CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. A...
Uloženo v:
| Vydáno v: | Cell reports (Cambridge) Ročník 36; číslo 7; s. 109549 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
17.08.2021
Elsevier |
| Témata: | |
| ISSN: | 2211-1247, 2211-1247 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.
[Display omitted]
•Cancer cells package increasing amounts of VEGF in small EVs with anti-VEGF therapy•VEGF packaging into small EVs is mediated by the tetraspanin CD63•Anti-VEGF antibodies failed to recognize small EV-VEGF (eVEGF)•eVEGF triggers intracrine VEGF signaling and promotes angiogenesis
Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT. |
|---|---|
| AbstractList | Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid 30 cancers, most of them become resistant to this therapy and develop into progressive disease. 31 Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described herein, we found that cancer-derived small extracellular vesicles (EVs) package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. Notably, small EV-VEGF (eVEGF) is not recognized by bevacizumab and can be transferred to endothelial cells and trigger intracrine signaling and promote angiogenesis. Also, serum eVEGF was present at higher levels in ovarian cancer mouse models with adaptive resistance to bevacizumab than in models sensitive to it. Ovarian cancer cell-derived eVEGF increased tumor growth despite treatment with bevacizumab. Notably, the eVEGF level was elevated in patient serum after bevacizumab-containing therapy. Proteomic data of small EVs from mouse models suggested that several novel biomarkers are promising for drug response prediction. Collectively, these data demonstrated a new mechanism whereby eVEGF evades recognition by therapeutic antibodies and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and new therapeutic strategies for ovarian cancer. Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. [Display omitted] •Cancer cells package increasing amounts of VEGF in small EVs with anti-VEGF therapy•VEGF packaging into small EVs is mediated by the tetraspanin CD63•Anti-VEGF antibodies failed to recognize small EV-VEGF (eVEGF)•eVEGF triggers intracrine VEGF signaling and promotes angiogenesis Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT. Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT. Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. |
| ArticleNumber | 109549 |
| Author | Wu, Sherry Y. McGuire, Michael H. Jennings, Nicholas B. Rodriguez-Aguayo, Cristian Ma, Shaolin Mangala, Lingegowda S. LaFargue, Christopher J. Lopez-Berestein, Gabriel Kundra, Vikas Sood, Anil K. Piehowski, Paul D. Coleman, Robert L. Rodland, Karin D. Villar-Prados, Alejandro Yokoi, Akira Bayaktar, Emine Pradeep, Sunila Ram, Prahlad T. Hu, Wei Hu, Wen Liu, Tao Ramakrishnan, Sundaram Lara, Olivia D. Lee, Sanghoon |
| AuthorAffiliation | 3 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 12 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 13 Lead contact 4 Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China 9 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2 Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China 10 Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 8 Department of Medicine, Stanford University, Stanford, CA 94305, USA 6 Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 7 Pacific Northwest National Laboratory, Richland, WA 99352, USA 5 Department of Obstetrics and Gynecology, Med |
| AuthorAffiliation_xml | – name: 3 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 4 Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China – name: 10 Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 7 Pacific Northwest National Laboratory, Richland, WA 99352, USA – name: 8 Department of Medicine, Stanford University, Stanford, CA 94305, USA – name: 2 Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China – name: 11 Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA – name: 12 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 13 Lead contact – name: 9 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 6 Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 1 Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 5 Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA |
| Author_xml | – sequence: 1 givenname: Shaolin surname: Ma fullname: Ma, Shaolin organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 2 givenname: Lingegowda S. surname: Mangala fullname: Mangala, Lingegowda S. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 3 givenname: Wen surname: Hu fullname: Hu, Wen organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 4 givenname: Emine surname: Bayaktar fullname: Bayaktar, Emine organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 5 givenname: Akira surname: Yokoi fullname: Yokoi, Akira organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 6 givenname: Wei surname: Hu fullname: Hu, Wei organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 7 givenname: Sunila surname: Pradeep fullname: Pradeep, Sunila organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 8 givenname: Sanghoon surname: Lee fullname: Lee, Sanghoon organization: Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 9 givenname: Paul D. surname: Piehowski fullname: Piehowski, Paul D. organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 10 givenname: Alejandro surname: Villar-Prados fullname: Villar-Prados, Alejandro organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 11 givenname: Sherry Y. surname: Wu fullname: Wu, Sherry Y. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 12 givenname: Michael H. surname: McGuire fullname: McGuire, Michael H. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 13 givenname: Olivia D. surname: Lara fullname: Lara, Olivia D. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 14 givenname: Cristian surname: Rodriguez-Aguayo fullname: Rodriguez-Aguayo, Cristian organization: Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 15 givenname: Christopher J. surname: LaFargue fullname: LaFargue, Christopher J. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 16 givenname: Nicholas B. surname: Jennings fullname: Jennings, Nicholas B. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 17 givenname: Karin D. surname: Rodland fullname: Rodland, Karin D. organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 18 givenname: Tao surname: Liu fullname: Liu, Tao organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA – sequence: 19 givenname: Vikas surname: Kundra fullname: Kundra, Vikas organization: Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 20 givenname: Prahlad T. surname: Ram fullname: Ram, Prahlad T. organization: Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 21 givenname: Sundaram surname: Ramakrishnan fullname: Ramakrishnan, Sundaram organization: Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA – sequence: 22 givenname: Gabriel surname: Lopez-Berestein fullname: Lopez-Berestein, Gabriel organization: Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 23 givenname: Robert L. surname: Coleman fullname: Coleman, Robert L. organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – sequence: 24 givenname: Anil K. surname: Sood fullname: Sood, Anil K. email: asood@mdanderson.org organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34407412$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1836250$$D View this record in Osti.gov |
| BookMark | eNqFUdFuFCEUnZgaW2v_wBjiky-zAsOwjA8mZm2rSRNf1FfCwKXLysIK7Mb-vYyzNdUH5QVyOefce-552pyEGKBpnhO8IJjw15uFBp9gt6CYkloaejY8as4oJaQllC1PHrxPm4ucN7gejgkZ2JPmtGMMLxmhZ81m9Z537RaMUwUM0j6qby7comjR18vrK-QCylvlPYIfJana1O-9SugA2WkPGekYSnLjvtR3iUiF4tpfxLKGpHZ3KFVkLipoeNY8tspnuDje582Xq8vPqw_tzafrj6t3N63ue17aXmMxcmGIgVGz0fAOj2KwnNa6EMYqgy0hHAtrrVCiX4LurWbM6tGoDlh33ryddXf7sRrTUCdUXu6S26p0J6Ny8s-f4NbyNh6kYJQOS14FXs4CMRcns3YF9LoaDaCLJKLjtMcV9OrYJcXve8hFbl2e9qMCxH2WtOdUdJQwUaEvHg70e5L7FCrgzQzQKeacwMraUxU37VY5LwmWU-pyI-fU5ZS6nFOvZPYX-V7_P7TjlqBGcXCQJqNQYzIuTT5NdP8W-Am6msna |
| CitedBy_id | crossref_primary_10_1007_s10396_023_01310_1 crossref_primary_10_1016_j_ijbiomac_2023_126300 crossref_primary_10_1186_s12951_025_03152_0 crossref_primary_10_1016_j_genrep_2022_101548 crossref_primary_10_1111_cas_15801 crossref_primary_10_3390_cells11050778 crossref_primary_10_1186_s40364_023_00540_2 crossref_primary_10_3389_fonc_2022_897205 crossref_primary_10_3389_fimmu_2024_1363185 crossref_primary_10_1186_s12943_024_02221_6 crossref_primary_10_3389_fbioe_2025_1589841 crossref_primary_10_1186_s12943_022_01671_0 crossref_primary_10_1016_j_adcanc_2022_100046 crossref_primary_10_1016_j_apsb_2024_06_010 crossref_primary_10_1177_20417314231219280 crossref_primary_10_3390_bios15050294 crossref_primary_10_3390_nano13101611 crossref_primary_10_1016_j_cell_2023_03_010 crossref_primary_10_1016_j_jconrel_2022_07_015 crossref_primary_10_3389_fmolb_2023_1250335 crossref_primary_10_1002_mog2_94 crossref_primary_10_1016_j_jconrel_2025_113853 crossref_primary_10_1016_j_drup_2022_100849 crossref_primary_10_3390_molecules30030498 crossref_primary_10_1016_j_jconrel_2022_06_049 crossref_primary_10_1016_j_bioorg_2024_107493 crossref_primary_10_1002_adbi_202300078 crossref_primary_10_1002_JLB_6MA0822_720RR crossref_primary_10_1186_s12935_024_03476_1 crossref_primary_10_3390_vetsci12050477 crossref_primary_10_2174_0113816128326325240723051625 crossref_primary_10_1038_s41536_022_00268_x crossref_primary_10_1172_JCI190470 crossref_primary_10_1186_s12943_024_02083_y |
| Cites_doi | 10.1007/s00109-013-1020-6 10.1186/1471-2407-13-229 10.1158/0008-5472.CAN-18-0124 10.1080/20013078.2018.1535750 10.3389/fcell.2019.00353 10.1016/j.cell.2016.01.043 10.1038/nature10144 10.1016/j.molmed.2007.04.001 10.1002/pmic.201200329 10.1186/s12943-019-0981-7 10.1038/nrclinonc.2009.63 10.1186/s12943-019-0975-5 10.1016/j.cell.2019.01.021 10.1016/j.ceb.2009.03.007 10.1038/nrc2442 10.1158/0008-5472.CAN-15-1605 10.1038/s41388-018-0557-9 10.1126/sciadv.aax8849 10.1200/JCO.2012.42.0505 10.1186/s13059-018-1604-0 10.1016/S1470-2045(17)30279-6 10.1038/nrm.2016.87 10.1128/JVI.02251-16 10.1038/nri2567 10.1161/CIRCRESAHA.117.309681 10.1038/ncponc0403 10.1016/j.ccell.2016.03.004 10.1038/cr.2014.44 10.1016/j.ygyno.2015.08.004 10.1038/s42003-019-0609-x 10.1016/j.celrep.2021.108726 10.1158/1541-7786.MCR-11-0327 10.3402/jev.v5.31295 10.1016/S0002-9440(10)65669-6 10.1093/jnci/87.7.506 10.12688/f1000research.11771.1 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
| CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
| DOI | 10.1016/j.celrep.2021.109549 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 109549 |
| ExternalDocumentID | PMC8422976 1836250 34407412 10_1016_j_celrep_2021_109549 S2211124721009839 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UH3 TR000943 – fundername: NCI NIH HHS grantid: P50 CA217685 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: T32 CA009599 – fundername: NCI NIH HHS grantid: U54 CA096297 – fundername: NCI NIH HHS grantid: R01 CA124723 – fundername: NCI NIH HHS grantid: U54 CA096300 – fundername: NCI NIH HHS grantid: R35 CA209904 – fundername: NCI NIH HHS grantid: P30 CA240139 |
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-c556t-5c08b68d1debc4bd630b89f62c0888dfad0f11608fff8a857ec5fc44fcbda3e43 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686356500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Tue Sep 30 16:51:35 EDT 2025 Fri May 19 00:37:15 EDT 2023 Thu Jul 10 23:21:13 EDT 2025 Thu Jan 02 22:54:38 EST 2025 Wed Nov 05 20:55:44 EST 2025 Tue Nov 18 21:42:05 EST 2025 Tue Jul 25 21:00:40 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | bevacizumab CD63 extracellular vesicles drug resistance VEGF angiogenesis |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c556t-5c08b68d1debc4bd630b89f62c0888dfad0f11608fff8a857ec5fc44fcbda3e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC05-76RL01830 USDOE Office of Science (SC) PNNL-SA-154216 AUTHOR CONTRIBUTIONS Conceptualization, A.K.S., and S.M.; methodology, S.M., L.S.M., Wen Hu, A.Y., E.B., S.L., A.V.-P., S.P., and A.K.S.; investigation, S.M., L.S.M., Wen Hu, A.Y., E.B., Wei Hu, M.H.M., O.D.L., C.J.L., N.B.J., C.R.-A., and S.Y.W.; data curation, S.M., Wen Hu, S.P., A.V.-P., S.L., P.D.P., T.L., K.D.R., and P.T.R.; writing – original draft, S.M.; writing – review & editing, all authors; resources: S.L., Wei Hu, V.K., S.R., G.L.-B., and R.L.C; supervision, A.K.S., and R.L.C; funding acquisition, A.K.S. and S.M. All authors read and approved the final manuscript. |
| ORCID | 0000000195296550 0000000151082227 0000000170706541 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.celrep.2021.109549 |
| PMID | 34407412 |
| PQID | 2562832148 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8422976 osti_scitechconnect_1836250 proquest_miscellaneous_2562832148 pubmed_primary_34407412 crossref_citationtrail_10_1016_j_celrep_2021_109549 crossref_primary_10_1016_j_celrep_2021_109549 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109549 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-17 |
| PublicationDateYYYYMMDD | 2021-08-17 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Ma, Pradeep, Hu, Zhang, Coleman, Sood (bib22) 2018; 7 Thakur, Zhang, Becker, Matei, Huang, Costa-Silva, Zheng, Hoshino, Brazier, Xiang (bib30) 2014; 24 Bergers, Hanahan (bib5) 2008; 8 Apte, Chen, Ferrara (bib3) 2019; 176 Aghajanian, Blank, Goff, Judson, Teneriello, Husain, Sovak, Yi, Nycum (bib1) 2012; 30 Duda, Batchelor, Willett, Jain (bib12) 2007; 13 Liu, Zhang, Du, Wang, Liu, Tian, Wang, Li, Zhao, Duan (bib21) 2019; 18 Choi, Kim, Kim, Gho (bib10) 2013; 13 Yokoi, Villar-Prados, Oliphint, Zhang, Song, De Hoff, Morey, Liu, Roszik, Clise-Dwyer (bib37) 2019; 5 Witwer, Buzás, Bemis, Bora, Lässer, Lötvall, Nolte-’t Hoen, Piper, Sivaraman, Skog (bib35) 2013; 2 Aghajanian, Goff, Nycum, Wang, Husain, Blank (bib2) 2015; 139 Simons, Raposo (bib28) 2009; 21 Qin, Guo, Wang, Zhu, Yan, Wang, Xu, Shi, Lu, Chen, Zhang (bib25) 2019; 20 Yamagishi, Teshima-Kondo, Masuda, Nishida, Kuwano, Dang, Dang, Nikawa, Rokutan (bib36) 2013; 13 Li, Nabet (bib20) 2019; 18 Hu, Yan, Mu, Mi, Zhao, Hu, Li, Tao, Wu, Gong, Qin (bib13) 2019; 38 Ruan, Han, Jiang, Boulton, Chen, Law, Cai (bib27) 2011; 9 Théry, Ostrowski, Segura (bib31) 2009; 9 Jain, Duda, Clark, Loeffler (bib16) 2006; 3 Hurwitz, Conlon, Rider, Brownstein, Meckes (bib14) 2016; 5 Coleman, Brady, Herzog, Sabbatini, Armstrong, Walker, Kim, Fujiwara, Tewari, O’Malley (bib11) 2017; 18 Mesiano, Ferrara, Jaffe (bib24) 1998; 153 Todorova, Simoncini, Lacroix, Sabatier, Dignat-George (bib34) 2017; 120 Tkach, Théry (bib33) 2016; 164 Simons, Gordon, Claesson-Welsh (bib29) 2016; 17 Ko, Lee, Kenny, Dang, Ellis, Jonasch, Lengyel, Naora (bib19) 2019; 2 Bhattacharya, Ye, Wang, Ling, McManus, Fan, Boulbes, Ellis (bib6) 2016; 76 Kahlert, Kalluri (bib18) 2013; 91 Boocock, Charnock-Jones, Sharkey, McLaren, Barker, Wright, Twentyman, Smith (bib8) 1995; 87 Qu, Ding, Chen, Wu, Liu, Gao, Chen, Liu, Sun, Li (bib26) 2016; 29 Baruah, Wary (bib4) 2020; 7 Carmeliet, Jain (bib9) 2011; 473 Hurwitz, Nkosi, Conlon, York, Liu, Tremblay, Meckes (bib15) 2017; 91 Jain, Duda, Willett, Sahani, Zhu, Loeffler, Batchelor, Sorensen (bib17) 2009; 6 Ma, McGuire, Mangala, Lee, Stur, Hu, Bayraktar, Villar-Prados, Ivan, Wu (bib23) 2021; 34 Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith (bib32) 2018; 7 Binenbaum, Fridman, Yaari, Milman, Schroeder, Ben David, Shlomi, Gil (bib7) 2018; 78 Bhattacharya (10.1016/j.celrep.2021.109549_bib6) 2016; 76 Simons (10.1016/j.celrep.2021.109549_bib28) 2009; 21 Bergers (10.1016/j.celrep.2021.109549_bib5) 2008; 8 Liu (10.1016/j.celrep.2021.109549_bib21) 2019; 18 Witwer (10.1016/j.celrep.2021.109549_bib35) 2013; 2 Apte (10.1016/j.celrep.2021.109549_bib3) 2019; 176 Tkach (10.1016/j.celrep.2021.109549_bib33) 2016; 164 Baruah (10.1016/j.celrep.2021.109549_bib4) 2020; 7 Hu (10.1016/j.celrep.2021.109549_bib13) 2019; 38 Thakur (10.1016/j.celrep.2021.109549_bib30) 2014; 24 Li (10.1016/j.celrep.2021.109549_bib20) 2019; 18 Qu (10.1016/j.celrep.2021.109549_bib26) 2016; 29 Duda (10.1016/j.celrep.2021.109549_bib12) 2007; 13 Ma (10.1016/j.celrep.2021.109549_bib22) 2018; 7 Théry (10.1016/j.celrep.2021.109549_bib31) 2009; 9 Binenbaum (10.1016/j.celrep.2021.109549_bib7) 2018; 78 Ko (10.1016/j.celrep.2021.109549_bib19) 2019; 2 Kahlert (10.1016/j.celrep.2021.109549_bib18) 2013; 91 Hurwitz (10.1016/j.celrep.2021.109549_bib15) 2017; 91 Yamagishi (10.1016/j.celrep.2021.109549_bib36) 2013; 13 Carmeliet (10.1016/j.celrep.2021.109549_bib9) 2011; 473 Simons (10.1016/j.celrep.2021.109549_bib29) 2016; 17 Aghajanian (10.1016/j.celrep.2021.109549_bib2) 2015; 139 Aghajanian (10.1016/j.celrep.2021.109549_bib1) 2012; 30 Ma (10.1016/j.celrep.2021.109549_bib23) 2021; 34 Todorova (10.1016/j.celrep.2021.109549_bib34) 2017; 120 Yokoi (10.1016/j.celrep.2021.109549_bib37) 2019; 5 Coleman (10.1016/j.celrep.2021.109549_bib11) 2017; 18 Qin (10.1016/j.celrep.2021.109549_bib25) 2019; 20 Hurwitz (10.1016/j.celrep.2021.109549_bib14) 2016; 5 Théry (10.1016/j.celrep.2021.109549_bib32) 2018; 7 Boocock (10.1016/j.celrep.2021.109549_bib8) 1995; 87 Mesiano (10.1016/j.celrep.2021.109549_bib24) 1998; 153 Jain (10.1016/j.celrep.2021.109549_bib17) 2009; 6 Jain (10.1016/j.celrep.2021.109549_bib16) 2006; 3 Choi (10.1016/j.celrep.2021.109549_bib10) 2013; 13 Ruan (10.1016/j.celrep.2021.109549_bib27) 2011; 9 |
| References_xml | – volume: 24 start-page: 766 year: 2014 end-page: 769 ident: bib30 article-title: Double-stranded DNA in exosomes: a novel biomarker in cancer detection publication-title: Cell Res. – volume: 34 start-page: 108726 year: 2021 ident: bib23 article-title: Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype publication-title: Cell Rep. – volume: 120 start-page: 1658 year: 2017 end-page: 1673 ident: bib34 article-title: Extracellular Vesicles in Angiogenesis publication-title: Circ. Res. – volume: 5 start-page: 31295 year: 2016 ident: bib14 article-title: Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis publication-title: J. Extracell. Vesicles – volume: 176 start-page: 1248 year: 2019 end-page: 1264 ident: bib3 article-title: VEGF in Signaling and Disease: Beyond Discovery and Development publication-title: Cell – volume: 13 start-page: 229 year: 2013 ident: bib36 article-title: Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells publication-title: BMC Cancer – volume: 5 start-page: eaax8849 year: 2019 ident: bib37 article-title: Mechanisms of nuclear content loading to exosomes publication-title: Sci. Adv. – volume: 153 start-page: 1249 year: 1998 end-page: 1256 ident: bib24 article-title: Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization publication-title: Am. J. Pathol. – volume: 2 year: 2013 ident: bib35 article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research publication-title: J. Extracell. Vesicles – volume: 91 start-page: e02251-16 year: 2017 ident: bib15 article-title: CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling publication-title: J. Virol. – volume: 9 start-page: 581 year: 2009 end-page: 593 ident: bib31 article-title: Membrane vesicles as conveyors of immune responses publication-title: Nat. Rev. Immunol. – volume: 30 start-page: 2039 year: 2012 end-page: 2045 ident: bib1 article-title: OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer publication-title: J. Clin. Oncol. – volume: 17 start-page: 611 year: 2016 end-page: 625 ident: bib29 article-title: Mechanisms and regulation of endothelial VEGF receptor signalling publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 start-page: 223 year: 2007 end-page: 230 ident: bib12 article-title: VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects publication-title: Trends Mol. Med. – volume: 20 start-page: 12 year: 2019 ident: bib25 article-title: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5 publication-title: Genome Biol. – volume: 18 start-page: 32 year: 2019 ident: bib20 article-title: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance publication-title: Mol. Cancer – volume: 21 start-page: 575 year: 2009 end-page: 581 ident: bib28 article-title: Exosomes--vesicular carriers for intercellular communication publication-title: Curr. Opin. Cell Biol. – volume: 38 start-page: 1951 year: 2019 end-page: 1965 ident: bib13 article-title: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance publication-title: Oncogene – volume: 139 start-page: 10 year: 2015 end-page: 16 ident: bib2 article-title: Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer publication-title: Gynecol. Oncol. – volume: 7 start-page: 353 year: 2020 ident: bib4 article-title: Exosomes in the Regulation of Vascular Endothelial Cell Regeneration publication-title: Front. Cell Dev. Biol. – volume: 7 start-page: 326 year: 2018 ident: bib22 article-title: The role of tumor microenvironment in resistance to anti-angiogenic therapy publication-title: F1000Res. – volume: 76 start-page: 3014 year: 2016 end-page: 3024 ident: bib6 article-title: Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells publication-title: Cancer Res. – volume: 6 start-page: 327 year: 2009 end-page: 338 ident: bib17 article-title: Biomarkers of response and resistance to antiangiogenic therapy publication-title: Nat. Rev. Clin. Oncol. – volume: 9 start-page: 1632 year: 2011 end-page: 1643 ident: bib27 article-title: αB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells publication-title: Mol. Cancer Res. – volume: 473 start-page: 298 year: 2011 end-page: 307 ident: bib9 article-title: Molecular mechanisms and clinical applications of angiogenesis publication-title: Nature – volume: 87 start-page: 506 year: 1995 end-page: 516 ident: bib8 article-title: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma publication-title: J. Natl. Cancer Inst. – volume: 78 start-page: 5287 year: 2018 end-page: 5299 ident: bib7 article-title: Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma publication-title: Cancer Res. – volume: 3 start-page: 24 year: 2006 end-page: 40 ident: bib16 article-title: Lessons from phase III clinical trials on anti-VEGF therapy for cancer publication-title: Nat. Clin. Pract. Oncol. – volume: 7 start-page: 1535750 year: 2018 ident: bib32 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles – volume: 2 start-page: 386 year: 2019 ident: bib19 article-title: Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake publication-title: Commun. Biol. – volume: 18 start-page: 43 year: 2019 ident: bib21 article-title: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer publication-title: Mol. Cancer – volume: 8 start-page: 592 year: 2008 end-page: 603 ident: bib5 article-title: Modes of resistance to anti-angiogenic therapy publication-title: Nat. Rev. Cancer – volume: 29 start-page: 653 year: 2016 end-page: 668 ident: bib26 article-title: Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA publication-title: Cancer Cell – volume: 164 start-page: 1226 year: 2016 end-page: 1232 ident: bib33 article-title: Communication by Extracellular Vesicles: Where We Are and Where We Need to Go publication-title: Cell – volume: 18 start-page: 779 year: 2017 end-page: 791 ident: bib11 article-title: Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial publication-title: Lancet Oncol. – volume: 91 start-page: 431 year: 2013 end-page: 437 ident: bib18 article-title: Exosomes in tumor microenvironment influence cancer progression and metastasis publication-title: J. Mol. Med. (Berl.) – volume: 13 start-page: 1554 year: 2013 end-page: 1571 ident: bib10 article-title: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes publication-title: Proteomics – volume: 91 start-page: 431 year: 2013 ident: 10.1016/j.celrep.2021.109549_bib18 article-title: Exosomes in tumor microenvironment influence cancer progression and metastasis publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-013-1020-6 – volume: 13 start-page: 229 year: 2013 ident: 10.1016/j.celrep.2021.109549_bib36 article-title: Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells publication-title: BMC Cancer doi: 10.1186/1471-2407-13-229 – volume: 78 start-page: 5287 year: 2018 ident: 10.1016/j.celrep.2021.109549_bib7 article-title: Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-0124 – volume: 7 start-page: 1535750 year: 2018 ident: 10.1016/j.celrep.2021.109549_bib32 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 7 start-page: 353 year: 2020 ident: 10.1016/j.celrep.2021.109549_bib4 article-title: Exosomes in the Regulation of Vascular Endothelial Cell Regeneration publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00353 – volume: 164 start-page: 1226 year: 2016 ident: 10.1016/j.celrep.2021.109549_bib33 article-title: Communication by Extracellular Vesicles: Where We Are and Where We Need to Go publication-title: Cell doi: 10.1016/j.cell.2016.01.043 – volume: 2 year: 2013 ident: 10.1016/j.celrep.2021.109549_bib35 article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research publication-title: J. Extracell. Vesicles – volume: 473 start-page: 298 year: 2011 ident: 10.1016/j.celrep.2021.109549_bib9 article-title: Molecular mechanisms and clinical applications of angiogenesis publication-title: Nature doi: 10.1038/nature10144 – volume: 13 start-page: 223 year: 2007 ident: 10.1016/j.celrep.2021.109549_bib12 article-title: VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2007.04.001 – volume: 13 start-page: 1554 year: 2013 ident: 10.1016/j.celrep.2021.109549_bib10 article-title: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes publication-title: Proteomics doi: 10.1002/pmic.201200329 – volume: 18 start-page: 43 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib21 article-title: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-0981-7 – volume: 6 start-page: 327 year: 2009 ident: 10.1016/j.celrep.2021.109549_bib17 article-title: Biomarkers of response and resistance to antiangiogenic therapy publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2009.63 – volume: 18 start-page: 32 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib20 article-title: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance publication-title: Mol. Cancer doi: 10.1186/s12943-019-0975-5 – volume: 176 start-page: 1248 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib3 article-title: VEGF in Signaling and Disease: Beyond Discovery and Development publication-title: Cell doi: 10.1016/j.cell.2019.01.021 – volume: 21 start-page: 575 year: 2009 ident: 10.1016/j.celrep.2021.109549_bib28 article-title: Exosomes--vesicular carriers for intercellular communication publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.03.007 – volume: 8 start-page: 592 year: 2008 ident: 10.1016/j.celrep.2021.109549_bib5 article-title: Modes of resistance to anti-angiogenic therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2442 – volume: 76 start-page: 3014 year: 2016 ident: 10.1016/j.celrep.2021.109549_bib6 article-title: Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1605 – volume: 38 start-page: 1951 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib13 article-title: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance publication-title: Oncogene doi: 10.1038/s41388-018-0557-9 – volume: 5 start-page: eaax8849 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib37 article-title: Mechanisms of nuclear content loading to exosomes publication-title: Sci. Adv. doi: 10.1126/sciadv.aax8849 – volume: 30 start-page: 2039 year: 2012 ident: 10.1016/j.celrep.2021.109549_bib1 article-title: OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2012.42.0505 – volume: 20 start-page: 12 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib25 article-title: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5 publication-title: Genome Biol. doi: 10.1186/s13059-018-1604-0 – volume: 18 start-page: 779 year: 2017 ident: 10.1016/j.celrep.2021.109549_bib11 article-title: Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30279-6 – volume: 17 start-page: 611 year: 2016 ident: 10.1016/j.celrep.2021.109549_bib29 article-title: Mechanisms and regulation of endothelial VEGF receptor signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.87 – volume: 91 start-page: e02251-16 year: 2017 ident: 10.1016/j.celrep.2021.109549_bib15 article-title: CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling publication-title: J. Virol. doi: 10.1128/JVI.02251-16 – volume: 9 start-page: 581 year: 2009 ident: 10.1016/j.celrep.2021.109549_bib31 article-title: Membrane vesicles as conveyors of immune responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2567 – volume: 120 start-page: 1658 year: 2017 ident: 10.1016/j.celrep.2021.109549_bib34 article-title: Extracellular Vesicles in Angiogenesis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.309681 – volume: 3 start-page: 24 year: 2006 ident: 10.1016/j.celrep.2021.109549_bib16 article-title: Lessons from phase III clinical trials on anti-VEGF therapy for cancer publication-title: Nat. Clin. Pract. Oncol. doi: 10.1038/ncponc0403 – volume: 29 start-page: 653 year: 2016 ident: 10.1016/j.celrep.2021.109549_bib26 article-title: Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.03.004 – volume: 24 start-page: 766 year: 2014 ident: 10.1016/j.celrep.2021.109549_bib30 article-title: Double-stranded DNA in exosomes: a novel biomarker in cancer detection publication-title: Cell Res. doi: 10.1038/cr.2014.44 – volume: 139 start-page: 10 year: 2015 ident: 10.1016/j.celrep.2021.109549_bib2 article-title: Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2015.08.004 – volume: 2 start-page: 386 year: 2019 ident: 10.1016/j.celrep.2021.109549_bib19 article-title: Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake publication-title: Commun. Biol. doi: 10.1038/s42003-019-0609-x – volume: 34 start-page: 108726 year: 2021 ident: 10.1016/j.celrep.2021.109549_bib23 article-title: Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108726 – volume: 9 start-page: 1632 year: 2011 ident: 10.1016/j.celrep.2021.109549_bib27 article-title: αB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-11-0327 – volume: 5 start-page: 31295 year: 2016 ident: 10.1016/j.celrep.2021.109549_bib14 article-title: Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v5.31295 – volume: 153 start-page: 1249 year: 1998 ident: 10.1016/j.celrep.2021.109549_bib24 article-title: Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65669-6 – volume: 87 start-page: 506 year: 1995 ident: 10.1016/j.celrep.2021.109549_bib8 article-title: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/87.7.506 – volume: 7 start-page: 326 year: 2018 ident: 10.1016/j.celrep.2021.109549_bib22 article-title: The role of tumor microenvironment in resistance to anti-angiogenic therapy publication-title: F1000Res. doi: 10.12688/f1000research.11771.1 |
| SSID | ssj0000601194 |
| Score | 2.4782283 |
| Snippet | Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading... Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid 30 cancers, most of them become resistant to this therapy and develop... |
| SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109549 |
| SubjectTerms | Aged angiogenesis Animals BASIC BIOLOGICAL SCIENCES bevacizumab Bevacizumab - pharmacology Bevacizumab - therapeutic use CD63 Cell Line, Tumor Cell Proliferation Disease Models, Animal drug resistance Extracellular vesicles Extracellular Vesicles - metabolism Extracellular Vesicles - ultrastructure Female Humans Mice Mice, Nude Middle Aged Neovascularization, Pathologic - metabolism Neovascularization, Pathologic - pathology Ovarian Neoplasms - drug therapy Protein Isoforms - metabolism Signal Transduction Tetraspanin 30 - metabolism Vascular Endothelial Growth Factor A - antagonists & inhibitors Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-2 - metabolism VEGF |
| Title | CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance |
| URI | https://dx.doi.org/10.1016/j.celrep.2021.109549 https://www.ncbi.nlm.nih.gov/pubmed/34407412 https://www.proquest.com/docview/2562832148 https://www.osti.gov/servlets/purl/1836250 https://pubmed.ncbi.nlm.nih.gov/PMC8422976 |
| Volume | 36 |
| WOSCitedRecordID | wos000686356500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6ctFeEHfKYDISbyhVmziJ8wijYy9MSAzUt8h2nK2lTareWH8Ff5lz7Dhp2abBAy9R5cRxmu_L8fHxuRDyFiSfYiLTXiIk85jU2uOh4B7LI8mVL0KtclNsIj495cNh8qXV-uViYdaTuCj45WUy-69QQxuAjaGz_wB3fVNogN8AOhwBdjj-FfBHH6PAMwEhqEyqSWnqTaFS-H3w6RjtG4sp7keDVJ4LtNsbR9S1XhgHOeu7jkWwbO4HePEjz3S0kVqbd7A-R53TkcVlOUAboNuAwJ1hFwu2ZWr4bBTVrxcCCwU1jQVMUqKyD5zr8_JnJhqD7MnKeAE2AWsfxEb8WFq38MHUeQVUdgvfGGJtmGZXG_nm--hN59uEm04Y22woFeniLcna7-GG5LVC39ofxl14ZfA_uzhY9-rlgNJsajAPGENFym-mwNox0Z3aI3f8OEz41hrdTu2YIo-5EEzjJ3h11H1y393nJm2nXYIAv25R86dv7payc_aQPKhWKfS9Zdcj0tLFY3LP1i3dPCHjHY5RxzFa5hSpQkcFNRyjOxyjjmN0i2N0WdKaY7TiGG049pR8Ox6cHZ14VdEOT4VhtPRC1eMy4lk_01IxmUVBT_Ikj3xo5zzLRdbL-_2ox_M854KHsVZhrhjLlcxEoFnwjLSLstAvCGWJDHWgQWBIDnpzJmGATGRRT0aJlFHQIYF7uamqMtpjYZVJ6lwXx6lFJ0V0UotOh3h1r5nN6HLL9bHDLa20UqttpsC_W3oeIMzYCxMyK_Rcg24wiUaw8OiQNw79FEQ6YiEKXa4WKaxCbAEx3iHPLRvqJ3XEgqfa4Ul9AaaL3z1TjC5M2njOfB8WHy9vvOcB2W8-1FekvZyv9GtyV62Xo8X8kOzFQ35ovoffZ87c1Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD63-mediated+cloaking+of+VEGF+in+small+extracellular+vesicles+contributes+to+anti-VEGF+therapy+resistance&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Ma%2C+Shaolin&rft.au=Mangala%2C+Lingegowda+S&rft.au=Hu%2C+Wen&rft.au=Bayaktar%2C+Emine&rft.date=2021-08-17&rft.eissn=2211-1247&rft.volume=36&rft.issue=7&rft.spage=109549&rft_id=info:doi/10.1016%2Fj.celrep.2021.109549&rft_id=info%3Apmid%2F34407412&rft.externalDocID=34407412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |