Extreme Dysbiosis of the Microbiome in Critical Illness

Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health...

Full description

Saved in:
Bibliographic Details
Published in:mSphere Vol. 1; no. 4
Main Authors: McDonald, Daniel, Ackermann, Gail, Khailova, Ludmila, Baird, Christine, Heyland, Daren, Kozar, Rosemary, Lemieux, Margot, Derenski, Karrie, King, Judy, Vis-Kampen, Christine, Knight, Rob, Wischmeyer, Paul E.
Format: Journal Article
Language:English
Published: United States American Society for Microbiology 01.07.2016
Subjects:
ISSN:2379-5042, 2379-5042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast : A podcast concerning this article is available.
AbstractList Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes.Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes.
Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes.
ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast: A podcast concerning this article is available.
Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast: A podcast concerning this article is available.
Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast : A podcast concerning this article is available.
Author Derenski, Karrie
Baird, Christine
Ackermann, Gail
Lemieux, Margot
Vis-Kampen, Christine
Wischmeyer, Paul E.
McDonald, Daniel
Knight, Rob
Heyland, Daren
Kozar, Rosemary
Khailova, Ludmila
King, Judy
Author_xml – sequence: 1
  givenname: Daniel
  surname: McDonald
  fullname: McDonald, Daniel
  organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA
– sequence: 2
  givenname: Gail
  surname: Ackermann
  fullname: Ackermann, Gail
  organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA
– sequence: 3
  givenname: Ludmila
  surname: Khailova
  fullname: Khailova, Ludmila
  organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA
– sequence: 4
  givenname: Christine
  surname: Baird
  fullname: Baird, Christine
  organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA
– sequence: 5
  givenname: Daren
  surname: Heyland
  fullname: Heyland, Daren
  organization: Department of Critical Care Medicine, Queen’s University and Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
– sequence: 6
  givenname: Rosemary
  surname: Kozar
  fullname: Kozar, Rosemary
  organization: Shock Trauma Center, University of Maryland, University of Maryland Medical Center, Baltimore, Maryland, USA
– sequence: 7
  givenname: Margot
  surname: Lemieux
  fullname: Lemieux, Margot
  organization: Department of Critical Care Medicine, Queen’s University and Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
– sequence: 8
  givenname: Karrie
  surname: Derenski
  fullname: Derenski, Karrie
  organization: Department of Pharmacy, Cox Health, Springfield, Missouri, USA
– sequence: 9
  givenname: Judy
  surname: King
  fullname: King, Judy
  organization: Critical Care Department, Southlake Regional Health Centre, Newmarket, Ontario, Canada
– sequence: 10
  givenname: Christine
  surname: Vis-Kampen
  fullname: Vis-Kampen, Christine
  organization: Critical Care Department, Southlake Regional Health Centre, Newmarket, Ontario, Canada
– sequence: 11
  givenname: Rob
  surname: Knight
  fullname: Knight, Rob
  organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA
– sequence: 12
  givenname: Paul E.
  surname: Wischmeyer
  fullname: Wischmeyer, Paul E.
  organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27602409$$D View this record in MEDLINE/PubMed
BookMark eNp1kstvEzEQhy1URB_0zgmtxIXLFo-9fl2QUGghUhEH4Gz5tY2j3XWwNxX973GaULWVOHk885tP8zpFR1OaAkJvAF8AEPlh_LFZhRwuMAalWuAv0AmhQrUMd-TokX2MzktZ4yrjhHPBX6FjIjgmHVYnSFz-mXMYQ_P5rtiYSixN6pt5FZpv0eVUXTUWp2aR4xydGZrlMEyhlNfoZW-GEs4P7xn6dXX5c_G1vf7-Zbn4dN06xvjcMm7BYmNML7tOeSsMV44SL6TzHReCBVBU9dYpTry3vcSOSW_B15-XmNIztNxzfTJrvclxNPlOJxP1vSPlG21yrWwIWnAKpCdcWWs6DiAd-N52ovYcKGOisj7uWZutHYN3YZqzGZ5An0amuNI36VYzjEVHoQLeHwA5_d6GMusxFheGwUwhbYsGCUISjpmq0nfPpOu0zVMdlQbFKBVQ51NVbx9X9FDKv_1UAd4L6i5KyaF_kADWuyvQhyvQ91egYcfkz1JcnM0c066nOPw_8S_bnrdP
CitedBy_id crossref_primary_10_1016_j_chest_2016_10_006
crossref_primary_10_1097_SHK_0000000000001654
crossref_primary_10_3390_nu14132620
crossref_primary_10_1073_pnas_1620673114
crossref_primary_10_3390_nu11040923
crossref_primary_10_1371_journal_pone_0326582
crossref_primary_10_5604_01_3001_0014_7701
crossref_primary_10_1097_SHK_0000000000001098
crossref_primary_10_3390_jpm14020217
crossref_primary_10_1016_j_jhazmat_2025_137419
crossref_primary_10_3390_gastroent12020022
crossref_primary_10_3389_fmicb_2024_1407324
crossref_primary_10_1002_jnr_24729
crossref_primary_10_1007_s10123_023_00349_x
crossref_primary_10_1186_s13054_020_03208_7
crossref_primary_10_1007_s40137_019_0243_z
crossref_primary_10_1186_s13054_022_04259_8
crossref_primary_10_21307_jofnem_2017_082
crossref_primary_10_1080_19490976_2025_2552346
crossref_primary_10_1186_s13054_024_04848_9
crossref_primary_10_3390_biomedicines11051335
crossref_primary_10_1186_s40168_020_00925_7
crossref_primary_10_1080_00365513_2022_2107567
crossref_primary_10_1186_s13613_024_01350_x
crossref_primary_10_38124_ijisrt_25jul144
crossref_primary_10_1128_spectrum_03441_23
crossref_primary_10_1016_j_bbadis_2017_03_005
crossref_primary_10_3390_nu17081352
crossref_primary_10_1099_mgen_0_001314
crossref_primary_10_1177_1756284820939447
crossref_primary_10_1186_s13054_020_03031_0
crossref_primary_10_3389_fmicb_2020_00953
crossref_primary_10_1038_s41575_021_00519_0
crossref_primary_10_1002_ams2_383
crossref_primary_10_1002_jpen_2198
crossref_primary_10_3389_fmed_2023_1320015
crossref_primary_10_1186_s13054_020_03219_4
crossref_primary_10_1093_cid_ciab902
crossref_primary_10_3389_fimmu_2024_1266579
crossref_primary_10_1126_scitranslmed_aba0501
crossref_primary_10_1186_s12866_019_1399_5
crossref_primary_10_1097_MCC_0000000000001015
crossref_primary_10_3389_fmicb_2019_01676
crossref_primary_10_3390_nu10050539
crossref_primary_10_3389_fimmu_2019_00891
crossref_primary_10_1111_ics_12845
crossref_primary_10_1097_SLA_0000000000006385
crossref_primary_10_1097_MCC_0000000000001019
crossref_primary_10_1126_sciadv_adt1466
crossref_primary_10_1128_msystems_01148_20
crossref_primary_10_1016_j_heliyon_2024_e34549
crossref_primary_10_1007_s10620_019_05628_0
crossref_primary_10_3389_fcimb_2019_00467
crossref_primary_10_1097_PCC_0000000000002929
crossref_primary_10_1186_s13054_020_02989_1
crossref_primary_10_1186_s13054_019_2688_y
crossref_primary_10_1016_j_jhin_2020_04_028
crossref_primary_10_1093_cid_ciy936
crossref_primary_10_1186_s13063_022_06668_0
crossref_primary_10_1007_s00134_019_05645_7
crossref_primary_10_2147_IDR_S529414
crossref_primary_10_1097_CCM_0000000000003225
crossref_primary_10_1128_mSphere_00219_18
crossref_primary_10_1096_fj_201802188R
crossref_primary_10_1097_MD_0000000000041631
crossref_primary_10_1186_s13054_022_03980_8
crossref_primary_10_3389_fimmu_2018_02042
crossref_primary_10_1038_s41598_018_24342_x
crossref_primary_10_1016_j_yasa_2023_04_005
crossref_primary_10_1186_s13054_023_04539_x
crossref_primary_10_1093_cid_ciy709
crossref_primary_10_1097_MCC_0000000000000424
crossref_primary_10_1007_s10620_019_05581_y
crossref_primary_10_1097_CCM_0000000000005708
crossref_primary_10_1128_mSphere_00358_19
crossref_primary_10_1001_jama_2021_13355
crossref_primary_10_1038_s41370_019_0157_y
crossref_primary_10_1007_s10151_016_1576_6
crossref_primary_10_1038_nmicrobiol_2017_121
crossref_primary_10_1186_s13054_018_1999_8
crossref_primary_10_1007_s00134_020_05929_3
crossref_primary_10_3389_fcimb_2022_954347
crossref_primary_10_1007_s00063_018_0475_1
crossref_primary_10_1186_s43556_022_00103_1
crossref_primary_10_1053_j_scrs_2017_09_007
crossref_primary_10_3390_microorganisms11112804
crossref_primary_10_1038_s41522_025_00791_x
crossref_primary_10_1016_j_chest_2020_06_079
crossref_primary_10_1080_21688370_2021_1879719
crossref_primary_10_1016_j_biopha_2020_110947
crossref_primary_10_3390_jpm13030537
crossref_primary_10_1016_j_jcms_2021_11_002
crossref_primary_10_1186_s40560_019_0372_6
crossref_primary_10_1038_s41598_021_85946_4
crossref_primary_10_1097_ACO_0000000000000734
crossref_primary_10_1016_j_biopha_2022_113778
crossref_primary_10_3389_fcimb_2020_558644
crossref_primary_10_1242_dmm_052086
crossref_primary_10_3389_fmed_2021_588584
crossref_primary_10_1016_j_ccc_2024_11_002
crossref_primary_10_1186_s13054_024_04855_w
crossref_primary_10_2174_0929867328666210915115056
crossref_primary_10_1097_ANA_0000000000000789
crossref_primary_10_1128_msystems_01399_21
crossref_primary_10_1016_j_suc_2018_01_005
crossref_primary_10_3390_microorganisms9122542
crossref_primary_10_1177_0148607117700572
crossref_primary_10_1016_j_cytogfr_2017_12_002
crossref_primary_10_1080_19490976_2024_2351478
crossref_primary_10_1186_s13756_024_01474_6
crossref_primary_10_7717_peerj_9580
crossref_primary_10_1093_jac_dkac408
crossref_primary_10_3389_fimmu_2020_01994
crossref_primary_10_1186_s13613_024_01407_x
crossref_primary_10_3390_ijms21165619
crossref_primary_10_1186_s40168_021_01190_y
crossref_primary_10_1038_s41598_024_78102_1
crossref_primary_10_25298_2616_5546_2020_4_2_155_159
crossref_primary_10_3390_antibiotics13111096
crossref_primary_10_1136_bmjopen_2019_035930
crossref_primary_10_3390_nu11123002
crossref_primary_10_3389_fcimb_2019_00440
crossref_primary_10_1111_ijcp_14815
crossref_primary_10_2119_molmed_2016_00256
crossref_primary_10_1186_s13568_025_01903_8
crossref_primary_10_1186_s40168_025_02051_8
crossref_primary_10_3390_jpm14040419
crossref_primary_10_1002_cti2_1278
crossref_primary_10_1016_j_jfma_2023_09_019
crossref_primary_10_1007_s11894_024_00954_4
crossref_primary_10_1073_pnas_2217877121
crossref_primary_10_1186_s13054_016_1567_z
crossref_primary_10_1097_CM9_0000000000000242
crossref_primary_10_1016_j_heliyon_2024_e28480
crossref_primary_10_1038_s41598_023_46490_5
crossref_primary_10_1002_iid3_483
crossref_primary_10_1016_j_ebiom_2022_104363
crossref_primary_10_1080_14787210_2024_2354828
crossref_primary_10_1096_fj_201700015RR
crossref_primary_10_1186_s12915_022_01347_7
crossref_primary_10_3390_jpm11111113
crossref_primary_10_1097_MCC_0000000000000469
crossref_primary_10_1186_s40168_017_0309_z
crossref_primary_10_1007_s11894_021_00814_5
crossref_primary_10_1016_j_cmi_2024_05_020
crossref_primary_10_1111_1751_7915_13358
crossref_primary_10_1016_j_amjsurg_2018_07_026
crossref_primary_10_3389_fmed_2024_1400166
crossref_primary_10_3390_brainsci8060113
crossref_primary_10_17816_clinutr321122
crossref_primary_10_1016_j_ijantimicag_2021_106471
crossref_primary_10_1007_s11306_020_01658_2
crossref_primary_10_1007_s10620_021_07000_7
crossref_primary_10_1016_j_chest_2024_02_031
crossref_primary_10_7759_cureus_60480
crossref_primary_10_1016_j_clnesp_2022_03_038
crossref_primary_10_1016_j_jhin_2023_12_002
crossref_primary_10_3390_microorganisms10071309
crossref_primary_10_1007_s11940_021_00670_8
crossref_primary_10_1128_spectrum_03078_23
crossref_primary_10_3389_fmicb_2025_1598443
crossref_primary_10_3233_NHA_210129
crossref_primary_10_1016_j_neuroscience_2018_11_048
crossref_primary_10_3390_nu14010024
crossref_primary_10_1097_CCM_0000000000003841
crossref_primary_10_3390_antibiotics11020217
crossref_primary_10_1016_j_arr_2024_102400
crossref_primary_10_3390_life11030246
crossref_primary_10_1186_s13054_019_2488_4
crossref_primary_10_3389_fimmu_2017_01389
crossref_primary_10_3748_wjg_v27_i19_2376
crossref_primary_10_1038_s41591_023_02243_5
crossref_primary_10_1016_j_nupar_2022_01_003
crossref_primary_10_1080_14767058_2017_1317738
crossref_primary_10_1016_j_heliyon_2023_e17880
crossref_primary_10_1097_MD_0000000000027763
crossref_primary_10_1002_ncp_10758
crossref_primary_10_1177_0310057X20903732
crossref_primary_10_1097_CCM_0000000000005139
crossref_primary_10_1038_s41598_020_72511_8
crossref_primary_10_1186_s40560_025_00786_y
crossref_primary_10_1371_journal_pone_0289923
crossref_primary_10_1016_j_gpb_2020_06_011
crossref_primary_10_1038_s41390_021_01878_9
crossref_primary_10_3390_children9010114
crossref_primary_10_1038_s41598_025_10848_8
crossref_primary_10_3389_fmicb_2017_01523
crossref_primary_10_3390_antibiotics12030498
crossref_primary_10_1186_s12931_018_0950_5
crossref_primary_10_1007_s00134_018_5268_8
crossref_primary_10_1016_j_jcrc_2023_154436
crossref_primary_10_1128_mSystems_00031_18
crossref_primary_10_1016_j_nut_2018_07_017
crossref_primary_10_1186_s12879_023_08608_y
crossref_primary_10_1097_PCC_0000000000001428
crossref_primary_10_1186_s13054_025_05309_7
crossref_primary_10_3389_fcimb_2022_848580
crossref_primary_10_1097_SLA_0000000000002167
crossref_primary_10_3390_diseases13080250
crossref_primary_10_1128_spectrum_02348_21
crossref_primary_10_1038_s41385_022_00539_2
crossref_primary_10_3389_fmicb_2023_1237993
crossref_primary_10_1007_s00134_022_06663_8
crossref_primary_10_1097_MCC_0000000000000582
crossref_primary_10_1016_j_chom_2020_12_012
crossref_primary_10_1186_s13054_024_05006_x
crossref_primary_10_1177_08850666231216361
crossref_primary_10_3389_fcimb_2023_1330900
crossref_primary_10_1016_j_clnu_2016_09_025
crossref_primary_10_1007_s00134_024_07513_5
crossref_primary_10_1089_sur_2023_029
crossref_primary_10_3390_v17091187
crossref_primary_10_3389_fpubh_2022_989496
crossref_primary_10_1128_msystems_01444_24
crossref_primary_10_3389_fcimb_2021_669409
crossref_primary_10_1097_MCO_0000000000000348
crossref_primary_10_1016_j_ebiom_2020_102995
crossref_primary_10_1111_jgh_14268
crossref_primary_10_1097_MCC_0000000000000390
crossref_primary_10_1186_s40635_023_00589_1
crossref_primary_10_1136_tsaco_2017_000108
crossref_primary_10_1007_s00134_020_06322_w
crossref_primary_10_3389_fimmu_2019_01873
crossref_primary_10_1177_0884533617694612
crossref_primary_10_1097_JTN_0000000000000744
crossref_primary_10_3389_fcimb_2022_857035
crossref_primary_10_1016_j_jpba_2023_115719
crossref_primary_10_1371_journal_pone_0200322
crossref_primary_10_1038_s41390_020_0824_7
crossref_primary_10_3390_ijms252413415
crossref_primary_10_1186_s40635_022_00486_z
crossref_primary_10_3390_nu13020483
crossref_primary_10_1097_MCC_0000000000000800
crossref_primary_10_1080_19490976_2021_1993598
crossref_primary_10_1186_s13054_022_04090_1
crossref_primary_10_1002_imt2_75
crossref_primary_10_1038_s41592_019_0431_x
crossref_primary_10_1111_php_13962
crossref_primary_10_1186_s13099_023_00567_8
crossref_primary_10_1186_s40168_021_01083_0
crossref_primary_10_1080_14787210_2019_1648208
crossref_primary_10_1016_j_ijid_2022_05_006
crossref_primary_10_1097_QCO_0000000000000352
crossref_primary_10_1128_mSphere_00537_20
crossref_primary_10_1016_j_jcrc_2021_01_005
crossref_primary_10_1371_journal_pone_0234656
crossref_primary_10_1016_j_healun_2024_04_069
crossref_primary_10_1186_s40168_016_0211_0
crossref_primary_10_3390_nu15184052
crossref_primary_10_3389_fmicb_2022_1051687
crossref_primary_10_1099_mgen_0_000293
crossref_primary_10_1186_s13054_023_04780_4
crossref_primary_10_1097_MCC_0000000000000386
crossref_primary_10_4274_tybd_galenos_2019_70883
crossref_primary_10_1016_j_anclin_2022_10_007
crossref_primary_10_3390_ph18040475
crossref_primary_10_1016_j_immuni_2021_10_012
crossref_primary_10_3390_v17040520
crossref_primary_10_3390_metabo11020122
crossref_primary_10_3390_nu12092728
Cites_doi 10.1038/nmeth.f.303
10.1038/ismej.2015.235
10.1186/s40168-015-0070-0
10.1073/pnas.0804812105
10.1001/jama.2009.1754
10.1097/CCM.0b013e318183ef84
10.1097/01.ta.0000236019.00650.00
10.1128/mBio.01361-14
10.1016/j.molmed.2013.08.004
10.1126/science.aad2646
10.1007/s10620-015-4011-3
10.1126/science.1254529
10.1038/nmeth.1650
10.1189/jlb.0607372
10.3748/wjg.v21.i37.10487
10.3402/mehd.v26.27663
10.1016/j.ccc.2015.11.004
10.1073/pnas.0700440104
10.1128/AEM.71.12.8228-8235.2005
10.1128/IAI.73.6.3686-3692.2005
10.1038/ismej.2012.8
10.1186/s12915-014-0069-1
10.1038/nature11234
10.1186/s13054-015-0738-7
10.1016/j.chom.2014.02.005
10.1007/s10620-016-4092-7
10.1016/0006-3207(92)91201-3
10.1371/journal.pcbi.1002687
10.1038/nature11053
10.1038/ismej.2011.139
ContentType Journal Article
Copyright Copyright © 2016 McDonald et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2016 McDonald et al. 2016 McDonald et al.
Copyright_xml – notice: Copyright © 2016 McDonald et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2016 McDonald et al. 2016 McDonald et al.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1128/mSphere.00199-16
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Extreme Dysbiosis of the Microbiome in Critical Illness
EISSN 2379-5042
ExternalDocumentID oai_doaj_org_article_76312f269bba46118c1dfb47667e3557
PMC5007431
27602409
10_1128_mSphere_00199_16
Genre Journal Article
GrantInformation_xml – fundername: NSF
  grantid: IGERT 1144807
GroupedDBID 0R~
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAGFI
AAUOK
AAYXX
ABUWG
ADBBV
ADRAZ
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
EBS
EJD
FRP
FYUFA
GROUPED_DOAJ
H13
HCIFZ
HMCUK
HYE
KQ8
LK8
M48
M7P
M~E
O9-
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
R9-
RHI
RPM
RSF
UKHRP
3V.
ALIPV
NPM
RHF
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c556t-56b1b0aaaf8449db7a69c32d78cd46775e1939fbc962ddbf80c58db1d2ddd8033
IEDL.DBID BENPR
ISICitedReferencesCount 302
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392586000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2379-5042
IngestDate Fri Oct 03 12:33:37 EDT 2025
Tue Nov 04 02:04:53 EST 2025
Sun Nov 09 13:47:53 EST 2025
Sat Nov 29 14:41:11 EST 2025
Thu Jan 02 22:19:18 EST 2025
Sat Nov 29 03:33:38 EST 2025
Tue Nov 18 22:14:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords critical care
16S RNA
fecal organisms
human
microbial source tracking
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-56b1b0aaaf8449db7a69c32d78cd46775e1939fbc962ddbf80c58db1d2ddd8033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Citation McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, Lemieux M, Derenski K, King J, Vis-Kampen C, Knight R, Wischmeyer PE. 2016. Extreme dysbiosis of the microbiome in critical illness. mSphere 1(4):e00199-16. doi:10.1128/mSphere.00199-16.
OpenAccessLink https://www.proquest.com/docview/1953371556?pq-origsite=%requestingapplication%
PMID 27602409
PQID 1953371556
PQPubID 2045592
ParticipantIDs doaj_primary_oai_doaj_org_article_76312f269bba46118c1dfb47667e3557
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007431
proquest_miscellaneous_1817826059
proquest_journals_1953371556
pubmed_primary_27602409
crossref_primary_10_1128_mSphere_00199_16
crossref_citationtrail_10_1128_mSphere_00199_16
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mSphere
PublicationTitleAlternate mSphere
PublicationYear 2016
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_1_21_2
e_1_3_1_22_2
e_1_3_1_23_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_7_2
e_1_3_1_9_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_6_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_26_2
e_1_3_1_2_2
e_1_3_1_27_2
e_1_3_1_28_2
e_1_3_1_32_2
e_1_3_1_33_2
e_1_3_1_13_2
e_1_3_1_12_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_17_2
e_1_3_1_16_2
e_1_3_1_15_2
e_1_3_1_14_2
e_1_3_1_19_2
e_1_3_1_18_2
25881250 - Crit Care. 2015 Feb 09;19:37
26715502 - Dig Dis Sci. 2016 Jun;61(6):1628-34
20383131 - Nat Methods. 2010 May;7(5):335-6
26457009 - World J Gastroenterol. 2015 Oct 7;21(37):10487-92
19952319 - JAMA. 2009 Dec 2;302(21):2323-9
21765408 - Nat Methods. 2011 Jul 17;8(9):761-3
26028277 - Microb Ecol Health Dis. 2015 May 29;26:27663
18936492 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731-6
26905627 - ISME J. 2016 Jul;10(7):1669-81
26657285 - Science. 2016 Jan 8;351(6269):158-62
22699611 - Nature. 2012 May 09;486(7402):222-7
25249279 - MBio. 2014 Sep 23;5(5):e01361-14
22699609 - Nature. 2012 Jun 13;486(7402):207-14
16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
18679127 - Crit Care Med. 2008 Sep;36(9):2504-10
17456596 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7617-21
25825673 - Microbiome. 2015 Mar 30;3:10
17426542 - J Trauma. 2007 Apr;62(4):880-5
25170151 - Science. 2014 Aug 29;345(6200):1048-52
26923947 - Dig Dis Sci. 2016 Jun;61(6):1420-1
23028285 - PLoS Comput Biol. 2012;8(9):e1002687
15908398 - Infect Immun. 2005 Jun;73(6):3686-92
24629344 - Cell Host Microbe. 2014 Mar 12;15(3):382-92
22402401 - ISME J. 2012 Aug;6(8):1621-4
18160538 - J Leukoc Biol. 2008 Mar;83(3):461-6
27016162 - Crit Care Clin. 2016 Apr;32(2):203-12
25184604 - BMC Biol. 2014 Aug 22;12:69
22134646 - ISME J. 2012 Mar;6(3):610-8
24055446 - Trends Mol Med. 2014 Apr;20(4):214-23
References_xml – ident: e_1_3_1_32_2
  doi: 10.1038/nmeth.f.303
– ident: e_1_3_1_23_2
  doi: 10.1038/ismej.2015.235
– ident: e_1_3_1_4_2
  doi: 10.1186/s40168-015-0070-0
– ident: e_1_3_1_22_2
  doi: 10.1073/pnas.0804812105
– ident: e_1_3_1_24_2
  doi: 10.1001/jama.2009.1754
– ident: e_1_3_1_5_2
  doi: 10.1097/CCM.0b013e318183ef84
– ident: e_1_3_1_26_2
  doi: 10.1097/01.ta.0000236019.00650.00
– ident: e_1_3_1_9_2
  doi: 10.1128/mBio.01361-14
– ident: e_1_3_1_28_2
  doi: 10.1016/j.molmed.2013.08.004
– ident: e_1_3_1_19_2
  doi: 10.1126/science.aad2646
– ident: e_1_3_1_10_2
  doi: 10.1007/s10620-015-4011-3
– ident: e_1_3_1_18_2
  doi: 10.1126/science.1254529
– ident: e_1_3_1_15_2
– ident: e_1_3_1_12_2
  doi: 10.1038/nmeth.1650
– ident: e_1_3_1_6_2
  doi: 10.1189/jlb.0607372
– ident: e_1_3_1_7_2
  doi: 10.3748/wjg.v21.i37.10487
– ident: e_1_3_1_13_2
  doi: 10.3402/mehd.v26.27663
– ident: e_1_3_1_8_2
  doi: 10.1016/j.ccc.2015.11.004
– ident: e_1_3_1_27_2
  doi: 10.1073/pnas.0700440104
– ident: e_1_3_1_21_2
  doi: 10.1128/AEM.71.12.8228-8235.2005
– ident: e_1_3_1_25_2
  doi: 10.1128/IAI.73.6.3686-3692.2005
– ident: e_1_3_1_31_2
  doi: 10.1038/ismej.2012.8
– ident: e_1_3_1_30_2
  doi: 10.1186/s12915-014-0069-1
– ident: e_1_3_1_2_2
  doi: 10.1038/nature11234
– ident: e_1_3_1_29_2
  doi: 10.1186/s13054-015-0738-7
– ident: e_1_3_1_3_2
  doi: 10.1016/j.chom.2014.02.005
– ident: e_1_3_1_11_2
  doi: 10.1007/s10620-016-4092-7
– ident: e_1_3_1_20_2
  doi: 10.1016/0006-3207(92)91201-3
– ident: e_1_3_1_14_2
  doi: 10.1371/journal.pcbi.1002687
– ident: e_1_3_1_16_2
– ident: e_1_3_1_17_2
  doi: 10.1038/nature11053
– ident: e_1_3_1_33_2
  doi: 10.1038/ismej.2011.139
– reference: 22699611 - Nature. 2012 May 09;486(7402):222-7
– reference: 27016162 - Crit Care Clin. 2016 Apr;32(2):203-12
– reference: 23028285 - PLoS Comput Biol. 2012;8(9):e1002687
– reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4
– reference: 26028277 - Microb Ecol Health Dis. 2015 May 29;26:27663
– reference: 17426542 - J Trauma. 2007 Apr;62(4):880-5
– reference: 24629344 - Cell Host Microbe. 2014 Mar 12;15(3):382-92
– reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35
– reference: 18160538 - J Leukoc Biol. 2008 Mar;83(3):461-6
– reference: 25184604 - BMC Biol. 2014 Aug 22;12:69
– reference: 25825673 - Microbiome. 2015 Mar 30;3:10
– reference: 20383131 - Nat Methods. 2010 May;7(5):335-6
– reference: 25249279 - MBio. 2014 Sep 23;5(5):e01361-14
– reference: 25881250 - Crit Care. 2015 Feb 09;19:37
– reference: 26457009 - World J Gastroenterol. 2015 Oct 7;21(37):10487-92
– reference: 15908398 - Infect Immun. 2005 Jun;73(6):3686-92
– reference: 19952319 - JAMA. 2009 Dec 2;302(21):2323-9
– reference: 18679127 - Crit Care Med. 2008 Sep;36(9):2504-10
– reference: 26715502 - Dig Dis Sci. 2016 Jun;61(6):1628-34
– reference: 18936492 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731-6
– reference: 26657285 - Science. 2016 Jan 8;351(6269):158-62
– reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14
– reference: 17456596 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7617-21
– reference: 24055446 - Trends Mol Med. 2014 Apr;20(4):214-23
– reference: 25170151 - Science. 2014 Aug 29;345(6200):1048-52
– reference: 26923947 - Dig Dis Sci. 2016 Jun;61(6):1420-1
– reference: 26905627 - ISME J. 2016 Jul;10(7):1669-81
– reference: 21765408 - Nat Methods. 2011 Jul 17;8(9):761-3
– reference: 22134646 - ISME J. 2012 Mar;6(3):610-8
SSID ssj0001626676
Score 2.4989824
Snippet Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria...
Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This...
ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis)....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms 16S RNA
Bacteria
Children
critical care
Dysbacteriosis
fecal organisms
Feces
Hospitals
human
microbial source tracking
Microbiomes
Nosocomial infection
Observation
Patients
Podcasts
Probiotics
Sepsis
Therapeutic applications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5FFPpStFp7assW-uLDcrfZTSZ5VKu00EqhWnwL-bHBhetecU_R_95JsrfcFdGXPu5Olk1mksyXTPINIZ-pY1JLsLlkFeQV2DrX2I9zjVOfsBZdSIzo_v4O5-fi6kr-XEr1Fc6EJXrgpLgx9v-CesqlMbriCIdt4bypgHOo0VfGe-SIepYWU3F3BXE6hyEuScX4z69wTb8OkQcp85DefMkPRbr-pzDmv0cll3zP2SZ504PG7ChVdou8qtu3ZCOlkXzYJnB6Pw_bfNmXh840s67pspnPENllP5rEs4Syps0WaQ2yb9NpmOF2yOXZ6cXJ17xPiJBbxvg8Z9wUZqK19qKqpDOgubQldRAyEHEAViMck95YyalzxouJZcKZwuGTE5OyfEfW2llbvycZQOlKXZqKM12VlhrgHjyFQloDhZ-MyHihHmV7tvCQtGKq4qqBCtUrVEWFqoKPyOHwxd_ElPFM2eOg8aFc4LiOL9Dyqre8esnyI3KwsJfqB16nQlSwBARJ-I9PgxiHTIiD6Lae3WIZUSAuwnWcHJHdZN6hJhR4YH1DCawYfqWqq5K2uY603CzBsb3_0bZ98hqRGU_ngg_I2vzmtv5A1u3dvOluPsa-_ggSOQMf
  priority: 102
  providerName: Directory of Open Access Journals
Title Extreme Dysbiosis of the Microbiome in Critical Illness
URI https://www.ncbi.nlm.nih.gov/pubmed/27602409
https://www.proquest.com/docview/1953371556
https://www.proquest.com/docview/1817826059
https://pubmed.ncbi.nlm.nih.gov/PMC5007431
https://doaj.org/article/76312f269bba46118c1dfb47667e3557
Volume 1
WOSCitedRecordID wos000392586000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access)
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2379-5042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626676
  issn: 2379-5042
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFCQuvB-BEhmJCwcr8dre2T0hCqmoRCOLl8LJ2ocNloJd4hTRf8-svXEbhHrhYsmetTTyPPbbmfEMwAtmU6kkmlCmCYYJmiJUpMehItcnjKEtpMvofnmPi4VYLmXmA26tL6vc-sTOUdvGuBj51KV7YqTdj786_Rm6qVEuu-pHaOzBvutUloxg_3C-yD5cRFkIr3Mc8pNMTH98dL_rFy4DIWXoxpxf2o-6tv3_wpp_l0xe2oOObv8v93fglkefweteXe7CtaK-Bzf6eZTn9wHnvzcuXhi8PW911bRVGzRlQBAxOKn6hk1Eq-pgOx8hOF6tnKt8AJ-P5p_evAv9ZIXQEAubMOU60jOlVCmSRFqNiksTM4tulBFHTAvCdbLURnJmrS7FzKTC6sjSnRWzOH4Io7qpi8cQIMY2VrFOeKqS2DCNvMSSYSSNxqicjWG6_b658W3H3fSLVd4dP5jIvUTyTiJ5xMfwcnjjtG-5ccXaQyeyYZ1rlt09aNbfcm97ObnQiJWMS61VwulEZSJb6gRJMwqCWziGg63Qcm_BbX4hsTE8H8hkey6houqiOaM1IiKARQdCOYZHvX4MnDDkrn0cUXBHc3ZY3aXU1feuv3fa47onV7P1FG4SeON96fABjDbrs-IZXDe_NlW7nsAeLrG7iok3ikkXb5i46taMnmXHJ9nXPyacGPM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQvvB-BAkGCA4doN07iiQ8IAW3VVbcrJAram_EjoZGWpGy2wP4pfiPjPLZdhHrrgWNiWxrFn-fhmcwH8ILZRCiBJhBJjEGMJgsU4ThQpPpSY8iENBndz2OcTNLpVHzYgN_9vzCurLLXiY2itpVxd-QDl-6JkKwff3PyPXCsUS672lNotLA4yJY_KWSrX492aH9fMra3e_R-P-hYBQJDixdBwnWoh0qpPI1jYTUqLkzELDoaH46YZOTTiFwbwZm1Ok-HJkmtDi092XToLkBJ5V8hPY6uhAyneHanQ9EBx1U2lKWDbx9dc4DM5TuECByp-jnr15AE_Muz_btA85zF27v5v32rW3Cj8639t-1huA0bWXkHrrVsm8u7gLu_Fu421N9Z1rqo6qL2q9wnB9g_LNp2VDRWlH7P_uCPZjNnCO7Bp0uR-j5sllWZPQQfMbKRinTMExVHhmnkOeYMQ2E0hvnQg0G_n9J0TdUdt8dMNsEVS2WHANkgQIbcg1erFSdtQ5EL5r5zEFnNc63AmxfV_KvsNIskAxGynHGhtYo5xYsmtLmOkZCYkTOJHmz3IJGdfqrlGUI8eL4aJs3i0kWqzKpTmpOG5D5SuCs8eNDicSUJQ-6a49EIriF1TdT1kbI4brqXJ63X-uhisZ7B9f2jw7EcjyYHj2GL3FTeFklvw-Zifpo9gavmx6Ko50-bI-jDl8vG8R8JAnE4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFhAX3o9AgSDBgUO0GyfxxAeEKLsrVi2rFS_15voRQ6QlKZstsH-NX8c4r3YR6q0HjomdyIo_z3zjceYj5Bk1CZccdMCTGIIYdBZIxHEg0fSlWqMLqTO6nw9gNksPD_l8i_zu_oVxxyo7m1gbalNqt0c-cOmeCND7sYFtj0XMR5NXx98DpyDlMq2dnEYDkf1s_RPDt-rldIRz_ZzSyfjjm7dBqzAQaHzRKkiYCtVQSmnTOOZGgWRcR9SAk_RhAEmG_IZbpTmjxiibDnWSGhUavDLp0G2GovnfASQZuLp29saz-fvTHR6MFRj0uVGaDr59cKUCMpf94DxwEutnfGEtGfAvnvv3cc0z_m9y_X_-cjfItZZ1-6-bZXKTbGXFLXK50eFc3yYw_rVy-6T-aF2pvKzyyi-tj9TYf5c3haqwLS_8ThfCny4WzkXcIZ8uZNR3yXZRFtl94gNEJpKRilki40hTBcyCpRByrSC0Q48MurkVui237lQ_FqIOu2gqWjSIGg0iZB550T9x3JQaOafvnoNL388VCa9vlMsvorU5Al1HSC1lXCkZM4wkdWisigFRmSHNBI_sdoARreWqxClaPPK0b0ab4xJJssjKE-yThkgsMRDmHrnXYLMfCQXmyuZhC2ygdmOomy1F_rWua540fPbB-cN6Qq4gfMXBdLb_kFxF_sqa09O7ZHu1PMkekUv6xyqvlo_b9eiTo4sG8h8ggntZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme+Dysbiosis+of+the+Microbiome+in+Critical+Illness&rft.jtitle=mSphere&rft.au=McDonald%2C+Daniel&rft.au=Ackermann%2C+Gail&rft.au=Khailova%2C+Ludmila&rft.au=Baird%2C+Christine&rft.date=2016-07-01&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1128%2FmSphere.00199-16&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon