CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance

Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. A...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) Vol. 36; no. 7; p. 109549
Main Authors: Ma, Shaolin, Mangala, Lingegowda S., Hu, Wen, Bayaktar, Emine, Yokoi, Akira, Hu, Wei, Pradeep, Sunila, Lee, Sanghoon, Piehowski, Paul D., Villar-Prados, Alejandro, Wu, Sherry Y., McGuire, Michael H., Lara, Olivia D., Rodriguez-Aguayo, Cristian, LaFargue, Christopher J., Jennings, Nicholas B., Rodland, Karin D., Liu, Tao, Kundra, Vikas, Ram, Prahlad T., Ramakrishnan, Sundaram, Lopez-Berestein, Gabriel, Coleman, Robert L., Sood, Anil K.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 17.08.2021
Elsevier
Subjects:
ISSN:2211-1247, 2211-1247
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. [Display omitted] •Cancer cells package increasing amounts of VEGF in small EVs with anti-VEGF therapy•VEGF packaging into small EVs is mediated by the tetraspanin CD63•Anti-VEGF antibodies failed to recognize small EV-VEGF (eVEGF)•eVEGF triggers intracrine VEGF signaling and promotes angiogenesis Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT.
AbstractList Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. [Display omitted] •Cancer cells package increasing amounts of VEGF in small EVs with anti-VEGF therapy•VEGF packaging into small EVs is mediated by the tetraspanin CD63•Anti-VEGF antibodies failed to recognize small EV-VEGF (eVEGF)•eVEGF triggers intracrine VEGF signaling and promotes angiogenesis Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT.
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer. Ma et.al report that cancer-cell-derived small EVs contain increasing amounts of VEGF (eVEGF) and contribute to resistance to anti-VEGF therapy (AVT). CD63 is a potential mediator that regulates packaging of VEGF into small EVs. eVEGF can trigger intracrine VEGF signaling in endothelial cells and promote angiogenesis despite AVT.
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading to disease progression. Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described here, we demonstrate that cancer-derived small extracellular vesicles package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. The packaging process of VEGF into small extracellular vesicles (EVs) is mediated by the tetraspanin CD63. Furthermore, small EV-VEGF (eVEGF) is not accessible to anti-VEGF antibodies and can trigger intracrine VEGF signaling in endothelial cells. eVEGF promotes angiogenesis and enhances tumor growth despite bevacizumab treatment. These data demonstrate a mechanism where VEGF is partitioned into small EVs and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and therapeutic strategies for ovarian cancer.
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid 30 cancers, most of them become resistant to this therapy and develop into progressive disease. 31 Therefore, new biomarkers and strategies for blocking adaptive resistance of cancer to anti-VEGF therapy are needed. As described herein, we found that cancer-derived small extracellular vesicles (EVs) package increasing quantities of VEGF and other factors in response to anti-VEGF therapy. Notably, small EV-VEGF (eVEGF) is not recognized by bevacizumab and can be transferred to endothelial cells and trigger intracrine signaling and promote angiogenesis. Also, serum eVEGF was present at higher levels in ovarian cancer mouse models with adaptive resistance to bevacizumab than in models sensitive to it. Ovarian cancer cell-derived eVEGF increased tumor growth despite treatment with bevacizumab. Notably, the eVEGF level was elevated in patient serum after bevacizumab-containing therapy. Proteomic data of small EVs from mouse models suggested that several novel biomarkers are promising for drug response prediction. Collectively, these data demonstrated a new mechanism whereby eVEGF evades recognition by therapeutic antibodies and promotes tumor angiogenesis and progression. These findings have clinical implications for biomarkers and new therapeutic strategies for ovarian cancer.
ArticleNumber 109549
Author Wu, Sherry Y.
McGuire, Michael H.
Jennings, Nicholas B.
Rodriguez-Aguayo, Cristian
Ma, Shaolin
Mangala, Lingegowda S.
LaFargue, Christopher J.
Lopez-Berestein, Gabriel
Kundra, Vikas
Sood, Anil K.
Piehowski, Paul D.
Coleman, Robert L.
Rodland, Karin D.
Villar-Prados, Alejandro
Yokoi, Akira
Bayaktar, Emine
Pradeep, Sunila
Ram, Prahlad T.
Hu, Wei
Hu, Wen
Liu, Tao
Ramakrishnan, Sundaram
Lara, Olivia D.
Lee, Sanghoon
AuthorAffiliation 3 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
12 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
13 Lead contact
4 Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
9 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2 Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
10 Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
8 Department of Medicine, Stanford University, Stanford, CA 94305, USA
6 Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
7 Pacific Northwest National Laboratory, Richland, WA 99352, USA
5 Department of Obstetrics and Gynecology, Med
AuthorAffiliation_xml – name: 3 Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 4 Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
– name: 10 Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 7 Pacific Northwest National Laboratory, Richland, WA 99352, USA
– name: 8 Department of Medicine, Stanford University, Stanford, CA 94305, USA
– name: 2 Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
– name: 11 Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
– name: 12 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 13 Lead contact
– name: 9 Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 6 Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 1 Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 5 Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
Author_xml – sequence: 1
  givenname: Shaolin
  surname: Ma
  fullname: Ma, Shaolin
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 2
  givenname: Lingegowda S.
  surname: Mangala
  fullname: Mangala, Lingegowda S.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 3
  givenname: Wen
  surname: Hu
  fullname: Hu, Wen
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 4
  givenname: Emine
  surname: Bayaktar
  fullname: Bayaktar, Emine
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 5
  givenname: Akira
  surname: Yokoi
  fullname: Yokoi, Akira
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 6
  givenname: Wei
  surname: Hu
  fullname: Hu, Wei
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 7
  givenname: Sunila
  surname: Pradeep
  fullname: Pradeep, Sunila
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 8
  givenname: Sanghoon
  surname: Lee
  fullname: Lee, Sanghoon
  organization: Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 9
  givenname: Paul D.
  surname: Piehowski
  fullname: Piehowski, Paul D.
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 10
  givenname: Alejandro
  surname: Villar-Prados
  fullname: Villar-Prados, Alejandro
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 11
  givenname: Sherry Y.
  surname: Wu
  fullname: Wu, Sherry Y.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 12
  givenname: Michael H.
  surname: McGuire
  fullname: McGuire, Michael H.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 13
  givenname: Olivia D.
  surname: Lara
  fullname: Lara, Olivia D.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 14
  givenname: Cristian
  surname: Rodriguez-Aguayo
  fullname: Rodriguez-Aguayo, Cristian
  organization: Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 15
  givenname: Christopher J.
  surname: LaFargue
  fullname: LaFargue, Christopher J.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 16
  givenname: Nicholas B.
  surname: Jennings
  fullname: Jennings, Nicholas B.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 17
  givenname: Karin D.
  surname: Rodland
  fullname: Rodland, Karin D.
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 18
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Pacific Northwest National Laboratory, Richland, WA 99352, USA
– sequence: 19
  givenname: Vikas
  surname: Kundra
  fullname: Kundra, Vikas
  organization: Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 20
  givenname: Prahlad T.
  surname: Ram
  fullname: Ram, Prahlad T.
  organization: Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 21
  givenname: Sundaram
  surname: Ramakrishnan
  fullname: Ramakrishnan, Sundaram
  organization: Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
– sequence: 22
  givenname: Gabriel
  surname: Lopez-Berestein
  fullname: Lopez-Berestein, Gabriel
  organization: Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 23
  givenname: Robert L.
  surname: Coleman
  fullname: Coleman, Robert L.
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 24
  givenname: Anil K.
  surname: Sood
  fullname: Sood, Anil K.
  email: asood@mdanderson.org
  organization: Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34407412$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1836250$$D View this record in Osti.gov
BookMark eNqFUdFuFCEUnZgaW2v_wBjiky-zAsOwjA8mZm2rSRNf1FfCwKXLysIK7Mb-vYyzNdUH5QVyOefce-552pyEGKBpnhO8IJjw15uFBp9gt6CYkloaejY8as4oJaQllC1PHrxPm4ucN7gejgkZ2JPmtGMMLxmhZ81m9Z537RaMUwUM0j6qby7comjR18vrK-QCylvlPYIfJana1O-9SugA2WkPGekYSnLjvtR3iUiF4tpfxLKGpHZ3KFVkLipoeNY8tspnuDje582Xq8vPqw_tzafrj6t3N63ue17aXmMxcmGIgVGz0fAOj2KwnNa6EMYqgy0hHAtrrVCiX4LurWbM6tGoDlh33ryddXf7sRrTUCdUXu6S26p0J6Ny8s-f4NbyNh6kYJQOS14FXs4CMRcns3YF9LoaDaCLJKLjtMcV9OrYJcXve8hFbl2e9qMCxH2WtOdUdJQwUaEvHg70e5L7FCrgzQzQKeacwMraUxU37VY5LwmWU-pyI-fU5ZS6nFOvZPYX-V7_P7TjlqBGcXCQJqNQYzIuTT5NdP8W-Am6msna
CitedBy_id crossref_primary_10_1007_s10396_023_01310_1
crossref_primary_10_1016_j_ijbiomac_2023_126300
crossref_primary_10_1186_s12951_025_03152_0
crossref_primary_10_1016_j_genrep_2022_101548
crossref_primary_10_1111_cas_15801
crossref_primary_10_3390_cells11050778
crossref_primary_10_1186_s40364_023_00540_2
crossref_primary_10_3389_fonc_2022_897205
crossref_primary_10_3389_fimmu_2024_1363185
crossref_primary_10_1186_s12943_024_02221_6
crossref_primary_10_3389_fbioe_2025_1589841
crossref_primary_10_1186_s12943_022_01671_0
crossref_primary_10_1016_j_adcanc_2022_100046
crossref_primary_10_1016_j_apsb_2024_06_010
crossref_primary_10_1177_20417314231219280
crossref_primary_10_3390_bios15050294
crossref_primary_10_3390_nano13101611
crossref_primary_10_1016_j_cell_2023_03_010
crossref_primary_10_1016_j_jconrel_2022_07_015
crossref_primary_10_3389_fmolb_2023_1250335
crossref_primary_10_1002_mog2_94
crossref_primary_10_1016_j_jconrel_2025_113853
crossref_primary_10_1016_j_drup_2022_100849
crossref_primary_10_3390_molecules30030498
crossref_primary_10_1016_j_jconrel_2022_06_049
crossref_primary_10_1016_j_bioorg_2024_107493
crossref_primary_10_1002_adbi_202300078
crossref_primary_10_1002_JLB_6MA0822_720RR
crossref_primary_10_1186_s12935_024_03476_1
crossref_primary_10_3390_vetsci12050477
crossref_primary_10_2174_0113816128326325240723051625
crossref_primary_10_1038_s41536_022_00268_x
crossref_primary_10_1172_JCI190470
crossref_primary_10_1186_s12943_024_02083_y
Cites_doi 10.1007/s00109-013-1020-6
10.1186/1471-2407-13-229
10.1158/0008-5472.CAN-18-0124
10.1080/20013078.2018.1535750
10.3389/fcell.2019.00353
10.1016/j.cell.2016.01.043
10.1038/nature10144
10.1016/j.molmed.2007.04.001
10.1002/pmic.201200329
10.1186/s12943-019-0981-7
10.1038/nrclinonc.2009.63
10.1186/s12943-019-0975-5
10.1016/j.cell.2019.01.021
10.1016/j.ceb.2009.03.007
10.1038/nrc2442
10.1158/0008-5472.CAN-15-1605
10.1038/s41388-018-0557-9
10.1126/sciadv.aax8849
10.1200/JCO.2012.42.0505
10.1186/s13059-018-1604-0
10.1016/S1470-2045(17)30279-6
10.1038/nrm.2016.87
10.1128/JVI.02251-16
10.1038/nri2567
10.1161/CIRCRESAHA.117.309681
10.1038/ncponc0403
10.1016/j.ccell.2016.03.004
10.1038/cr.2014.44
10.1016/j.ygyno.2015.08.004
10.1038/s42003-019-0609-x
10.1016/j.celrep.2021.108726
10.1158/1541-7786.MCR-11-0327
10.3402/jev.v5.31295
10.1016/S0002-9440(10)65669-6
10.1093/jnci/87.7.506
10.12688/f1000research.11771.1
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1016/j.celrep.2021.109549
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 109549
ExternalDocumentID PMC8422976
1836250
34407412
10_1016_j_celrep_2021_109549
S2211124721009839
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UH3 TR000943
– fundername: NCI NIH HHS
  grantid: P50 CA217685
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: T32 CA009599
– fundername: NCI NIH HHS
  grantid: U54 CA096297
– fundername: NCI NIH HHS
  grantid: R01 CA124723
– fundername: NCI NIH HHS
  grantid: U54 CA096300
– fundername: NCI NIH HHS
  grantid: R35 CA209904
– fundername: NCI NIH HHS
  grantid: P30 CA240139
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c556t-5c08b68d1debc4bd630b89f62c0888dfad0f11608fff8a857ec5fc44fcbda3e43
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686356500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Tue Sep 30 16:51:35 EDT 2025
Fri May 19 00:37:15 EDT 2023
Thu Jul 10 23:21:13 EDT 2025
Thu Jan 02 22:54:38 EST 2025
Wed Nov 05 20:55:44 EST 2025
Tue Nov 18 21:42:05 EST 2025
Tue Jul 25 21:00:40 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords bevacizumab
CD63
extracellular vesicles
drug resistance
VEGF
angiogenesis
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c556t-5c08b68d1debc4bd630b89f62c0888dfad0f11608fff8a857ec5fc44fcbda3e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC05-76RL01830
USDOE Office of Science (SC)
PNNL-SA-154216
AUTHOR CONTRIBUTIONS
Conceptualization, A.K.S., and S.M.; methodology, S.M., L.S.M., Wen Hu, A.Y., E.B., S.L., A.V.-P., S.P., and A.K.S.; investigation, S.M., L.S.M., Wen Hu, A.Y., E.B., Wei Hu, M.H.M., O.D.L., C.J.L., N.B.J., C.R.-A., and S.Y.W.; data curation, S.M., Wen Hu, S.P., A.V.-P., S.L., P.D.P., T.L., K.D.R., and P.T.R.; writing – original draft, S.M.; writing – review & editing, all authors; resources: S.L., Wei Hu, V.K., S.R., G.L.-B., and R.L.C; supervision, A.K.S., and R.L.C; funding acquisition, A.K.S. and S.M. All authors read and approved the final manuscript.
ORCID 0000000195296550
0000000151082227
0000000170706541
OpenAccessLink http://dx.doi.org/10.1016/j.celrep.2021.109549
PMID 34407412
PQID 2562832148
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8422976
osti_scitechconnect_1836250
proquest_miscellaneous_2562832148
pubmed_primary_34407412
crossref_citationtrail_10_1016_j_celrep_2021_109549
crossref_primary_10_1016_j_celrep_2021_109549
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109549
PublicationCentury 2000
PublicationDate 2021-08-17
PublicationDateYYYYMMDD 2021-08-17
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ma, Pradeep, Hu, Zhang, Coleman, Sood (bib22) 2018; 7
Thakur, Zhang, Becker, Matei, Huang, Costa-Silva, Zheng, Hoshino, Brazier, Xiang (bib30) 2014; 24
Bergers, Hanahan (bib5) 2008; 8
Apte, Chen, Ferrara (bib3) 2019; 176
Aghajanian, Blank, Goff, Judson, Teneriello, Husain, Sovak, Yi, Nycum (bib1) 2012; 30
Duda, Batchelor, Willett, Jain (bib12) 2007; 13
Liu, Zhang, Du, Wang, Liu, Tian, Wang, Li, Zhao, Duan (bib21) 2019; 18
Choi, Kim, Kim, Gho (bib10) 2013; 13
Yokoi, Villar-Prados, Oliphint, Zhang, Song, De Hoff, Morey, Liu, Roszik, Clise-Dwyer (bib37) 2019; 5
Witwer, Buzás, Bemis, Bora, Lässer, Lötvall, Nolte-’t Hoen, Piper, Sivaraman, Skog (bib35) 2013; 2
Aghajanian, Goff, Nycum, Wang, Husain, Blank (bib2) 2015; 139
Simons, Raposo (bib28) 2009; 21
Qin, Guo, Wang, Zhu, Yan, Wang, Xu, Shi, Lu, Chen, Zhang (bib25) 2019; 20
Yamagishi, Teshima-Kondo, Masuda, Nishida, Kuwano, Dang, Dang, Nikawa, Rokutan (bib36) 2013; 13
Li, Nabet (bib20) 2019; 18
Hu, Yan, Mu, Mi, Zhao, Hu, Li, Tao, Wu, Gong, Qin (bib13) 2019; 38
Ruan, Han, Jiang, Boulton, Chen, Law, Cai (bib27) 2011; 9
Théry, Ostrowski, Segura (bib31) 2009; 9
Jain, Duda, Clark, Loeffler (bib16) 2006; 3
Hurwitz, Conlon, Rider, Brownstein, Meckes (bib14) 2016; 5
Coleman, Brady, Herzog, Sabbatini, Armstrong, Walker, Kim, Fujiwara, Tewari, O’Malley (bib11) 2017; 18
Mesiano, Ferrara, Jaffe (bib24) 1998; 153
Todorova, Simoncini, Lacroix, Sabatier, Dignat-George (bib34) 2017; 120
Tkach, Théry (bib33) 2016; 164
Simons, Gordon, Claesson-Welsh (bib29) 2016; 17
Ko, Lee, Kenny, Dang, Ellis, Jonasch, Lengyel, Naora (bib19) 2019; 2
Bhattacharya, Ye, Wang, Ling, McManus, Fan, Boulbes, Ellis (bib6) 2016; 76
Kahlert, Kalluri (bib18) 2013; 91
Boocock, Charnock-Jones, Sharkey, McLaren, Barker, Wright, Twentyman, Smith (bib8) 1995; 87
Qu, Ding, Chen, Wu, Liu, Gao, Chen, Liu, Sun, Li (bib26) 2016; 29
Baruah, Wary (bib4) 2020; 7
Carmeliet, Jain (bib9) 2011; 473
Hurwitz, Nkosi, Conlon, York, Liu, Tremblay, Meckes (bib15) 2017; 91
Jain, Duda, Willett, Sahani, Zhu, Loeffler, Batchelor, Sorensen (bib17) 2009; 6
Ma, McGuire, Mangala, Lee, Stur, Hu, Bayraktar, Villar-Prados, Ivan, Wu (bib23) 2021; 34
Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith (bib32) 2018; 7
Binenbaum, Fridman, Yaari, Milman, Schroeder, Ben David, Shlomi, Gil (bib7) 2018; 78
Bhattacharya (10.1016/j.celrep.2021.109549_bib6) 2016; 76
Simons (10.1016/j.celrep.2021.109549_bib28) 2009; 21
Bergers (10.1016/j.celrep.2021.109549_bib5) 2008; 8
Liu (10.1016/j.celrep.2021.109549_bib21) 2019; 18
Witwer (10.1016/j.celrep.2021.109549_bib35) 2013; 2
Apte (10.1016/j.celrep.2021.109549_bib3) 2019; 176
Tkach (10.1016/j.celrep.2021.109549_bib33) 2016; 164
Baruah (10.1016/j.celrep.2021.109549_bib4) 2020; 7
Hu (10.1016/j.celrep.2021.109549_bib13) 2019; 38
Thakur (10.1016/j.celrep.2021.109549_bib30) 2014; 24
Li (10.1016/j.celrep.2021.109549_bib20) 2019; 18
Qu (10.1016/j.celrep.2021.109549_bib26) 2016; 29
Duda (10.1016/j.celrep.2021.109549_bib12) 2007; 13
Ma (10.1016/j.celrep.2021.109549_bib22) 2018; 7
Théry (10.1016/j.celrep.2021.109549_bib31) 2009; 9
Binenbaum (10.1016/j.celrep.2021.109549_bib7) 2018; 78
Ko (10.1016/j.celrep.2021.109549_bib19) 2019; 2
Kahlert (10.1016/j.celrep.2021.109549_bib18) 2013; 91
Hurwitz (10.1016/j.celrep.2021.109549_bib15) 2017; 91
Yamagishi (10.1016/j.celrep.2021.109549_bib36) 2013; 13
Carmeliet (10.1016/j.celrep.2021.109549_bib9) 2011; 473
Simons (10.1016/j.celrep.2021.109549_bib29) 2016; 17
Aghajanian (10.1016/j.celrep.2021.109549_bib2) 2015; 139
Aghajanian (10.1016/j.celrep.2021.109549_bib1) 2012; 30
Ma (10.1016/j.celrep.2021.109549_bib23) 2021; 34
Todorova (10.1016/j.celrep.2021.109549_bib34) 2017; 120
Yokoi (10.1016/j.celrep.2021.109549_bib37) 2019; 5
Coleman (10.1016/j.celrep.2021.109549_bib11) 2017; 18
Qin (10.1016/j.celrep.2021.109549_bib25) 2019; 20
Hurwitz (10.1016/j.celrep.2021.109549_bib14) 2016; 5
Théry (10.1016/j.celrep.2021.109549_bib32) 2018; 7
Boocock (10.1016/j.celrep.2021.109549_bib8) 1995; 87
Mesiano (10.1016/j.celrep.2021.109549_bib24) 1998; 153
Jain (10.1016/j.celrep.2021.109549_bib17) 2009; 6
Jain (10.1016/j.celrep.2021.109549_bib16) 2006; 3
Choi (10.1016/j.celrep.2021.109549_bib10) 2013; 13
Ruan (10.1016/j.celrep.2021.109549_bib27) 2011; 9
References_xml – volume: 24
  start-page: 766
  year: 2014
  end-page: 769
  ident: bib30
  article-title: Double-stranded DNA in exosomes: a novel biomarker in cancer detection
  publication-title: Cell Res.
– volume: 34
  start-page: 108726
  year: 2021
  ident: bib23
  article-title: Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype
  publication-title: Cell Rep.
– volume: 120
  start-page: 1658
  year: 2017
  end-page: 1673
  ident: bib34
  article-title: Extracellular Vesicles in Angiogenesis
  publication-title: Circ. Res.
– volume: 5
  start-page: 31295
  year: 2016
  ident: bib14
  article-title: Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis
  publication-title: J. Extracell. Vesicles
– volume: 176
  start-page: 1248
  year: 2019
  end-page: 1264
  ident: bib3
  article-title: VEGF in Signaling and Disease: Beyond Discovery and Development
  publication-title: Cell
– volume: 13
  start-page: 229
  year: 2013
  ident: bib36
  article-title: Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells
  publication-title: BMC Cancer
– volume: 5
  start-page: eaax8849
  year: 2019
  ident: bib37
  article-title: Mechanisms of nuclear content loading to exosomes
  publication-title: Sci. Adv.
– volume: 153
  start-page: 1249
  year: 1998
  end-page: 1256
  ident: bib24
  article-title: Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization
  publication-title: Am. J. Pathol.
– volume: 2
  year: 2013
  ident: bib35
  article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
  publication-title: J. Extracell. Vesicles
– volume: 91
  start-page: e02251-16
  year: 2017
  ident: bib15
  article-title: CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling
  publication-title: J. Virol.
– volume: 9
  start-page: 581
  year: 2009
  end-page: 593
  ident: bib31
  article-title: Membrane vesicles as conveyors of immune responses
  publication-title: Nat. Rev. Immunol.
– volume: 30
  start-page: 2039
  year: 2012
  end-page: 2045
  ident: bib1
  article-title: OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer
  publication-title: J. Clin. Oncol.
– volume: 17
  start-page: 611
  year: 2016
  end-page: 625
  ident: bib29
  article-title: Mechanisms and regulation of endothelial VEGF receptor signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  start-page: 223
  year: 2007
  end-page: 230
  ident: bib12
  article-title: VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects
  publication-title: Trends Mol. Med.
– volume: 20
  start-page: 12
  year: 2019
  ident: bib25
  article-title: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5
  publication-title: Genome Biol.
– volume: 18
  start-page: 32
  year: 2019
  ident: bib20
  article-title: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance
  publication-title: Mol. Cancer
– volume: 21
  start-page: 575
  year: 2009
  end-page: 581
  ident: bib28
  article-title: Exosomes--vesicular carriers for intercellular communication
  publication-title: Curr. Opin. Cell Biol.
– volume: 38
  start-page: 1951
  year: 2019
  end-page: 1965
  ident: bib13
  article-title: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance
  publication-title: Oncogene
– volume: 139
  start-page: 10
  year: 2015
  end-page: 16
  ident: bib2
  article-title: Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer
  publication-title: Gynecol. Oncol.
– volume: 7
  start-page: 353
  year: 2020
  ident: bib4
  article-title: Exosomes in the Regulation of Vascular Endothelial Cell Regeneration
  publication-title: Front. Cell Dev. Biol.
– volume: 7
  start-page: 326
  year: 2018
  ident: bib22
  article-title: The role of tumor microenvironment in resistance to anti-angiogenic therapy
  publication-title: F1000Res.
– volume: 76
  start-page: 3014
  year: 2016
  end-page: 3024
  ident: bib6
  article-title: Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells
  publication-title: Cancer Res.
– volume: 6
  start-page: 327
  year: 2009
  end-page: 338
  ident: bib17
  article-title: Biomarkers of response and resistance to antiangiogenic therapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 9
  start-page: 1632
  year: 2011
  end-page: 1643
  ident: bib27
  article-title: αB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells
  publication-title: Mol. Cancer Res.
– volume: 473
  start-page: 298
  year: 2011
  end-page: 307
  ident: bib9
  article-title: Molecular mechanisms and clinical applications of angiogenesis
  publication-title: Nature
– volume: 87
  start-page: 506
  year: 1995
  end-page: 516
  ident: bib8
  article-title: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma
  publication-title: J. Natl. Cancer Inst.
– volume: 78
  start-page: 5287
  year: 2018
  end-page: 5299
  ident: bib7
  article-title: Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma
  publication-title: Cancer Res.
– volume: 3
  start-page: 24
  year: 2006
  end-page: 40
  ident: bib16
  article-title: Lessons from phase III clinical trials on anti-VEGF therapy for cancer
  publication-title: Nat. Clin. Pract. Oncol.
– volume: 7
  start-page: 1535750
  year: 2018
  ident: bib32
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J. Extracell. Vesicles
– volume: 2
  start-page: 386
  year: 2019
  ident: bib19
  article-title: Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake
  publication-title: Commun. Biol.
– volume: 18
  start-page: 43
  year: 2019
  ident: bib21
  article-title: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer
  publication-title: Mol. Cancer
– volume: 8
  start-page: 592
  year: 2008
  end-page: 603
  ident: bib5
  article-title: Modes of resistance to anti-angiogenic therapy
  publication-title: Nat. Rev. Cancer
– volume: 29
  start-page: 653
  year: 2016
  end-page: 668
  ident: bib26
  article-title: Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA
  publication-title: Cancer Cell
– volume: 164
  start-page: 1226
  year: 2016
  end-page: 1232
  ident: bib33
  article-title: Communication by Extracellular Vesicles: Where We Are and Where We Need to Go
  publication-title: Cell
– volume: 18
  start-page: 779
  year: 2017
  end-page: 791
  ident: bib11
  article-title: Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial
  publication-title: Lancet Oncol.
– volume: 91
  start-page: 431
  year: 2013
  end-page: 437
  ident: bib18
  article-title: Exosomes in tumor microenvironment influence cancer progression and metastasis
  publication-title: J. Mol. Med. (Berl.)
– volume: 13
  start-page: 1554
  year: 2013
  end-page: 1571
  ident: bib10
  article-title: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes
  publication-title: Proteomics
– volume: 91
  start-page: 431
  year: 2013
  ident: 10.1016/j.celrep.2021.109549_bib18
  article-title: Exosomes in tumor microenvironment influence cancer progression and metastasis
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-013-1020-6
– volume: 13
  start-page: 229
  year: 2013
  ident: 10.1016/j.celrep.2021.109549_bib36
  article-title: Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-229
– volume: 78
  start-page: 5287
  year: 2018
  ident: 10.1016/j.celrep.2021.109549_bib7
  article-title: Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0124
– volume: 7
  start-page: 1535750
  year: 2018
  ident: 10.1016/j.celrep.2021.109549_bib32
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J. Extracell. Vesicles
  doi: 10.1080/20013078.2018.1535750
– volume: 7
  start-page: 353
  year: 2020
  ident: 10.1016/j.celrep.2021.109549_bib4
  article-title: Exosomes in the Regulation of Vascular Endothelial Cell Regeneration
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00353
– volume: 164
  start-page: 1226
  year: 2016
  ident: 10.1016/j.celrep.2021.109549_bib33
  article-title: Communication by Extracellular Vesicles: Where We Are and Where We Need to Go
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.043
– volume: 2
  year: 2013
  ident: 10.1016/j.celrep.2021.109549_bib35
  article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
  publication-title: J. Extracell. Vesicles
– volume: 473
  start-page: 298
  year: 2011
  ident: 10.1016/j.celrep.2021.109549_bib9
  article-title: Molecular mechanisms and clinical applications of angiogenesis
  publication-title: Nature
  doi: 10.1038/nature10144
– volume: 13
  start-page: 223
  year: 2007
  ident: 10.1016/j.celrep.2021.109549_bib12
  article-title: VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2007.04.001
– volume: 13
  start-page: 1554
  year: 2013
  ident: 10.1016/j.celrep.2021.109549_bib10
  article-title: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes
  publication-title: Proteomics
  doi: 10.1002/pmic.201200329
– volume: 18
  start-page: 43
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib21
  article-title: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-0981-7
– volume: 6
  start-page: 327
  year: 2009
  ident: 10.1016/j.celrep.2021.109549_bib17
  article-title: Biomarkers of response and resistance to antiangiogenic therapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2009.63
– volume: 18
  start-page: 32
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib20
  article-title: Exosomes in the tumor microenvironment as mediators of cancer therapy resistance
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-0975-5
– volume: 176
  start-page: 1248
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib3
  article-title: VEGF in Signaling and Disease: Beyond Discovery and Development
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.021
– volume: 21
  start-page: 575
  year: 2009
  ident: 10.1016/j.celrep.2021.109549_bib28
  article-title: Exosomes--vesicular carriers for intercellular communication
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.03.007
– volume: 8
  start-page: 592
  year: 2008
  ident: 10.1016/j.celrep.2021.109549_bib5
  article-title: Modes of resistance to anti-angiogenic therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2442
– volume: 76
  start-page: 3014
  year: 2016
  ident: 10.1016/j.celrep.2021.109549_bib6
  article-title: Intracrine VEGF Signaling Mediates the Activity of Prosurvival Pathways in Human Colorectal Cancer Cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1605
– volume: 38
  start-page: 1951
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib13
  article-title: Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0557-9
– volume: 5
  start-page: eaax8849
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib37
  article-title: Mechanisms of nuclear content loading to exosomes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax8849
– volume: 30
  start-page: 2039
  year: 2012
  ident: 10.1016/j.celrep.2021.109549_bib1
  article-title: OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2012.42.0505
– volume: 20
  start-page: 12
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib25
  article-title: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1604-0
– volume: 18
  start-page: 779
  year: 2017
  ident: 10.1016/j.celrep.2021.109549_bib11
  article-title: Bevacizumab and paclitaxel-carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30279-6
– volume: 17
  start-page: 611
  year: 2016
  ident: 10.1016/j.celrep.2021.109549_bib29
  article-title: Mechanisms and regulation of endothelial VEGF receptor signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.87
– volume: 91
  start-page: e02251-16
  year: 2017
  ident: 10.1016/j.celrep.2021.109549_bib15
  article-title: CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.02251-16
– volume: 9
  start-page: 581
  year: 2009
  ident: 10.1016/j.celrep.2021.109549_bib31
  article-title: Membrane vesicles as conveyors of immune responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2567
– volume: 120
  start-page: 1658
  year: 2017
  ident: 10.1016/j.celrep.2021.109549_bib34
  article-title: Extracellular Vesicles in Angiogenesis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.309681
– volume: 3
  start-page: 24
  year: 2006
  ident: 10.1016/j.celrep.2021.109549_bib16
  article-title: Lessons from phase III clinical trials on anti-VEGF therapy for cancer
  publication-title: Nat. Clin. Pract. Oncol.
  doi: 10.1038/ncponc0403
– volume: 29
  start-page: 653
  year: 2016
  ident: 10.1016/j.celrep.2021.109549_bib26
  article-title: Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.03.004
– volume: 24
  start-page: 766
  year: 2014
  ident: 10.1016/j.celrep.2021.109549_bib30
  article-title: Double-stranded DNA in exosomes: a novel biomarker in cancer detection
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.44
– volume: 139
  start-page: 10
  year: 2015
  ident: 10.1016/j.celrep.2021.109549_bib2
  article-title: Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2015.08.004
– volume: 2
  start-page: 386
  year: 2019
  ident: 10.1016/j.celrep.2021.109549_bib19
  article-title: Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0609-x
– volume: 34
  start-page: 108726
  year: 2021
  ident: 10.1016/j.celrep.2021.109549_bib23
  article-title: Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.108726
– volume: 9
  start-page: 1632
  year: 2011
  ident: 10.1016/j.celrep.2021.109549_bib27
  article-title: αB-crystallin, an effector of unfolded protein response, confers anti-VEGF resistance to breast cancer via maintenance of intracrine VEGF in endothelial cells
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-11-0327
– volume: 5
  start-page: 31295
  year: 2016
  ident: 10.1016/j.celrep.2021.109549_bib14
  article-title: Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis
  publication-title: J. Extracell. Vesicles
  doi: 10.3402/jev.v5.31295
– volume: 153
  start-page: 1249
  year: 1998
  ident: 10.1016/j.celrep.2021.109549_bib24
  article-title: Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65669-6
– volume: 87
  start-page: 506
  year: 1995
  ident: 10.1016/j.celrep.2021.109549_bib8
  article-title: Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/87.7.506
– volume: 7
  start-page: 326
  year: 2018
  ident: 10.1016/j.celrep.2021.109549_bib22
  article-title: The role of tumor microenvironment in resistance to anti-angiogenic therapy
  publication-title: F1000Res.
  doi: 10.12688/f1000research.11771.1
SSID ssj0000601194
Score 2.4781525
Snippet Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid cancers, most individuals become resistant to this therapy, leading...
Despite wide use of anti-vascular endothelial growth factor (VEGF) therapy for many solid 30 cancers, most of them become resistant to this therapy and develop...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109549
SubjectTerms Aged
angiogenesis
Animals
BASIC BIOLOGICAL SCIENCES
bevacizumab
Bevacizumab - pharmacology
Bevacizumab - therapeutic use
CD63
Cell Line, Tumor
Cell Proliferation
Disease Models, Animal
drug resistance
Extracellular vesicles
Extracellular Vesicles - metabolism
Extracellular Vesicles - ultrastructure
Female
Humans
Mice
Mice, Nude
Middle Aged
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - pathology
Ovarian Neoplasms - drug therapy
Protein Isoforms - metabolism
Signal Transduction
Tetraspanin 30 - metabolism
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-2 - metabolism
VEGF
Title CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance
URI https://dx.doi.org/10.1016/j.celrep.2021.109549
https://www.ncbi.nlm.nih.gov/pubmed/34407412
https://www.proquest.com/docview/2562832148
https://www.osti.gov/servlets/purl/1836250
https://pubmed.ncbi.nlm.nih.gov/PMC8422976
Volume 36
WOSCitedRecordID wos000686356500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6AhIviG_KYDISb1OqNJ_OI4wOXpiQNlDfIscfW0uXTG1X1v-KP5E7O07aURh74CWq3NhNfL_ad-ff3RHyNuNFIGKWeTIWgRclsvCYZKHHQ1AvwF7gRSZNsYn06IiNRtmXTueni4VZTtOyZFdX2cV_FTW0gbAxdPYW4m4GhQb4DEKHK4gdrv8k-IMPSeiZgBBUJsW0MvWmUCn8Nvx4iP6N-TmeR8OqPOPotzdE1KWaG4Kc5a5jESyb-wEmfuyZjjZSa7UP9jnqnA4sLssB-gDdAQSeDLtYsDVXw2ejqB6fcSwU1DaWsEnx2j9wqk6rH5LvH_dbvBkaYBux9p6v-PeF5YUPzx0toHZcBMYTa-M07foWBMimC2zCzb7a0lYv0DZDSg3EdG21Hfh4SLl1I7A-iUkfphHevY-_329v38y7fW0_bFiKjgA3ye0oOY6S21F2yJ0gjTO2ZsTbvR9z6CGVoXkTF69pSIW_P86f9KFuBUv8NrPnOnt3TR06eUge1HYMfWfx94h0VPmY3LOVTVdPyGQDhdShkFaaIpjouKQGhXQDhdShkK6hkC4q2qCQ1iikLQqfkq-Hw5ODT15d1sMTcZwsvFj4rEiYHEhViKiQSegXLNNJAO2MSc2lrweDxGdaa8ZZnCoRaxFFWhSShyoKn5FuWZXqBaEs0pFK0zDWMWayjDiXaZxof1CAlh2qsEdCN7m5qHPeY-mVaf432faI1_S6sDlfbrg_dXLLa73V6qM5oPGGnrsoZuyFKZsFctugG2yzCZgmPfLGST-HRR9lwUtVXc5zsFNsiTHWI88tGponDaMIzYQAnmoDJ80NmFB-85tyfGYSy7MoCGDiXt7y_XfJ_fb__Yp0F7NL9ZrcFcvFeD7bIzvpiO2Zv8kvn-XtZg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD63-mediated+cloaking+of+VEGF+in+small+extracellular+vesicles+contributes+to+anti-VEGF+therapy+resistance&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Ma%2C+Shaolin&rft.au=Mangala%2C+Lingegowda+S.&rft.au=Hu%2C+Wen&rft.au=Bayaktar%2C+Emine&rft.date=2021-08-17&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=36&rft.issue=7&rft.spage=109549&rft_id=info:doi/10.1016%2Fj.celrep.2021.109549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2021_109549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon