Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes
A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed N th row. We obtain an explicit double contour integral expression...
Gespeichert in:
| Veröffentlicht in: | Probability theory and related fields Jg. 160; H. 3-4; S. 429 - 487 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0178-8051, 1432-2064 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A Gelfand–Tsetlin scheme of depth
N
is a triangular array with
m
integers at level
m
,
m
=
1
,
…
,
N
, subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed
N
th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its
q
-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302,
2007
). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon). |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at level ..., ..., subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand-Tsetlin schemes with arbitrary fixed ...th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its ...-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263-302, 2007 ). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon).[PUBLICATION ABSTRACT] (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at level ..., ..., subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand-Tsetlin schemes with arbitrary fixed ...th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its ...-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263-302, 2007). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon). A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m, m=1,…,N, subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed Nth row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its q-deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon). A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m , m = 1 , … , N , subject to certain interlacing constraints. We study the ensemble of uniformly random Gelfand–Tsetlin schemes with arbitrary fixed N th row. We obtain an explicit double contour integral expression for the determinantal correlation kernel of this ensemble (and also of its q -deformation). This provides new tools for asymptotic analysis of uniformly random lozenge tilings of polygons on the triangular lattice; or, equivalently, of random stepped surfaces. We work with a class of polygons which allows arbitrarily large number of sides. We show that the local limit behavior of random tilings (as all dimensions of the polygon grow) is directed by ergodic translation invariant Gibbs measures. The slopes of these measures coincide with the ones of tangent planes to the corresponding limit shapes described by Kenyon and Okounkov (Acta Math 199(2):263–302, 2007 ). We also prove that at the edge of the limit shape, the asymptotic behavior of random tilings is given by the Airy process. In particular, our results cover the most investigated case of random boxed plane partitions (when the polygon is a hexagon). |
| Author | Petrov, Leonid |
| Author_xml | – sequence: 1 givenname: Leonid surname: Petrov fullname: Petrov, Leonid email: lenia.petrov@gmail.com organization: Department of Mathematics, Northeastern University, Dobrushin Mathematics Laboratory, Kharkevich Institute for Information Transmission Problems |
| BookMark | eNp9kc9KxDAQh4Os4Lr6AN4KXrxUJ3-atEdZdBUEL3oOaZpopG3WJCurJ9_BN_RJzLIeRNBTQub7ZYZv9tFk9KNB6AjDKQYQZxGAMSgB0xIqSsr1Dppili8EOJugKWBRlzVUeA_tx_gEAIQyMkXz8_g6LJNPTsfC2yKosfND0fs3Mz6YIrnejQ-xeHGqWJje5urn-8ddNCm_F1E_msHEA7RrVR_N4fc5Q_eXF3fzq_LmdnE9P78pdVXxVLa4ZkqYzgJtiBZt27TKCl4LobWlpulaAq2wVUdqXluNG8ubjhNCFQbdUEZn6GT77zL455WJSQ4uatP3ajR-FSXmjBBRQSMyevwLffKrMObpJOEcEyGytf8ozEnFBBecZgpvKR18jMFYuQxuUOFVYpAb-XIrX2b5ciNfrnNG_Mpol1RyfkxBuf7fJNkmY-6SVxB-zPRn6AsJ3ZrQ |
| CODEN | PTRFEU |
| CitedBy_id | crossref_primary_10_1007_s10240_016_0085_5 crossref_primary_10_1093_imrn_rnad299 crossref_primary_10_1142_S0129167X15500937 crossref_primary_10_1088_1742_5468_ab43d6 crossref_primary_10_1214_22_AIHP1357 crossref_primary_10_1002_cpa_21818 crossref_primary_10_1007_s10955_018_2170_2 crossref_primary_10_1002_cpa_22202 crossref_primary_10_1007_s11040_018_9265_5 crossref_primary_10_1016_j_jfa_2018_12_008 crossref_primary_10_1007_s00220_023_04832_4 crossref_primary_10_1007_s00220_022_04499_3 crossref_primary_10_1214_17_AIHP838 crossref_primary_10_1007_s00039_015_0323_x crossref_primary_10_1088_1751_8121_aad028 crossref_primary_10_1215_00127094_2019_0023 crossref_primary_10_1007_s00220_019_03643_w crossref_primary_10_1007_s00220_016_2801_x crossref_primary_10_1214_17_AOP1244 crossref_primary_10_1214_22_AIHP1314 crossref_primary_10_1007_s10955_015_1330_x crossref_primary_10_1093_imrn_rnab180 crossref_primary_10_1007_s00440_018_0853_x crossref_primary_10_1088_1361_6544_ad1dbc crossref_primary_10_1214_21_AAP1708 crossref_primary_10_1007_s00440_022_01129_w crossref_primary_10_1111_sapm_12339 crossref_primary_10_1214_14_AOP955 crossref_primary_10_1093_imrn_rnab165 crossref_primary_10_1088_1751_8121_acedda crossref_primary_10_1088_1742_5468_ab4fdd crossref_primary_10_1214_24_AOP1706 crossref_primary_10_1214_18_AIHP887 crossref_primary_10_1007_s10955_016_1590_0 crossref_primary_10_1007_s00440_023_01238_0 crossref_primary_10_1215_00127094_2022_0075 crossref_primary_10_1214_18_AOP1315 crossref_primary_10_1007_s00029_024_00945_3 crossref_primary_10_1007_s00220_020_03779_0 crossref_primary_10_1112_tlm3_12039 crossref_primary_10_1112_plms_12638 crossref_primary_10_1007_s00220_020_03823_z crossref_primary_10_1090_cams_52 crossref_primary_10_1214_14_AAP1021 crossref_primary_10_1112_jlms_12813 crossref_primary_10_1214_24_AOP1685 crossref_primary_10_1007_s00440_018_0886_1 |
| Cites_doi | 10.1215/S0012-7094-61-02826-5 10.17323/1609-4514-2006-6-3-553-566 10.1070/RM2000v055n05ABEH000321 10.1090/S0894-0347-00-00337-4 10.1007/BF02181243 10.1007/s10688-008-0027-1 10.1090/S0894-0347-03-00425-9 10.1007/s00220-008-0511-8 10.1016/j.aim.2008.06.012 10.1016/S0246-0203(97)80106-9 10.1007/s11511-007-0021-0 10.4007/annals.2006.163.1019 10.5802/aif.2155 10.1214/EJP.v13-541 10.1214/EJP.v17-1902 10.1007/s00029-010-0034-y 10.1088/0305-4470/31/29/005 10.1007/978-94-010-0524-1_6 10.1023/A:1019791415147 10.1007/s10955-007-9383-0 10.1214/154957806000000078 10.1016/j.aim.2008.11.008 10.1007/s00023-011-0120-5 10.1007/s004400100187 10.1007/s00220-006-0128-8 10.1093/oso/9780198534891.001.0001 10.17323/1609-4514-2009-9-4-749-774 10.1016/j.aim.2012.04.005 10.1023/A:1025703819894 10.37236/668 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2013 Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2013. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2013. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH H8D HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00440-013-0532-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep (ProQuest) Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Aerospace Database ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Aerospace Database ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics |
| EISSN | 1432-2064 |
| EndPage | 487 |
| ExternalDocumentID | 3498903141 10_1007_s00440_013_0532_x |
| Genre | Feature |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8V8 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7X Z81 Z83 Z88 Z8R Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK H8D JQ2 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO |
| ID | FETCH-LOGICAL-c556t-b184a7edf0392c7bb9baf76877ccf3e9db20b7f5d2868fc19f69d6223a10c9343 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-8051 |
| IngestDate | Thu Sep 04 19:36:01 EDT 2025 Wed Nov 05 00:48:02 EST 2025 Tue Nov 04 21:45:59 EST 2025 Tue Nov 18 21:51:32 EST 2025 Sat Nov 29 02:39:52 EST 2025 Fri Feb 21 02:47:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | 60C05 82C22 60G55 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-b184a7edf0392c7bb9baf76877ccf3e9db20b7f5d2868fc19f69d6223a10c9343 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1007/s00440-013-0532-x |
| PQID | 1625476763 |
| PQPubID | 47326 |
| PageCount | 59 |
| ParticipantIDs | proquest_miscellaneous_1642275097 proquest_journals_2661277100 proquest_journals_1625476763 crossref_primary_10_1007_s00440_013_0532_x crossref_citationtrail_10_1007_s00440_013_0532_x springer_journals_10_1007_s00440_013_0532_x |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Probability theory and related fields |
| PublicationTitleAbbrev | Probab. Theory Relat. Fields |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2+1 dimensions (2008). arXiv:0804.3035 [math-ph] CohnH.KenyonR.ProppJ.A variational principle for domino tilingsJ. AMS2001142297346arXiv:math/0008220 [math.CO] FerrariP.L.SpohnH.Step fluctuations for a faceted crystalJ. Stat. Phys.20031131146arXiv:cond-mat/0212456 [cond-mat.stat-mech] BorodinA.KuanJ.Asymptotics of Plancherel measures for the infinite-dimensional unitary groupAdv. Math.20082193894931arXiv:0712.1848 [math.RT] Gorin, V.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 (3), 180–197 (2008). arXiv:0708.2349 [math.PR] KenyonR.OkounkovA.SheffieldS.Dimers and amoebaeAnn. Math.200616310191056 BorodinA.OlshanskiG.The boundary of the Gelfand-Tsetlin graph: a new approachAdv. Math.201223017381779arXiv:1109.1412 [math.CO] Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. In: Annales Henri Poincare (2011). arXiv:0912.3968 [math-ph] JohanssonK.Non-intersecting paths, random tilings and random matricesProbab. Theory Relat. Fields20021232225280arXiv:math/0011250 [math.PR] BorodinAFerrariPPrähoferMSasamotoTFluctuation properties of the TASEP with periodic initial configurationJ. Stat. Phys.20071295–61055108010.1007/s10955-007-9383-01136.820282363389arXiv:math-ph/0608056 MacdonaldIGSymmetric functions and Hall polynomials19952OxfordOxford University Press0824.05059 GouldHWThe q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Stirling numbers of first and second kindsDuke Math. J.19612828128910.1215/S0012-7094-61-02826-50201.33601122759 OkounkovA.ReshetikhinN.Random skew plane partitions and the Pearcey processCommun. Math. Phys.20072693571609arXiv:math/0503508 [math.CO] Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Annales de l’Institut Fourier (Grenoble) 55(6), 2129–2145 (2005). arXiv:math/0409013 [math.PR] Breuer, J., Duits, M.: Nonintersecting paths with a staircase initial condition (2011). arXiv:1105.0388 [math.PR] DestainvilleNEntropy and boundary conditions in random rhombus tilingsJ. Phys. A Math. Gen.1998316123613910.1088/0305-4470/31/29/0050908.520091637731 Kenyon, R.: Local statistics of lattice dimers. Annales de Inst. H. Poincaré. Probabilités et Statistiques 33, 591–618 (1997). arXiv:math/0105054 [math.CO] Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. arXiv:1105.1272 [math.PR] DestainvilleNMosseriRBaillyFConfigurational entropy of codimension-one tilings and directed membranesJ. Stat. Phys.1997873/469775410.1007/BF021812430952.525001459040 Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Combin. 18(1), P181 (2011). arXiv:1103.5054 [math.CO] HoughJ.B.KrishnapurM.PeresY.VirágB.Determinantal processes and independenceProbab. Surv.20063206229arXiv:math/0503110 [math.PR] Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953) BorodinA.GorinV.Shuffling algorithm for boxed plane partitionsAdv. Math.2009220617391770arXiv:0804.3071 [math.CO] Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR] OkounkovAReshetikhinNYThe birth of a random matrixMoscow Math. J.2006635535661130.150142274865 Kenyon, R.: Lectures on dimers. arXiv:0910.3129 [math.PR]. http://www.math.brown.edu/kenyon/papers/dimerlecturenotes.pdf PrähoferM.SpohnH.Scale invariance of the PNG droplet and the Airy processJ. Stat. Phys.200210810711106arXiv:math.PR/0105240 BorodinA.GorinV.RainsE.q-Distributions on boxed plane partitionsSelecta Math. New Ser.2010164731789arXiv:0905.0679 [math-ph] OkounkovA.ReshetikhinN.Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagramJ. Am. Math. Soc.2003163581603arXiv:math/0107056 [math.CO] WeylHThe Classical Groups. Their Invariants and Representations1997PrincetonPrinceton University Press1024.20501 BorodinA.OkounkovA.OlshanskiG.Asymptotics of Plancherel measures for symmetric groupsJ. Am. Math. Soc.2000133481515arXiv:math/9905032 [math.CO] Stanley, R.: Enumerative Combinatorics, vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001) Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998). arXiv:math/9801059 [math.CO] Okounkov, A.: Correlations for the Novak process. arXiv:1201.4138 [math.CO] JohanssonK.NordenstamE.Eigenvalues of GUE minorsElectron. J. Probab.2006115013421371arXiv:math/0606760 [math.PR] Kasteleyn, P.: Graph theory and crystal physics, pp. 43–110. Graph Theory and Theoretical Physics. Academic Press, London (1967) SoshnikovA.Determinantal random point fieldsRuss. Math. Surv.2000555923975arXiv:math/0002099 [math.PR] ForresterP.J.NordenstamE.The anti-symmetric GUE minor processMoscow Math. J.200994749774arXiv:0804.3293 [math.PR] KenyonROkounkovALimit shapes and the complex Burgers equationActa Math.2007199226330210.1007/s11511-007-0021-01156.140292358053arXiv:math-ph/0507007 Sheffield, S.: Random surfaces, Astérisque 304 (2005). arXiv:math/0304049 [math.PR] BorodinA.FerrariP.Large time asymptotics of growth models on space-like paths I: PushASEPElectron. J. Probab.20081313801418arXiv:0707.2813 [math-ph] KenyonRHeight fluctuations in the honeycomb dimer modelCommun. Math. Phys.2008281367570910.1007/s00220-008-0511-81157.820282415464arXiv:math-ph/0405052 Okounkov, A.: Symmetric functions and random partitions. In: Fomin, S. (ed.) Symmetric Functions 2001: Surveys of Developments and Perspectives. Kluwer, Dordrecht (2002). arXiv:math/0309074 [math.CO] Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2007). arXiv:math/0310278 [math.CA] P.J. Forrester (532_CR18) 2009; 9 H. Cohn (532_CR13) 2001; 14 532_CR17 N Destainville (532_CR15) 1998; 31 A Borodin (532_CR4) 2007; 129 N Destainville (532_CR16) 1997; 87 R Kenyon (532_CR30) 2007; 199 HW Gould (532_CR21) 1961; 28 532_CR20 M. Prähofer (532_CR40) 2002; 108 532_CR43 J.B. Hough (532_CR22) 2006; 3 532_CR25 532_CR26 532_CR27 H Weyl (532_CR44) 1997 A. Soshnikov (532_CR42) 2000; 55 R Kenyon (532_CR28) 2008; 281 532_CR41 532_CR8 A. Borodin (532_CR6) 2010; 16 532_CR9 IG Macdonald (532_CR32) 1995 A. Borodin (532_CR11) 2000; 13 P.L. Ferrari (532_CR19) 2003; 113 532_CR3 R. Kenyon (532_CR31) 2006; 163 A. Okounkov (532_CR39) 2007; 269 532_CR1 532_CR29 K. Johansson (532_CR24) 2002; 123 A. Borodin (532_CR7) 2008; 219 A. Borodin (532_CR10) 2012; 230 K. Johansson (532_CR23) 2006; 11 532_CR33 532_CR12 532_CR34 532_CR35 A. Okounkov (532_CR37) 2003; 16 A. Borodin (532_CR5) 2009; 220 532_CR14 532_CR36 A. Borodin (532_CR2) 2008; 13 A Okounkov (532_CR38) 2006; 6 |
| References_xml | – reference: KenyonROkounkovALimit shapes and the complex Burgers equationActa Math.2007199226330210.1007/s11511-007-0021-01156.140292358053arXiv:math-ph/0507007 – reference: JohanssonK.NordenstamE.Eigenvalues of GUE minorsElectron. J. Probab.2006115013421371arXiv:math/0606760 [math.PR] – reference: Okounkov, A.: Correlations for the Novak process. arXiv:1201.4138 [math.CO] – reference: Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Combin. 18(1), P181 (2011). arXiv:1103.5054 [math.CO] – reference: SoshnikovA.Determinantal random point fieldsRuss. Math. Surv.2000555923975arXiv:math/0002099 [math.PR] – reference: HoughJ.B.KrishnapurM.PeresY.VirágB.Determinantal processes and independenceProbab. Surv.20063206229arXiv:math/0503110 [math.PR] – reference: Gorin, V.: Nonintersecting paths and the Hahn orthogonal polynomial ensemble. Funct. Anal. Appl. 42 (3), 180–197 (2008). arXiv:0708.2349 [math.PR] – reference: Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011). arXiv:0911.1153 [math.PR] – reference: JohanssonK.Non-intersecting paths, random tilings and random matricesProbab. Theory Relat. Fields20021232225280arXiv:math/0011250 [math.PR] – reference: Johansson, K.: Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Annales de l’Institut Fourier (Grenoble) 55(6), 2129–2145 (2005). arXiv:math/0409013 [math.PR] – reference: Kenyon, R.: Local statistics of lattice dimers. Annales de Inst. H. Poincaré. Probabilités et Statistiques 33, 591–618 (1997). arXiv:math/0105054 [math.CO] – reference: BorodinA.FerrariP.Large time asymptotics of growth models on space-like paths I: PushASEPElectron. J. Probab.20081313801418arXiv:0707.2813 [math-ph] – reference: Kenyon, R.: Lectures on dimers. arXiv:0910.3129 [math.PR]. http://www.math.brown.edu/kenyon/papers/dimerlecturenotes.pdf – reference: OkounkovA.ReshetikhinN.Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagramJ. Am. Math. Soc.2003163581603arXiv:math/0107056 [math.CO] – reference: KenyonRHeight fluctuations in the honeycomb dimer modelCommun. Math. Phys.2008281367570910.1007/s00220-008-0511-81157.820282415464arXiv:math-ph/0405052 – reference: BorodinA.GorinV.Shuffling algorithm for boxed plane partitionsAdv. Math.2009220617391770arXiv:0804.3071 [math.CO] – reference: MacdonaldIGSymmetric functions and Hall polynomials19952OxfordOxford University Press0824.05059 – reference: Baik, J., Kriecherbauer, T., McLaughlin, K.T.-R., Miller, P.D.: Discrete orthogonal polynomials: asymptotics and applications. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2007). arXiv:math/0310278 [math.CA] – reference: Erdélyi, A. (ed.): Higher Transcendental Functions. McGraw-Hill, New York (1953) – reference: Breuer, J., Duits, M.: Nonintersecting paths with a staircase initial condition (2011). arXiv:1105.0388 [math.PR] – reference: DestainvilleNEntropy and boundary conditions in random rhombus tilingsJ. Phys. A Math. Gen.1998316123613910.1088/0305-4470/31/29/0050908.520091637731 – reference: Sheffield, S.: Random surfaces, Astérisque 304 (2005). arXiv:math/0304049 [math.PR] – reference: Kasteleyn, P.: Graph theory and crystal physics, pp. 43–110. Graph Theory and Theoretical Physics. Academic Press, London (1967) – reference: OkounkovAReshetikhinNYThe birth of a random matrixMoscow Math. J.2006635535661130.150142274865 – reference: BorodinA.OkounkovA.OlshanskiG.Asymptotics of Plancherel measures for symmetric groupsJ. Am. Math. Soc.2000133481515arXiv:math/9905032 [math.CO] – reference: Metcalfe, A.: Universality properties of Gelfand-Tsetlin patterns. arXiv:1105.1272 [math.PR] – reference: BorodinA.OlshanskiG.The boundary of the Gelfand-Tsetlin graph: a new approachAdv. Math.201223017381779arXiv:1109.1412 [math.CO] – reference: PrähoferM.SpohnH.Scale invariance of the PNG droplet and the Airy processJ. Stat. Phys.200210810711106arXiv:math.PR/0105240 – reference: KenyonR.OkounkovA.SheffieldS.Dimers and amoebaeAnn. Math.200616310191056 – reference: DestainvilleNMosseriRBaillyFConfigurational entropy of codimension-one tilings and directed membranesJ. Stat. Phys.1997873/469775410.1007/BF021812430952.525001459040 – reference: Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2+1 dimensions (2008). arXiv:0804.3035 [math-ph] – reference: BorodinA.KuanJ.Asymptotics of Plancherel measures for the infinite-dimensional unitary groupAdv. Math.20082193894931arXiv:0712.1848 [math.RT] – reference: Okounkov, A.: Symmetric functions and random partitions. In: Fomin, S. (ed.) Symmetric Functions 2001: Surveys of Developments and Perspectives. Kluwer, Dordrecht (2002). arXiv:math/0309074 [math.CO] – reference: BorodinA.GorinV.RainsE.q-Distributions on boxed plane partitionsSelecta Math. New Ser.2010164731789arXiv:0905.0679 [math-ph] – reference: OkounkovA.ReshetikhinN.Random skew plane partitions and the Pearcey processCommun. Math. Phys.20072693571609arXiv:math/0503508 [math.CO] – reference: CohnH.KenyonR.ProppJ.A variational principle for domino tilingsJ. AMS2001142297346arXiv:math/0008220 [math.CO] – reference: GouldHWThe q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Stirling numbers of first and second kindsDuke Math. J.19612828128910.1215/S0012-7094-61-02826-50201.33601122759 – reference: ForresterP.J.NordenstamE.The anti-symmetric GUE minor processMoscow Math. J.200994749774arXiv:0804.3293 [math.PR] – reference: FerrariP.L.SpohnH.Step fluctuations for a faceted crystalJ. Stat. Phys.20031131146arXiv:cond-mat/0212456 [cond-mat.stat-mech] – reference: BorodinAFerrariPPrähoferMSasamotoTFluctuation properties of the TASEP with periodic initial configurationJ. Stat. Phys.20071295–61055108010.1007/s10955-007-9383-01136.820282363389arXiv:math-ph/0608056 – reference: Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. New York J. Math. 4, 137–165 (1998). arXiv:math/9801059 [math.CO] – reference: WeylHThe Classical Groups. Their Invariants and Representations1997PrincetonPrinceton University Press1024.20501 – reference: Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. In: Annales Henri Poincare (2011). arXiv:0912.3968 [math-ph] – reference: Stanley, R.: Enumerative Combinatorics, vol. 2. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge (2001) – volume: 28 start-page: 281 year: 1961 ident: 532_CR21 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-61-02826-5 – volume: 6 start-page: 553 issue: 3 year: 2006 ident: 532_CR38 publication-title: Moscow Math. J. doi: 10.17323/1609-4514-2006-6-3-553-566 – ident: 532_CR43 – ident: 532_CR41 – volume: 55 start-page: 923 issue: 5 year: 2000 ident: 532_CR42 publication-title: Russ. Math. Surv. doi: 10.1070/RM2000v055n05ABEH000321 – ident: 532_CR3 – volume: 13 start-page: 481 issue: 3 year: 2000 ident: 532_CR11 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-00-00337-4 – volume: 87 start-page: 697 issue: 3/4 year: 1997 ident: 532_CR16 publication-title: J. Stat. Phys. doi: 10.1007/BF02181243 – ident: 532_CR20 doi: 10.1007/s10688-008-0027-1 – ident: 532_CR33 – volume: 16 start-page: 581 issue: 3 year: 2003 ident: 532_CR37 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-03-00425-9 – ident: 532_CR26 – volume: 281 start-page: 675 issue: 3 year: 2008 ident: 532_CR28 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0511-8 – volume: 219 start-page: 894 issue: 3 year: 2008 ident: 532_CR7 publication-title: Adv. Math. doi: 10.1016/j.aim.2008.06.012 – ident: 532_CR27 doi: 10.1016/S0246-0203(97)80106-9 – ident: 532_CR12 – ident: 532_CR35 – volume: 199 start-page: 263 issue: 2 year: 2007 ident: 532_CR30 publication-title: Acta Math. doi: 10.1007/s11511-007-0021-0 – ident: 532_CR14 – volume: 163 start-page: 1019 year: 2006 ident: 532_CR31 publication-title: Ann. Math. doi: 10.4007/annals.2006.163.1019 – ident: 532_CR25 doi: 10.5802/aif.2155 – volume: 11 start-page: 1342 issue: 50 year: 2006 ident: 532_CR23 publication-title: Electron. J. Probab. – volume: 13 start-page: 1380 year: 2008 ident: 532_CR2 publication-title: Electron. J. Probab. doi: 10.1214/EJP.v13-541 – ident: 532_CR17 – ident: 532_CR1 doi: 10.1214/EJP.v17-1902 – volume: 16 start-page: 731 issue: 4 year: 2010 ident: 532_CR6 publication-title: Selecta Math. New Ser. doi: 10.1007/s00029-010-0034-y – volume: 31 start-page: 6123 year: 1998 ident: 532_CR15 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/31/29/005 – ident: 532_CR36 doi: 10.1007/978-94-010-0524-1_6 – volume: 108 start-page: 1071 year: 2002 ident: 532_CR40 publication-title: J. Stat. Phys. doi: 10.1023/A:1019791415147 – volume: 129 start-page: 1055 issue: 5–6 year: 2007 ident: 532_CR4 publication-title: J. Stat. Phys. doi: 10.1007/s10955-007-9383-0 – volume: 14 start-page: 297 issue: 2 year: 2001 ident: 532_CR13 publication-title: J. AMS – ident: 532_CR8 – volume: 3 start-page: 206 year: 2006 ident: 532_CR22 publication-title: Probab. Surv. doi: 10.1214/154957806000000078 – ident: 532_CR29 – volume: 220 start-page: 1739 issue: 6 year: 2009 ident: 532_CR5 publication-title: Adv. Math. doi: 10.1016/j.aim.2008.11.008 – ident: 532_CR9 doi: 10.1007/s00023-011-0120-5 – volume: 123 start-page: 225 issue: 2 year: 2002 ident: 532_CR24 publication-title: Probab. Theory Relat. Fields doi: 10.1007/s004400100187 – volume: 269 start-page: 571 issue: 3 year: 2007 ident: 532_CR39 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-006-0128-8 – volume-title: The Classical Groups. Their Invariants and Representations year: 1997 ident: 532_CR44 – volume-title: Symmetric functions and Hall polynomials year: 1995 ident: 532_CR32 doi: 10.1093/oso/9780198534891.001.0001 – volume: 9 start-page: 749 issue: 4 year: 2009 ident: 532_CR18 publication-title: Moscow Math. J. doi: 10.17323/1609-4514-2009-9-4-749-774 – volume: 230 start-page: 1738 year: 2012 ident: 532_CR10 publication-title: Adv. Math. doi: 10.1016/j.aim.2012.04.005 – volume: 113 start-page: 1 issue: 1 year: 2003 ident: 532_CR19 publication-title: J. Stat. Phys. doi: 10.1023/A:1025703819894 – ident: 532_CR34 doi: 10.37236/668 |
| SSID | ssj0002342 |
| Score | 2.423863 |
| Snippet | A Gelfand–Tsetlin scheme of depth
N
is a triangular array with
m
integers at level
m
,
m
=
1
,
…
,
N
, subject to certain interlacing constraints. We study the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at... A Gelfand–Tsetlin scheme of depth N is a triangular array with m integers at level m, m=1,…,N, subject to certain interlacing constraints. We study the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).A Gelfand-Tsetlin scheme of depth ... is a triangular array with ... integers at... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 429 |
| SubjectTerms | Arrays Asymptotic methods Asymptotic properties Economics Ergodic processes Finance Growth models Insurance Invariants Management Mathematical analysis Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Planes Polygons Polynomials Probability Probability Theory and Stochastic Processes Quantitative Finance Slopes Statistics for Business Studies Theoretical Tiling Topological manifolds |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-UwEB5EhV0fvO2KxxsRfFIKvaRN8yji5UFlWS_4Vpp0AgfOOT2YKu4-7X_Yf-gvcdLT1guusD62SdNkkrkxmfkAdkSRcNQ-eqHxI49r5RPP5cIzZOoWmjR0UMP5XJ-K8_P05kb-aPK4bXvbvQ1J1pK6S3ar0ZG9Go0gjkKPDMcZ0nap48afF9ed-A2jGjHHwc6T-I2DNpT53hCvldGzhfkmKFrrmqOFT81yEeYb05LtT87CEkzhaBm-tJnHdhnmzroarfYbHOzbX8NxVbonVhpGSqsoh2xQ_nYXXVnVd4nqlt33c3aMA0Otj3_-Xlqs6D0jnxiHaL_D1dHh5cGJ10AqeDqOk8pT5NDlAgvaGBlqoZRUuSGPQwitTYSyUKGvhImLME1SowNpElkkZELkga9lxKMVmB6VI1wFpoyKaIWp1JHkORYqTg0aH32lFXKOPfBb2ma6qTfuYC8GWVcpuaZVRrTKHK2yhx7sdp-MJ8U2Puq80W5Y1vCdzQJy57hISGi-2-yskVC4gkY92O6aiaFclCQfYXnnhuChK3ovRQ_22j1-8Yd_zWftv3qvw1cyvfjkYswGTFe3d7gJs_q-6tvbrfpEPwG4dvFu priority: 102 providerName: Springer Nature |
| Title | Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes |
| URI | https://link.springer.com/article/10.1007/s00440-013-0532-x https://www.proquest.com/docview/1625476763 https://www.proquest.com/docview/2661277100 https://www.proquest.com/docview/1642275097 |
| Volume | 160 |
| WOSCitedRecordID | wos000345290200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: M0C dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: 7WY dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: M2O dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1432-2064 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-2064 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002342 issn: 0178-8051 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMceFcslJWROIEiHOfh-ITKqgUJuqzaUgqXKH5JK-1uliatCif-A_-QX8JMNkkBQS9cRkqcxJbHnodnMh_AE2nT2BnuAuF5FMRGc9xzhQw8mrrWoIYOGzifo7dyPM6Oj9WkPXCr2rTKTiY2gtqWhs7In5MiEZJq0bxYfg4INYqiqy2ExhpshEKEtM7fyKCXxCJqwHMIgR4lcRJ2UU2-KiJKiY2EbZBEIjj_XS9dGJt_xEcbtbN7838HfAtutAYn216tkNtwxS3uwPW9vlprdRdG29WX-bIu6YqVnqH6suWczcqvlPLK6in9sl6xs2nBXrmZx9Yf374fVq7G-wy9Yzd31T14v7tzOHodtOAKgUmStA40unaFdBZZpISRWitdePQ9pDTGR05ZLbiWPrEiSzNvQuVTZVM0JoqQGxXF0SasL8qFuw9Mex3hHGbKRCounNVJ5p3njmujXRy7AfBuanPTVh4nAIxZ3tdMbriRIzdy4kZ-PoCn_SvLVdmNyx7e6jiQtzuwykN07GKZovj8a_MFdwbwuG_GrUXxkmLhylP6RCyo_L2SA3jWLYNfevjXeB5c3uFDuIZWV7zKidmC9frk1D2Cq-asnlYnQ1iTHz4OYePlzniyP2zWM9I9PiIq3jV0QlQeIJ0kn5DuHxz9BCap_78 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQc-EddWsBIcAFFOI4Tx4cKVQulVbcrDgvqLY3_pJV2N9smLS2nvgPv0YfiSRgnmxQQ9NYDx8SJ42T-M-P5AF4Kk3CrqQ2Yo1HAtaIoc7kIHLq6RqOFDms4ny8DMRyme3vy0xKct3thfFllqxNrRW0K7f-Rv_WGhAnfi-bd_CDwqFE-u9pCaDRssWNPv2LIVq5vv0f6vmJs88OovxUsUAUCHcdJFSiMaXJhDa5NMi2Ukip36HQLobWLrDSKUSVcbFiapE6H0iXSJGhF85BqGfEI570G1zlHcfClgrTfaX4W1WA9HvEeNX8ctllU2jQt9YWUHkshjlhw8rsdvHBu_8jH1mZu8-7_9oHuwZ2FQ002Ggm4D0t29gBu73bdaMuH0N8oT6fzqvBHpHAEzbMppmRSfPMlvaQa-y35JTke5-SjnTgc_XH2fVTaCs8TjP7t1JaP4POVvMVjWJ4VM7sCRDkVIc1SqSPJc2tUnDrrqKVKK8u57QFtSZnpRWd1D_Axybqe0DX1M6R-5qmfnfTgdXfLvGkrctnFay3Fs4WGKbMQA1cuEjQPfx2-4IYevOiGUXX4fFA-s8WRn4Iz395fih68adnulyf8az1PLn_gc7i5NdodZIPt4c4q3EIPkzf1P2uwXB0e2adwQx9X4_LwWS09BPavmht_Au7rVYE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE4UH7F0gJGggsoauI4cXxAqGpZqLaseiiotxD_SSvtbpY6LS2nvgNvw-PwJIzzV0DQWw8cEyeOE38z30w8ngF4xnXKjApNQG0YB0zJEGWu4IFFU1crZOioLufzcZePx9nBgdhbgu_dXhgfVtnpxFpR61L5f-Qbnkgo97loNmwbFrG3PXy9-Bz4ClJ-pbUrp9FAZGROv6D75l7tbONcP6d0-GZ_613QVhgIVJKkVSDRvym40ThOQRWXUsjCogHOuVI2NkJLGkpuE02zNLMqEjYVOkVGLaJQiZjF2O8VWEEWTryMjXjQswCN68I9CPgMWSCJuhXVsElg6oMqfV2FJKbBye-ceG7o_rE2W1PecPV__li34GZraJPNRjJuw5KZ34Eb7_sste4ubG2609miKv0RKS1B2tbljEzLrz7Ul1QTv1XfkeNJQd6aqcXWH2ff9p2p8DxxiPaZcffgw6W8xX1Ynpdz8wCItBLnHT1WFQtWGC2TzBobmlAqaRgzAwi7ac1Vm3HdF_6Y5n2u6BoJOSIh90jITwbwor9l0aQbueji9W7281bzuDxCh5bxFGnjr83nyBjA074ZVYpfJyrmpjzyXTDq0_4LPoCXHQR_ecK_xvPw4gc-gWsIwnx3Zzxag-toeLImLGgdlqvDI_MIrqrjauIOH9eCRODTZYPxJyb1Xic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+random+lozenge+tilings+via+Gelfand%E2%80%93Tsetlin+schemes&rft.jtitle=Probability+theory+and+related+fields&rft.au=Petrov+Leonid&rft.date=2014-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-8051&rft.eissn=1432-2064&rft.volume=160&rft.issue=3-4&rft.spage=429&rft.epage=487&rft_id=info:doi/10.1007%2Fs00440-013-0532-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-8051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-8051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-8051&client=summon |