [math-ph]
CohnH.KenyonR.ProppJ.A variational principle for domino tilingsJ. AMS2001142297346arXiv:math/0008220 [math.CO]
FerrariP.L.SpohnH.Step fluctuations for a faceted crystalJ. Stat. Phys.20031131146arXiv:cond-mat/0212456 [cond-mat.stat-mech]
BorodinA.KuanJ.Asymptotics of Plancherel measures for the infinite-dimensional unitary groupAdv. Math.20082193894931arXiv:0712.1848 [math.RT]
Gorin, V.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 (3), 180–197 (2008). arXiv:0708.2349 [math.PR]
KenyonR.OkounkovA.SheffieldS.Dimers and amoebaeAnn. Math.200616310191056
BorodinA.OlshanskiG.The boundary of the Gelfand-Tsetlin graph: a new approachAdv. Math.201223017381779arXiv:1109.1412 [math.CO]
Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. In: Annales Henri Poincare (2011). arXiv:0912.3968 [math-ph]
JohanssonK.Non-intersecting paths, random tilings and random matricesProbab. Theory Relat. Fields20021232225280arXiv:math/0011250 [math.PR]
BorodinAFerrariPPrähoferMSasamotoTFluctuation properties of the TASEP with periodic initial configurationJ. Stat. Phys.20071295–61055108010.1007/s10955-007-9383-01136.820282363389arXiv:math-ph/0608056
MacdonaldIGSymmetric functions and Hall polynomials19952OxfordOxford University Press0824.05059
GouldHWThe q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Stirling numbers of first and second kindsDuke Math. J.19612828128910.1215/S0012-7094-61-02826-50201.33601122759
OkounkovA.ReshetikhinN.Random skew plane partitions and the Pearcey processCommun. Math. Phys.20072693571609arXiv:math/0503508 [math.CO]
Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Annales de l’Institut Fourier (Grenoble) 55(6), 2129–2145 (2005). arXiv:math/0409013 [math.PR]
Breuer, J., Duits, M.: Nonintersecting paths with a staircase initial condition (2011). arXiv:1105.0388 [math.PR]
DestainvilleNEntropy and boundary conditions in random rhombus tilingsJ. Phys. A Math. Gen.1998316123613910.1088/0305-4470/31/29/0050908.520091637731
Kenyon, R.: Local statistics of lattice dimers. Annales de Inst. H. Poincaré. Probabilités et Statistiques 33, 591–618 (1997). arXiv:math/0105054 [math.CO]
Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. arXiv:1105.1272 [math.PR]
DestainvilleNMosseriRBaillyFConfigurational entropy of codimension-one tilings and directed membranesJ. Stat. Phys.1997873/469775410.1007/BF021812430952.525001459040
Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Combin. 18(1), P181 (2011). arXiv:1103.5054 [math.CO]
HoughJ.B.KrishnapurM.PeresY.VirágB.Determinantal processes and independenceProbab. Surv.20063206229arXiv:math/0503110 [math.PR]
Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953)
BorodinA.GorinV.Shuffling algorithm for boxed plane partitionsAdv. Math.2009220617391770arXiv:0804.3071 [math.CO]
Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR]
OkounkovAReshetikhinNYThe birth of a random matrixMoscow Math. J.2006635535661130.150142274865
Kenyon, R.: Lectures on dimers. arXiv:0910.3129 [math.PR]. http://www.math.brown.edu/kenyon/papers/dimerlecturenotes.pdf
PrähoferM.SpohnH.Scale invariance of the PNG droplet and the Airy processJ. Stat. Phys.200210810711106arXiv:math.PR/0105240
BorodinA.GorinV.RainsE.q-Distributions on boxed plane partitionsSelecta Math. New Ser.2010164731789arXiv:0905.0679 [math-ph]
OkounkovA.ReshetikhinN.Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagramJ. Am. Math. Soc.2003163581603arXiv:math/0107056 [math.CO]
WeylHThe Classical Groups. Their Invariants and Representations1997PrincetonPrinceton University Press1024.20501
BorodinA.OkounkovA.OlshanskiG.Asymptotics of Plancherel measures for symmetric groupsJ. Am. Math. Soc.2000133481515arXiv:math/9905032 [math.CO]
Stanley, R.: Enumerative Combinatorics, vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001)
Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998). arXiv:math/9801059 [math.CO]
Okounkov, A.: Correlations for the Novak process. arXiv:1201.4138 [math.CO]
JohanssonK.NordenstamE.Eigenvalues of GUE minorsElectron. J. Probab.2006115013421371arXiv:math/0606760 [math.PR]
Kasteleyn, P.: Graph theory and crystal physics, pp. 43–110. Graph Theory and Theoretical Physics. Academic Press, London (1967)
SoshnikovA.Determinantal random point fieldsRuss. Math. Surv.2000555923975arXiv:math/0002099 [math.PR]
ForresterP.J.NordenstamE.The anti-symmetric GUE minor processMoscow Math. J.200994749774arXiv:0804.3293 [math.PR]
KenyonROkounkovALimit shapes and the complex Burgers equationActa Math.2007199226330210.1007/s11511-007-0021-01156.140292358053arXiv:math-ph/0507007
Sheffield, S.: Random surfaces, Astérisque 304 (2005). arXiv:math/0304049 [math.PR]
BorodinA.FerrariP.Large time asymptotics of growth models on space-like paths I: PushASEPElectron. J. Probab.20081313801418arXiv:0707.2813 [math-ph]
KenyonRHeight fluctuations in the honeycomb dimer modelCommun. Math. Phys.2008281367570910.1007/s00220-008-0511-81157.820282415464arXiv:math-ph/0405052
Okounkov, A.: Symmetric functions and random partitions. In: Fomin, S. (ed.) Symmetric Functions 2001: Surveys of Developments and Perspectives. Kluwer, Dordrecht (2002). arXiv:math/0309074 [math.CO]
Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2007). arXiv:math/0310278 [math.CA]
P.J. Forrester (532_CR18) 2009; 9
H. Cohn (532_CR13) 2001; 14
532_CR17
N Destainville (532_CR15) 1998; 31
A Borodin (532_CR4) 2007; 129
N Destainville (532_CR16) 1997; 87
R Kenyon (532_CR30) 2007; 199
HW Gould (532_CR21) 1961; 28
532_CR20
M. Prähofer (532_CR40) 2002; 108
532_CR43
J.B. Hough (532_CR22) 2006; 3
532_CR25
532_CR26
532_CR27
H Weyl (532_CR44) 1997
A. Soshnikov (532_CR42) 2000; 55
R Kenyon (532_CR28) 2008; 281
532_CR41
532_CR8
A. Borodin (532_CR6) 2010; 16
532_CR9
IG Macdonald (532_CR32) 1995
A. Borodin (532_CR11) 2000; 13
P.L. Ferrari (532_CR19) 2003; 113
532_CR3
R. Kenyon (532_CR31) 2006; 163
A. Okounkov (532_CR39) 2007; 269
532_CR1
532_CR29
K. Johansson (532_CR24) 2002; 123
A. Borodin (532_CR7) 2008; 219
A. Borodin (532_CR10) 2012; 230
K. Johansson (532_CR23) 2006; 11
532_CR33
532_CR12
532_CR34
532_CR35
A. Okounkov (532_CR37) 2003; 16
A. Borodin (532_CR5) 2009; 220
532_CR14
532_CR36
A. Borodin (532_CR2) 2008; 13
A Okounkov (532_CR38) 2006; 6
References_xml – reference: KenyonROkounkovALimit shapes and the complex Burgers equationActa Math.2007199226330210.1007/s11511-007-0021-01156.140292358053arXiv:math-ph/0507007
– reference: JohanssonK.NordenstamE.Eigenvalues of GUE minorsElectron. J. Probab.2006115013421371arXiv:math/0606760 [math.PR]
– reference: Okounkov, A.: Correlations for the Novak process. arXiv:1201.4138 [math.CO]
– reference: Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Combin. 18(1), P181 (2011). arXiv:1103.5054 [math.CO]
– reference: SoshnikovA.Determinantal random point fieldsRuss. Math. Surv.2000555923975arXiv:math/0002099 [math.PR]
– reference: HoughJ.B.KrishnapurM.PeresY.VirágB.Determinantal processes and independenceProbab. Surv.20063206229arXiv:math/0503110 [math.PR]
– reference: Gorin, V.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 (3), 180–197 (2008). arXiv:0708.2349 [math.PR]
– reference: Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR]
– reference: JohanssonK.Non-intersecting paths, random tilings and random matricesProbab. Theory Relat. Fields20021232225280arXiv:math/0011250 [math.PR]
– reference: Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Annales de l’Institut Fourier (Grenoble) 55(6), 2129–2145 (2005). arXiv:math/0409013 [math.PR]
– reference: Kenyon, R.: Local statistics of lattice dimers. Annales de Inst. H. Poincaré. Probabilités et Statistiques 33, 591–618 (1997). arXiv:math/0105054 [math.CO]
– reference: BorodinA.FerrariP.Large time asymptotics of growth models on space-like paths I: PushASEPElectron. J. Probab.20081313801418arXiv:0707.2813 [math-ph]
– reference: Kenyon, R.: Lectures on dimers. arXiv:0910.3129 [math.PR]. http://www.math.brown.edu/kenyon/papers/dimerlecturenotes.pdf
– reference: OkounkovA.ReshetikhinN.Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagramJ. Am. Math. Soc.2003163581603arXiv:math/0107056 [math.CO]
– reference: KenyonRHeight fluctuations in the honeycomb dimer modelCommun. Math. Phys.2008281367570910.1007/s00220-008-0511-81157.820282415464arXiv:math-ph/0405052
– reference: BorodinA.GorinV.Shuffling algorithm for boxed plane partitionsAdv. Math.2009220617391770arXiv:0804.3071 [math.CO]
– reference: MacdonaldIGSymmetric functions and Hall polynomials19952OxfordOxford University Press0824.05059
– reference: Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2007). arXiv:math/0310278 [math.CA]
– reference: Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953)
– reference: Breuer, J., Duits, M.: Nonintersecting paths with a staircase initial condition (2011). arXiv:1105.0388 [math.PR]
– reference: DestainvilleNEntropy and boundary conditions in random rhombus tilingsJ. Phys. A Math. Gen.1998316123613910.1088/0305-4470/31/29/0050908.520091637731
– reference: Sheffield, S.: Random surfaces, Astérisque 304 (2005). arXiv:math/0304049 [math.PR]
– reference: Kasteleyn, P.: Graph theory and crystal physics, pp. 43–110. Graph Theory and Theoretical Physics. Academic Press, London (1967)
– reference: OkounkovAReshetikhinNYThe birth of a random matrixMoscow Math. J.2006635535661130.150142274865
– reference: BorodinA.OkounkovA.OlshanskiG.Asymptotics of Plancherel measures for symmetric groupsJ. Am. Math. Soc.2000133481515arXiv:math/9905032 [math.CO]
– reference: Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. arXiv:1105.1272 [math.PR]
– reference: BorodinA.OlshanskiG.The boundary of the Gelfand-Tsetlin graph: a new approachAdv. Math.201223017381779arXiv:1109.1412 [math.CO]
– reference: PrähoferM.SpohnH.Scale invariance of the PNG droplet and the Airy processJ. Stat. Phys.200210810711106arXiv:math.PR/0105240
– reference: KenyonR.OkounkovA.SheffieldS.Dimers and amoebaeAnn. Math.200616310191056
– reference: DestainvilleNMosseriRBaillyFConfigurational entropy of codimension-one tilings and directed membranesJ. Stat. Phys.1997873/469775410.1007/BF021812430952.525001459040
– reference: Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2+1 dimensions (2008). arXiv:0804.3035 [math-ph]
– reference: BorodinA.KuanJ.Asymptotics of Plancherel measures for the infinite-dimensional unitary groupAdv. Math.20082193894931arXiv:0712.1848 [math.RT]
– reference: Okounkov, A.: Symmetric functions and random partitions. In: Fomin, S. (ed.) Symmetric Functions 2001: Surveys of Developments and Perspectives. Kluwer, Dordrecht (2002). arXiv:math/0309074 [math.CO]
– reference: BorodinA.GorinV.RainsE.q-Distributions on boxed plane partitionsSelecta Math. New Ser.2010164731789arXiv:0905.0679 [math-ph]
– reference: OkounkovA.ReshetikhinN.Random skew plane partitions and the Pearcey processCommun. Math. Phys.20072693571609arXiv:math/0503508 [math.CO]
– reference: CohnH.KenyonR.ProppJ.A variational principle for domino tilingsJ. AMS2001142297346arXiv:math/0008220 [math.CO]
– reference: GouldHWThe q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Stirling numbers of first and second kindsDuke Math. J.19612828128910.1215/S0012-7094-61-02826-50201.33601122759
– reference: ForresterP.J.NordenstamE.The anti-symmetric GUE minor processMoscow Math. J.200994749774arXiv:0804.3293 [math.PR]
– reference: FerrariP.L.SpohnH.Step fluctuations for a faceted crystalJ. Stat. Phys.20031131146arXiv:cond-mat/0212456 [cond-mat.stat-mech]
– reference: BorodinAFerrariPPrähoferMSasamotoTFluctuation properties of the TASEP with periodic initial configurationJ. Stat. Phys.20071295–61055108010.1007/s10955-007-9383-01136.820282363389arXiv:math-ph/0608056
– reference: Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998). arXiv:math/9801059 [math.CO]
– reference: WeylHThe Classical Groups. Their Invariants and Representations1997PrincetonPrinceton University Press1024.20501
– reference: Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. In: Annales Henri Poincare (2011). arXiv:0912.3968 [math-ph]
– reference: Stanley, R.: Enumerative Combinatorics, vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001)
– volume: 28
  start-page: 281
  year: 1961
  ident: 532_CR21
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-61-02826-5
– volume: 6
  start-page: 553
  issue: 3
  year: 2006
  ident: 532_CR38
  publication-title: Moscow Math. J.
  doi: 10.17323/1609-4514-2006-6-3-553-566
– ident: 532_CR43
– ident: 532_CR41
– volume: 55
  start-page: 923
  issue: 5
  year: 2000
  ident: 532_CR42
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM2000v055n05ABEH000321
– ident: 532_CR3
– volume: 13
  start-page: 481
  issue: 3
  year: 2000
  ident: 532_CR11
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-00-00337-4
– volume: 87
  start-page: 697
  issue: 3/4
  year: 1997
  ident: 532_CR16
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF02181243
– ident: 532_CR20
  doi: 10.1007/s10688-008-0027-1
– ident: 532_CR33
– volume: 16
  start-page: 581
  issue: 3
  year: 2003
  ident: 532_CR37
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-03-00425-9
– ident: 532_CR26
– volume: 281
  start-page: 675
  issue: 3
  year: 2008
  ident: 532_CR28
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0511-8
– volume: 219
  start-page: 894
  issue: 3
  year: 2008
  ident: 532_CR7
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.06.012
– ident: 532_CR27
  doi: 10.1016/S0246-0203(97)80106-9
– ident: 532_CR12
– ident: 532_CR35
– volume: 199
  start-page: 263
  issue: 2
  year: 2007
  ident: 532_CR30
  publication-title: Acta Math.
  doi: 10.1007/s11511-007-0021-0
– ident: 532_CR14
– volume: 163
  start-page: 1019
  year: 2006
  ident: 532_CR31
  publication-title: Ann. Math.
  doi: 10.4007/annals.2006.163.1019
– ident: 532_CR25
  doi: 10.5802/aif.2155
– volume: 11
  start-page: 1342
  issue: 50
  year: 2006
  ident: 532_CR23
  publication-title: Electron. J. Probab.
– volume: 13
  start-page: 1380
  year: 2008
  ident: 532_CR2
  publication-title: Electron. J. Probab.
  doi: 10.1214/EJP.v13-541
– ident: 532_CR17
– ident: 532_CR1
  doi: 10.1214/EJP.v17-1902
– volume: 16
  start-page: 731
  issue: 4
  year: 2010
  ident: 532_CR6
  publication-title: Selecta Math. New Ser.
  doi: 10.1007/s00029-010-0034-y
– volume: 31
  start-page: 6123
  year: 1998
  ident: 532_CR15
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/31/29/005
– ident: 532_CR36
  doi: 10.1007/978-94-010-0524-1_6
– volume: 108
  start-page: 1071
  year: 2002
  ident: 532_CR40
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1019791415147
– volume: 129
  start-page: 1055
  issue: 5–6
  year: 2007
  ident: 532_CR4
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-007-9383-0
– volume: 14
  start-page: 297
  issue: 2
  year: 2001
  ident: 532_CR13
  publication-title: J. AMS
– ident: 532_CR8
– volume: 3
  start-page: 206
  year: 2006
  ident: 532_CR22
  publication-title: Probab. Surv.
  doi: 10.1214/154957806000000078
– ident: 532_CR29
– volume: 220
  start-page: 1739
  issue: 6
  year: 2009
  ident: 532_CR5
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.11.008
– ident: 532_CR9
  doi: 10.1007/s00023-011-0120-5
– volume: 123
  start-page: 225
  issue: 2
  year: 2002
  ident: 532_CR24
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s004400100187
– volume: 269
  start-page: 571
  issue: 3
  year: 2007
  ident: 532_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-006-0128-8
– volume-title: The Classical Groups. Their Invariants and Representations
  year: 1997
  ident: 532_CR44
– volume-title: Symmetric functions and Hall polynomials
  year: 1995
  ident: 532_CR32
  doi: 10.1093/oso/9780198534891.001.0001
– volume: 9
  start-page: 749
  issue: 4
  year: 2009
  ident: 532_CR18
  publication-title: Moscow Math. J.
  doi: 10.17323/1609-4514-2009-9-4-749-774
– volume: 230
  start-page: 1738
  year: 2012
  ident: 532_CR10
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2012.04.005
– volume: 113
  start-page: 1
  issue: 1
  year: 2003
  ident: 532_CR19
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1025703819894
– ident: 532_CR34
  doi: 10.37236/668
SSID ssj0002342
Score 2.423863
Snippet A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at...
A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m, m=1,…,N, subject to certain interlacing constraints. We study the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 429
SubjectTerms Arrays
Asymptotic methods
Asymptotic properties
Economics
Ergodic processes
Finance
Growth models
Insurance
Invariants
Management
Mathematical analysis
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Planes
Polygons
Polynomials
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Slopes
Statistics for Business
Studies
Theoretical
Tiling
Topological manifolds
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-UwEB5EhV0fvO2KxxsRfFIKvaRN8yji5UFlWS_4Vpp0AgfOOT2YKu4-7X_Yf-gvcdLT1guusD62SdNkkrkxmfkAdkSRcNQ-eqHxI49r5RPP5cIzZOoWmjR0UMP5XJ-K8_P05kb-aPK4bXvbvQ1J1pK6S3ar0ZG9Go0gjkKPDMcZ0nap48afF9ed-A2jGjHHwc6T-I2DNpT53hCvldGzhfkmKFrrmqOFT81yEeYb05LtT87CEkzhaBm-tJnHdhnmzroarfYbHOzbX8NxVbonVhpGSqsoh2xQ_nYXXVnVd4nqlt33c3aMA0Otj3_-Xlqs6D0jnxiHaL_D1dHh5cGJ10AqeDqOk8pT5NDlAgvaGBlqoZRUuSGPQwitTYSyUKGvhImLME1SowNpElkkZELkga9lxKMVmB6VI1wFpoyKaIWp1JHkORYqTg0aH32lFXKOPfBb2ma6qTfuYC8GWVcpuaZVRrTKHK2yhx7sdp-MJ8U2Puq80W5Y1vCdzQJy57hISGi-2-yskVC4gkY92O6aiaFclCQfYXnnhuChK3ovRQ_22j1-8Yd_zWftv3qvw1cyvfjkYswGTFe3d7gJs_q-6tvbrfpEPwG4dvFu
  priority: 102
  providerName: Springer Nature
Title Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes
URI https://link.springer.com/article/10.1007/s00440-013-0532-x
https://www.proquest.com/docview/1625476763
https://www.proquest.com/docview/2661277100
https://www.proquest.com/docview/1642275097
Volume 160
WOSCitedRecordID wos000345290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: M2O
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-2064
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002342
  issn: 0178-8051
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFcslJWROIEiHOfh-ITKqgUJuqzaUgqXKH5JK-1uliatCif-A_-QX8JMNkkBQS9cRkqcxJbHnodnMh_AE2nT2BnuAuF5FMRGc9xzhQw8mrrWoIYOGzifo7dyPM6Oj9WkPXCr2rTKTiY2gtqWhs7In5MiEZJq0bxYfg4INYqiqy2ExhpshEKEtM7fyKCXxCJqwHMIgR4lcRJ2UU2-KiJKiY2EbZBEIjj_XS9dGJt_xEcbtbN7838HfAtutAYn216tkNtwxS3uwPW9vlprdRdG29WX-bIu6YqVnqH6suWczcqvlPLK6in9sl6xs2nBXrmZx9Yf374fVq7G-wy9Yzd31T14v7tzOHodtOAKgUmStA40unaFdBZZpISRWitdePQ9pDTGR05ZLbiWPrEiSzNvQuVTZVM0JoqQGxXF0SasL8qFuw9Mex3hHGbKRCounNVJ5p3njmujXRy7AfBuanPTVh4nAIxZ3tdMbriRIzdy4kZ-PoCn_SvLVdmNyx7e6jiQtzuwykN07GKZovj8a_MFdwbwuG_GrUXxkmLhylP6RCyo_L2SA3jWLYNfevjXeB5c3uFDuIZWV7zKidmC9frk1D2Cq-asnlYnQ1iTHz4OYePlzniyP2zWM9I9PiIq3jV0QlQeIJ0kn5DuHxz9BCap_78
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQc-EddWsBIcAFFOI4Tx4cKVQulVbcrDgvqLY3_pJV2N9smLS2nvgPv0YfiSRgnmxQQ9NYDx8SJ42T-M-P5AF4Kk3CrqQ2Yo1HAtaIoc7kIHLq6RqOFDms4ny8DMRyme3vy0xKct3thfFllqxNrRW0K7f-Rv_WGhAnfi-bd_CDwqFE-u9pCaDRssWNPv2LIVq5vv0f6vmJs88OovxUsUAUCHcdJFSiMaXJhDa5NMi2Ukip36HQLobWLrDSKUSVcbFiapE6H0iXSJGhF85BqGfEI570G1zlHcfClgrTfaX4W1WA9HvEeNX8ctllU2jQt9YWUHkshjlhw8rsdvHBu_8jH1mZu8-7_9oHuwZ2FQ002Ggm4D0t29gBu73bdaMuH0N8oT6fzqvBHpHAEzbMppmRSfPMlvaQa-y35JTke5-SjnTgc_XH2fVTaCs8TjP7t1JaP4POVvMVjWJ4VM7sCRDkVIc1SqSPJc2tUnDrrqKVKK8u57QFtSZnpRWd1D_Axybqe0DX1M6R-5qmfnfTgdXfLvGkrctnFay3Fs4WGKbMQA1cuEjQPfx2-4IYevOiGUXX4fFA-s8WRn4Iz395fih68adnulyf8az1PLn_gc7i5NdodZIPt4c4q3EIPkzf1P2uwXB0e2adwQx9X4_LwWS09BPavmht_Au7rVYE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4UH7F0gJGggsoauI4cXxAqGpZqLaseiiotxD_SSvtbpY6LS2nvgNvw-PwJIzzV0DQWw8cEyeOE38z30w8ngF4xnXKjApNQG0YB0zJEGWu4IFFU1crZOioLufzcZePx9nBgdhbgu_dXhgfVtnpxFpR61L5f-Qbnkgo97loNmwbFrG3PXy9-Bz4ClJ-pbUrp9FAZGROv6D75l7tbONcP6d0-GZ_613QVhgIVJKkVSDRvym40ThOQRWXUsjCogHOuVI2NkJLGkpuE02zNLMqEjYVOkVGLaJQiZjF2O8VWEEWTryMjXjQswCN68I9CPgMWSCJuhXVsElg6oMqfV2FJKbBye-ceG7o_rE2W1PecPV__li34GZraJPNRjJuw5KZ34Eb7_sste4ubG2609miKv0RKS1B2tbljEzLrz7Ul1QTv1XfkeNJQd6aqcXWH2ff9p2p8DxxiPaZcffgw6W8xX1Ynpdz8wCItBLnHT1WFQtWGC2TzBobmlAqaRgzAwi7ac1Vm3HdF_6Y5n2u6BoJOSIh90jITwbwor9l0aQbueji9W7281bzuDxCh5bxFGnjr83nyBjA074ZVYpfJyrmpjzyXTDq0_4LPoCXHQR_ecK_xvPw4gc-gWsIwnx3Zzxag-toeLImLGgdlqvDI_MIrqrjauIOH9eCRODTZYPxJyb1Xic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+random+lozenge+tilings+via+Gelfand%E2%80%93Tsetlin+schemes&rft.jtitle=Probability+theory+and+related+fields&rft.au=Petrov+Leonid&rft.date=2014-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-8051&rft.eissn=1432-2064&rft.volume=160&rft.issue=3-4&rft.spage=429&rft.epage=487&rft_id=info:doi/10.1007%2Fs00440-013-0532-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-8051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-8051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-8051&client=summon