On the use of neural networks to evaluate groundwater levels in fractured media
This paper evaluates the feasibility of using artificial neural network (ANN) methodology for estimating the groundwater level in some piezometers implanted in unconfined chalky aquifer of Northern France. These aquifers are the most susceptible to depletion and contamination, with the recharge rate...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 307; číslo 1; s. 92 - 111 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
09.06.2005
Elsevier Science Elsevier |
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper evaluates the feasibility of using artificial neural network (ANN) methodology for estimating the groundwater level in some piezometers implanted in unconfined chalky aquifer of Northern France. These aquifers are the most susceptible to depletion and contamination, with the recharge rate and dominant processes determining their level of vulnerability. Groundwater level simulation in a chalky media is regarded as a difficult subject in hydrogeology due to the complexity of the physical processes involved, the variability of piezometry in space and time and the aquifer response in fissured and matrix blocks. In the present project, after a detailed geologic and hydrogeologic study of the sector, we simulated the groundwater level by Neural Network. The first objective was to determine the most influential parameters which impact groundwater level in fissured chalky media. The second objective was to investigate the effect of temporal and spatial information by considering current and past data sets along with the use of a variety of piezometer readings. The third objective was to simulate the groundwater level in a selected piezometer. The reasonably good ANN-based simulations revealed the merit of using ANNs and specifically Multi Layer Perceptron (MLP) models. The proposed ANN methodology using minimal lag and number of hidden nodes, along with the optimal number of spatial and temporal variables consistently produced the best performing network-based simulation models. |
|---|---|
| AbstractList | This paper evaluates the feasibility of using artificial neural network (ANN) methodology for estimating the groundwater level in some piezometers implanted in unconfined chalky aquifer of Northern France. These aquifers are the most susceptible to depletion and contamination, with the recharge rate and dominant processes determining their level of vulnerability. Groundwater level simulation in a chalky media is regarded as a difficult subject in hydrogeology due to the complexity of the physical processes involved, the variability of piezometry in space and time and the aquifer response in fissured and matrix blocks. In the present project, after a detailed geologic and hydrogeologic study of the sector, we simulated the groundwater level by Neural Network. The first objective was to determine the most influential parameters which impact groundwater level in fissured chalky media. The second objective was to investigate the effect of temporal and spatial information by considering current and past data sets along with the use of a variety of piezometer readings. The third objective was to simulate the groundwater level in a selected piezometer. The reasonably good ANN--based simulations revealed the merit of using ANNs and specifically Multi Layer Perceptron (MLP) models. The proposed ANN methodology using minimal lag and number of hidden nodes, along with the optimal number of spatial and temporal variables consistently produced the best performing network--based simulation models. |
| Author | Lallahem, S. Najjar, Y. Mania, J. Hani, A. |
| Author_xml | – sequence: 1 givenname: S. surname: Lallahem fullname: Lallahem, S. email: sami.lallahem@eudil.fr organization: Ecole Polytechnique Universitaire de Lille. Département de Géotechnique and Génie Civil. LML UMR CNRS 8107 Av. Paul Langevin, 59655 Villeneuve d'Ascq, France – sequence: 2 givenname: J. surname: Mania fullname: Mania, J. organization: Ecole Polytechnique Universitaire de Lille. Département de Géotechnique and Génie Civil. LML UMR CNRS 8107 Av. Paul Langevin, 59655 Villeneuve d'Ascq, France – sequence: 3 givenname: A. surname: Hani fullname: Hani, A. organization: Ecole Polytechnique Universitaire de Lille. Département de Géotechnique and Génie Civil. LML UMR CNRS 8107 Av. Paul Langevin, 59655 Villeneuve d'Ascq, France – sequence: 4 givenname: Y. surname: Najjar fullname: Najjar, Y. organization: Department of Civil Engineering, Kansas State University, Manhattan, KS, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16859725$$DView record in Pascal Francis https://hal.science/hal-00137144$$DView record in HAL |
| BookMark | eNqFkU9vEzEQxS1UJNLCR0D4AlIPG_xnvd4VB1RVQJEi5QA9WxPvbOPgrIvtTdVvj6ONeuASX8Z6-r2Z0bxLcjGGEQl5z9mSM9583i132-c-Br8UjNVFWzKmXpEFb3VXCc30BVkwJkTFm65-Qy5T2rHypKwXZL0ead4inRLSMNARpwi-lPwU4p9Ec6B4AD9BRvoQwzT2T-UbqccD-kTdSIcINk8Re7rH3sFb8noAn_DdqV6R--_fft_eVav1j5-3N6vKKtXkCtA2A-jNRnRs4Gqwim041MOG13XbSjl0yDshdCOwrZFjr1sumRZiYwVwBfKKXM99t-DNY3R7iM8mgDN3Nytz1BjjUpduB17YTzP7GMPfCVM2e5cseg8jhimZutFS11KcBUWrWq1qfRbkndZSCVnAjycQkgVfjjVal14W5k2rOi1U4b7MnI0hpYiDsS5DdmHMEZw3nJlj1GZnTlGbY9RHuURd3Oo_98uAM74Ps2-AYOAhls3uf4lyOFZMqhVdIb7OREkbDw6jSdbhaEvUEW02fXBnZvwDFPnQRA |
| CODEN | JHYDA7 |
| CitedBy_id | crossref_primary_10_1002_hyp_6916 crossref_primary_10_1002_hyp_5945 crossref_primary_10_1080_02626667_2018_1554940 crossref_primary_10_3390_w15234129 crossref_primary_10_1007_s12517_012_0654_y crossref_primary_10_1080_19443994_2015_1057535 crossref_primary_10_3390_app14167358 crossref_primary_10_1007_s00477_008_0262_2 crossref_primary_10_1016_j_agwat_2021_107032 crossref_primary_10_1007_s00254_008_1619_z crossref_primary_10_1016_j_gsd_2024_101389 crossref_primary_10_1061_JHYEFF_HEENG_5840 crossref_primary_10_1016_j_jhydrol_2020_125776 crossref_primary_10_1016_j_jhydrol_2013_04_041 crossref_primary_10_1007_s11269_022_03173_6 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_1002_hyp_6625 crossref_primary_10_1080_02626667_2024_2393421 crossref_primary_10_1155_2022_2487656 crossref_primary_10_1002_ep_12856 crossref_primary_10_1016_j_envsoft_2024_105995 crossref_primary_10_1016_j_jhazmat_2025_139283 crossref_primary_10_1007_s11269_021_02899_z crossref_primary_10_1007_s11053_021_09977_4 crossref_primary_10_1007_s40201_018_0301_y crossref_primary_10_1016_j_jhydrol_2018_12_037 crossref_primary_10_2166_ws_2023_021 crossref_primary_10_1007_s40808_024_02135_8 crossref_primary_10_1007_s10040_023_02686_7 crossref_primary_10_1016_j_jhydrol_2018_01_045 crossref_primary_10_1016_j_measurement_2020_108163 crossref_primary_10_1007_s13201_018_0886_4 crossref_primary_10_1680_wama_10_00092 crossref_primary_10_1007_s11600_022_00948_8 crossref_primary_10_3389_frwa_2023_1287357 crossref_primary_10_3390_su12051720 crossref_primary_10_1007_s12145_021_00572_y crossref_primary_10_7343_as_2025_804 crossref_primary_10_1007_s12665_017_6990_1 crossref_primary_10_1007_s10661_021_08955_w crossref_primary_10_1007_s10040_013_1029_5 crossref_primary_10_1016_j_jhydrol_2015_09_028 crossref_primary_10_1007_s12665_014_3997_8 crossref_primary_10_1016_j_agwat_2016_05_001 crossref_primary_10_1016_j_jhydrol_2019_124115 crossref_primary_10_1002_hyp_5999 crossref_primary_10_1016_j_gsd_2023_101042 crossref_primary_10_1080_02626667_2017_1349908 crossref_primary_10_3390_w15061085 crossref_primary_10_1002_hyp_6686 crossref_primary_10_1029_2022WR032779 crossref_primary_10_1002_hyp_7410 crossref_primary_10_1080_02626667_2020_1749762 crossref_primary_10_3390_w15183191 crossref_primary_10_1016_j_gsd_2024_101213 crossref_primary_10_1080_08839514_2022_2138130 crossref_primary_10_1007_s10661_022_10277_4 crossref_primary_10_1007_s10668_022_02265_y crossref_primary_10_1061__ASCE_HE_1943_5584_0001711 crossref_primary_10_1007_s11269_010_9628_6 crossref_primary_10_3390_mca26010006 crossref_primary_10_3390_w15234041 crossref_primary_10_1155_2015_742138 crossref_primary_10_5194_hess_20_1405_2016 crossref_primary_10_2166_nh_2022_035 crossref_primary_10_1002_hyp_7129 crossref_primary_10_1016_j_egypro_2015_07_832 crossref_primary_10_1016_j_jhydrol_2022_127630 crossref_primary_10_1007_s00521_010_0360_1 crossref_primary_10_1007_s00521_015_2024_7 crossref_primary_10_1016_j_ecoleng_2016_06_008 crossref_primary_10_1016_j_physa_2024_130140 crossref_primary_10_1007_s10666_023_09938_6 crossref_primary_10_1089_ees_2010_0174 crossref_primary_10_3390_su17052250 crossref_primary_10_1007_s12040_015_0574_9 crossref_primary_10_1007_s12517_016_2454_2 crossref_primary_10_1007_s12665_024_11567_5 crossref_primary_10_1016_j_jhydrol_2023_130359 crossref_primary_10_1007_s11600_023_01050_3 crossref_primary_10_1007_s40808_022_01558_5 crossref_primary_10_1061__ASCE_HE_1943_5584_0000892 crossref_primary_10_3390_rs10010143 crossref_primary_10_1007_s00521_019_04234_5 crossref_primary_10_1007_s10040_014_1204_3 crossref_primary_10_1016_j_jksus_2024_103221 crossref_primary_10_1016_j_fraope_2025_100250 crossref_primary_10_1007_s10230_019_00593_6 crossref_primary_10_1016_j_jhydrol_2007_03_017 crossref_primary_10_1061__ASCE_HE_1943_5584_0000809 crossref_primary_10_1007_s44288_024_00021_5 crossref_primary_10_1080_02626667_2016_1252986 crossref_primary_10_1051_matecconf_201710304007 crossref_primary_10_1007_s11269_017_1729_z crossref_primary_10_1016_j_ecoleng_2017_05_044 crossref_primary_10_1080_09715010_2013_798905 crossref_primary_10_1016_j_jhydrol_2015_02_048 crossref_primary_10_1016_j_jhydrol_2014_10_040 crossref_primary_10_1002_hyp_7469 crossref_primary_10_1007_s13146_015_0274_1 crossref_primary_10_3389_fenvs_2022_950098 crossref_primary_10_1002_hyp_8044 crossref_primary_10_3390_w13233384 crossref_primary_10_1002_hyp_10166 crossref_primary_10_1007_s11069_019_03769_z crossref_primary_10_3390_app13042743 crossref_primary_10_1016_j_jhydrol_2023_130458 crossref_primary_10_1007_s11069_015_1602_4 crossref_primary_10_1002_hyp_7858 crossref_primary_10_1007_s40808_022_01365_y crossref_primary_10_1111_j_1745_6584_2007_00366_x crossref_primary_10_1007_s00521_014_1794_7 crossref_primary_10_1002_hyp_6525 crossref_primary_10_1016_j_gsd_2024_101142 crossref_primary_10_1016_j_spasta_2022_100625 crossref_primary_10_1007_s10661_020_08332_z crossref_primary_10_1016_j_jhydrol_2010_12_016 crossref_primary_10_1007_s10596_018_9742_8 crossref_primary_10_1007_s13201_019_1094_6 crossref_primary_10_1007_s11053_021_09913_6 crossref_primary_10_1016_j_envres_2025_121194 |
| Cites_doi | 10.1016/0893-6080(89)90020-8 10.1111/j.1745-6584.2001.tb00356.x 10.1016/S0895-7177(03)00117-1 10.1061/(ASCE)1090-0241(2002)128:7(569) 10.1002/hyp.1199 10.1016/0893-6080(88)90020-2 10.1016/S0022-1694(00)00214-6 10.1016/0040-1951(91)90103-Y 10.1016/S0022-1694(96)03074-0 10.1016/S0895-7177(00)00272-7 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier B.V. 2005 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2005 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | FBQ AAYXX CITATION IQODW 7QH 7TG 7TV 7UA C1K F1W H96 KL. L.G 7SC 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 1XC |
| DOI | 10.1016/j.jhydrol.2004.10.005 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Aqualine Meteorological & Geoastrophysical Abstracts Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Pollution Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| EndPage | 111 |
| ExternalDocumentID | oai:HAL:hal-00137144v1 16859725 10_1016_j_jhydrol_2004_10_005 US201301015829 S0022169404004925 |
| GeographicLocations | France Somme France Western Europe |
| GeographicLocations_xml | – name: France |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH 9DU AAYWO AAYXX ABUFD ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD AGCQF AGRNS IQODW 7QH 7TG 7TV 7UA C1K F1W H96 KL. L.G 7SC 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c556t-aec6fa7bb290f15fc50b1a4fb1448833f9e1922762e84e1ed78130722bc2a15a3 |
| ISICitedReferencesCount | 136 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000229808300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Tue Oct 14 20:41:57 EDT 2025 Sat Sep 27 22:26:52 EDT 2025 Sat Sep 27 23:26:14 EDT 2025 Tue Oct 07 09:29:02 EDT 2025 Mon Jul 21 09:12:35 EDT 2025 Sat Nov 29 04:32:39 EST 2025 Tue Nov 18 21:53:57 EST 2025 Thu Apr 03 09:45:33 EDT 2025 Fri Feb 23 02:27:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fractured media ANN Backpropagation algorithm Chalk Groundwater algorithms models carbonate rocks Europe neural networks ground water water table digital simulation contamination fractured environment sedimentary rocks aquifers chalk piezometry unconfined aquifers |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c556t-aec6fa7bb290f15fc50b1a4fb1448833f9e1922762e84e1ed78130722bc2a15a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 19773523 |
| PQPubID | 23462 |
| PageCount | 20 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00137144v1 proquest_miscellaneous_46737432 proquest_miscellaneous_28587547 proquest_miscellaneous_19773523 pascalfrancis_primary_16859725 crossref_citationtrail_10_1016_j_jhydrol_2004_10_005 crossref_primary_10_1016_j_jhydrol_2004_10_005 fao_agris_US201301015829 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2004_10_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-06-09 |
| PublicationDateYYYYMMDD | 2005-06-09 |
| PublicationDate_xml | – month: 06 year: 2005 text: 2005-06-09 day: 09 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2005 |
| Publisher | Elsevier B.V Elsevier Science Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science – name: Elsevier |
| References | Hornik, Stinchcombe, White (bib8) 1989; 2 Parkin, Younger, Birkinshaw, Murray, Rao (bib16) 2001 Delattre (bib5) 1969; 89 Lallahem, Mania, Lamouroux (bib13) 2002 Degallier, R., 1975. interprétation des variations naturelles du niveau des nappes souterraines. Applications aux données provenant du bassin versant de Korhogo (Côte d'Ivoire). Doctorat d'Etat. Univ. Sc. et Tech. Montpellier, p. 231. Bracq, Delay (bib2) 1997; 191 Beaudeau, Leboulanger, Lacroix, Hanneton, Wang (bib1) 2001; 39 Lallahem, Mania (bib12) 2003; 37 Kurup, Dudani (bib18) 2002; 128 Lallahem, Mania (bib11) 2003; 17 Vandycke, Bergerat, depuis (bib19) 1991; 192 Lallahem, Mania (bib10) 2002; 55 Coulibaly, Anctil, Bobée (bib3) 2000; 230 Thornthwaite, Mather (bib17) 1955; 8 Kohonen (bib9) 1988; 1 Lachtermacher, Fuller (bib14) 1994 Crampon, Roux, Bracq (bib4) 1993; II World Meteorological Organisation (WMO) (bib20) 1975; 27 Hagan, Demuth, Beale (bib7) 1996 Luck Kin, Ball, Sharma (bib15) 2001; 33 Kohonen (10.1016/j.jhydrol.2004.10.005_bib9) 1988; 1 Lallahem (10.1016/j.jhydrol.2004.10.005_bib12) 2003; 37 Lallahem (10.1016/j.jhydrol.2004.10.005_bib13) 2002 Vandycke (10.1016/j.jhydrol.2004.10.005_bib19) 1991; 192 Lachtermacher (10.1016/j.jhydrol.2004.10.005_bib14) 1994 Beaudeau (10.1016/j.jhydrol.2004.10.005_bib1) 2001; 39 Lallahem (10.1016/j.jhydrol.2004.10.005_bib11) 2003; 17 Hagan (10.1016/j.jhydrol.2004.10.005_bib7) 1996 Thornthwaite (10.1016/j.jhydrol.2004.10.005_bib17) 1955; 8 Delattre (10.1016/j.jhydrol.2004.10.005_bib5) 1969; 89 Crampon (10.1016/j.jhydrol.2004.10.005_bib4) 1993; II Parkin (10.1016/j.jhydrol.2004.10.005_bib16) 2001 Luck Kin (10.1016/j.jhydrol.2004.10.005_bib15) 2001; 33 Lallahem (10.1016/j.jhydrol.2004.10.005_bib10) 2002; 55 Bracq (10.1016/j.jhydrol.2004.10.005_bib2) 1997; 191 Coulibaly (10.1016/j.jhydrol.2004.10.005_bib3) 2000; 230 Hornik (10.1016/j.jhydrol.2004.10.005_bib8) 1989; 2 10.1016/j.jhydrol.2004.10.005_bib6 World Meteorological Organisation (WMO) (10.1016/j.jhydrol.2004.10.005_bib20) 1975; 27 Kurup (10.1016/j.jhydrol.2004.10.005_bib18) 2002; 128 |
| References_xml | – volume: 37 start-page: 1047 year: 2003 end-page: 1061 ident: bib12 article-title: A non-linear rainfall-runoff model using neural network technique: example in fractured porous media publication-title: J. Math. Comput. Modell. – volume: 230 start-page: 244 year: 2000 end-page: 257 ident: bib3 article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach publication-title: J. Hydrol. – volume: 128 start-page: 569 year: 2002 end-page: 579 ident: bib18 article-title: Neural networks for profiling stress history of clays from PCPT data publication-title: J. Geotech. Geoenviron. Eng. – volume: 192 start-page: 261 year: 1991 end-page: 271 ident: bib19 article-title: Meso-cenozoic faulting and inferred palaeostresses in the Mons Basin, Belgium publication-title: Tectonophysics – volume: 17 start-page: 1557 year: 2003 end-page: 1561 ident: bib11 article-title: Evaluation and forecasting of daily groundwater inflow in a small chalky watershed publication-title: Hydrol. Processes – volume: 33 start-page: 683 year: 2001 end-page: 693 ident: bib15 article-title: An application of artificial neural networks for rainfall forecasting publication-title: Math. Comput. Modell. – volume: 27 start-page: 2415 year: 1975 end-page: 2420 ident: bib20 article-title: Inter-comparison of conceptual models used in operational hydrological forecasting, World Meteorological Organisation, Technical series publication-title: Water Resour. Res. – volume: II start-page: 81 year: 1993 end-page: 123 ident: bib4 article-title: Hydrogéologie de la craie en France publication-title: Hydrogéologie – volume: 89 start-page: 79 year: 1969 end-page: 90 ident: bib5 article-title: Les grands traits géologiques de l'Artois publication-title: Ann. Soc. Géol. Nord. – year: 2001 ident: bib16 article-title: A new approach to modelling river–aquifer interactions using a 3-D numerical model and neural networks publication-title: Impact of Human Activity on Groundwater Dynamics (Proceedings of a Symposium held during the Sixth IAHS Scientific Assembly at Maastricht, The Netherlands, IAHS Publ. No. 269 – year: 1996 ident: bib7 article-title: Neural Network Design – volume: 8 start-page: 1 year: 1955 end-page: 104 ident: bib17 article-title: The water balance publication-title: Pub. Climatol. Lab. Climatol. Drexel Inst. Technol. – volume: 39 start-page: 109 year: 2001 end-page: 119 ident: bib1 article-title: Forecasting of turbid floods in a karstic drain using an artificial neural network publication-title: Ground Water – volume: 1 start-page: 3 year: 1988 end-page: 16 ident: bib9 article-title: An introduction to neural computing publication-title: Neural Networks – reference: Degallier, R., 1975. interprétation des variations naturelles du niveau des nappes souterraines. Applications aux données provenant du bassin versant de Korhogo (Côte d'Ivoire). Doctorat d'Etat. Univ. Sc. et Tech. Montpellier, p. 231. – start-page: 229 year: 1994 end-page: 242 ident: bib14 article-title: Backpropagation in hydrological time series forecasting publication-title: Stochastic and Statistical Methods in Hydrology and Environmental Engineering, vol. 3, Time Series Analysis in Hydrology and Environmental Engineering – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib8 article-title: Multilayer feedward networks are universal approximators publication-title: Neural Networks – volume: 55 start-page: 615 year: 2002 ident: bib10 article-title: A linear and non-linear rainfall–runoff models to evaluate aquifer outflow publication-title: Tribune de l'Eau – volume: 191 start-page: 139 year: 1997 end-page: 160 ident: bib2 article-title: Transmissivity and morphological features in a chalk aquifer: a geostatistical approach of their relation publication-title: J. Hydrol. – year: 2002 ident: bib13 article-title: Influence of geological structure on groundwater hydrodynamics in a fissured chalk medium (Northern France) publication-title: International Conference on Calibration and Reliability in Groundwater Modelling, Prague – volume: 8 start-page: 1 year: 1955 ident: 10.1016/j.jhydrol.2004.10.005_bib17 article-title: The water balance publication-title: Pub. Climatol. Lab. Climatol. Drexel Inst. Technol. – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.jhydrol.2004.10.005_bib8 article-title: Multilayer feedward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 39 start-page: 109 issue: 1 year: 2001 ident: 10.1016/j.jhydrol.2004.10.005_bib1 article-title: Forecasting of turbid floods in a karstic drain using an artificial neural network publication-title: Ground Water doi: 10.1111/j.1745-6584.2001.tb00356.x – volume: 37 start-page: 1047 year: 2003 ident: 10.1016/j.jhydrol.2004.10.005_bib12 article-title: A non-linear rainfall-runoff model using neural network technique: example in fractured porous media publication-title: J. Math. Comput. Modell. doi: 10.1016/S0895-7177(03)00117-1 – ident: 10.1016/j.jhydrol.2004.10.005_bib6 – volume: 128 start-page: 569 issue: 7 year: 2002 ident: 10.1016/j.jhydrol.2004.10.005_bib18 article-title: Neural networks for profiling stress history of clays from PCPT data publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2002)128:7(569) – volume: 55 start-page: 615 issue: 4 year: 2002 ident: 10.1016/j.jhydrol.2004.10.005_bib10 article-title: A linear and non-linear rainfall–runoff models to evaluate aquifer outflow publication-title: Tribune de l'Eau – start-page: 229 year: 1994 ident: 10.1016/j.jhydrol.2004.10.005_bib14 article-title: Backpropagation in hydrological time series forecasting – volume: 17 start-page: 1557 year: 2003 ident: 10.1016/j.jhydrol.2004.10.005_bib11 article-title: Evaluation and forecasting of daily groundwater inflow in a small chalky watershed publication-title: Hydrol. Processes doi: 10.1002/hyp.1199 – volume: II start-page: 81 year: 1993 ident: 10.1016/j.jhydrol.2004.10.005_bib4 article-title: Hydrogéologie de la craie en France publication-title: Hydrogéologie – volume: 1 start-page: 3 issue: 1 year: 1988 ident: 10.1016/j.jhydrol.2004.10.005_bib9 article-title: An introduction to neural computing publication-title: Neural Networks doi: 10.1016/0893-6080(88)90020-2 – volume: 89 start-page: 79 year: 1969 ident: 10.1016/j.jhydrol.2004.10.005_bib5 article-title: Les grands traits géologiques de l'Artois publication-title: Ann. Soc. Géol. Nord. – volume: 230 start-page: 244 year: 2000 ident: 10.1016/j.jhydrol.2004.10.005_bib3 article-title: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00214-6 – volume: 192 start-page: 261 year: 1991 ident: 10.1016/j.jhydrol.2004.10.005_bib19 article-title: Meso-cenozoic faulting and inferred palaeostresses in the Mons Basin, Belgium publication-title: Tectonophysics doi: 10.1016/0040-1951(91)90103-Y – year: 1996 ident: 10.1016/j.jhydrol.2004.10.005_bib7 – volume: 191 start-page: 139 year: 1997 ident: 10.1016/j.jhydrol.2004.10.005_bib2 article-title: Transmissivity and morphological features in a chalk aquifer: a geostatistical approach of their relation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03074-0 – volume: 33 start-page: 683 year: 2001 ident: 10.1016/j.jhydrol.2004.10.005_bib15 article-title: An application of artificial neural networks for rainfall forecasting publication-title: Math. Comput. Modell. doi: 10.1016/S0895-7177(00)00272-7 – volume: 27 start-page: 2415 issue: 9 year: 1975 ident: 10.1016/j.jhydrol.2004.10.005_bib20 article-title: Inter-comparison of conceptual models used in operational hydrological forecasting, World Meteorological Organisation, Technical series publication-title: Water Resour. Res. – year: 2001 ident: 10.1016/j.jhydrol.2004.10.005_bib16 article-title: A new approach to modelling river–aquifer interactions using a 3-D numerical model and neural networks – year: 2002 ident: 10.1016/j.jhydrol.2004.10.005_bib13 article-title: Influence of geological structure on groundwater hydrodynamics in a fissured chalk medium (Northern France) publication-title: International Conference on Calibration and Reliability in Groundwater Modelling, Prague |
| SSID | ssj0000334 |
| Score | 2.2063756 |
| Snippet | This paper evaluates the feasibility of using artificial neural network (ANN) methodology for estimating the groundwater level in some piezometers implanted in... |
| SourceID | hal proquest pascalfrancis crossref fao elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 92 |
| SubjectTerms | algorithms ANN aquifers Backpropagation algorithm Chalk Earth sciences Earth, ocean, space Exact sciences and technology Fractured media France Groundwater Hydrogeology hydrologic models Hydrology. Hydrogeology neural networks simulation models water table |
| Title | On the use of neural networks to evaluate groundwater levels in fractured media |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2004.10.005 https://www.proquest.com/docview/19773523 https://www.proquest.com/docview/28587547 https://www.proquest.com/docview/46737432 https://hal.science/hal-00137144 |
| Volume | 307 |
| WOSCitedRecordID | wos000229808300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOthgjF1pdunE2FuxF8uSJT-G0a0bJRm0hezJyLbcNGROyG3df9iP3tHFdkoWug32YhIh2ULn89HR8XfOQehtIPNAdNPci8AY9mjBpCdzFnqK5WCcSC5YarLrn_J-XwyH8ZdW62cVC7Oe8LIU19fx7L-KGtpA2Dp09i_EXd8UGuA3CB2uIHa4_pHgB5a4uLJOep2vEqRQWra3SefgEnyrIx3RUebfpc6TONHkIcONLXTc1ErT0k1UyQ7rdfQjn9v0TWCi9r7pdAu5xlbtVzjVHvqRMnA78xvHd-nYuX6j-0xVqaNe3dKX47HlfX_1b3glmGFPNbpvO1ymDh0IIlvV2FdW4woe66A4vqmSQ_d3E3tWwdrCeW6rdnp6axewDomxP7ZrYbwAvuHwsWbbq8mI-ns10bMy-iwmbA_tE85i0Ub7vU_Hw8_Nzh6GtMo-rwc0EWHvfvuwXbbOXiGncB1p6u39mVzA21jYMipbFoExc84fogdOwrhncfUItVT5GN39qFxm8ydoMCgx4AsDvvC0wBZfuMIXXk5xhS-8gS9s8YWvSlzjCxt8PUUXH47P3594riqHlzEWLT2psqiQPE1J3C0CVmSsmwaSFikczXXl6iJWcGogsMkqQVWgci7ATuKEpBmRAZPhM9Qup6U6QLhLw5yGqkhzDmNTlkKviAVwBxlEXNEOotX6JZlLWa8rp0ySips4Ttyy63KqVDfDsneQXw-b2Zwttw0QlXASZ3hagzIBRN029ACEmchL2JKTizOiiQDQmwkSd9AbkHA9A53H_aR3mug2k80X1msddNDhDQA0E44EnPUJPOB1hYgENL_-nCdLNV0tkgCObnB8Cnf3IIKBBqZ8dw-qy1TRkDz_9xV4ge41CuAlai_nK_UK3cnWy6vF_NC9Qr8AV2HonQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+neural+networks+to+evaluate+groundwater+levels+in+fractured+media&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Lallahem%2C+S.&rft.au=Mania%2C+J.&rft.au=Hani%2C+A.&rft.au=Najjar%2C+Y.&rft.date=2005-06-09&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=307&rft.issue=1&rft.spage=92&rft.epage=111&rft_id=info:doi/10.1016%2Fj.jhydrol.2004.10.005&rft.externalDocID=S0022169404004925 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |