Extreme Dysbiosis of the Microbiome in Critical Illness
Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health...
Saved in:
| Published in: | mSphere Vol. 1; no. 4 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Society for Microbiology
01.07.2016
|
| Subjects: | |
| ISSN: | 2379-5042, 2379-5042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes.
Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes.
IMPORTANCE
Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes.
Podcast
: A
podcast
concerning this article is available. |
|---|---|
| AbstractList | Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes.Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key "health-promoting" organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, "health-promoting" microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, "health promoting" bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially "illness-promoting" dysbiosis with probiotics or with targeted, multimicrobe synthetic "stool pills" that restore a healthy microbiome in the ICU setting to improve patient outcomes. ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast: A podcast concerning this article is available. Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast: A podcast concerning this article is available. Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria (dysbiosis), which, in turn, makes patients susceptible to hospital-acquired infections, sepsis, and organ failure. This has significant world health implications, because sepsis is becoming a leading cause of death worldwide, and hospital-acquired infections contribute to significant illness and increased costs. Thus, a trial that monitors the ICU patient microbiome to confirm and characterize this hypothesis is urgently needed. Our study analyzed the microbiomes of 115 critically ill subjects and demonstrated rapid dysbiosis from unexpected environmental sources after ICU admission. These data may provide the first steps toward defining targeted therapies that correct potentially “illness-promoting” dysbiosis with probiotics or with targeted, multimicrobe synthetic “stool pills” that restore a healthy microbiome in the ICU setting to improve patient outcomes. Podcast : A podcast concerning this article is available. |
| Author | Derenski, Karrie Baird, Christine Ackermann, Gail Lemieux, Margot Vis-Kampen, Christine Wischmeyer, Paul E. McDonald, Daniel Knight, Rob Heyland, Daren Kozar, Rosemary Khailova, Ludmila King, Judy |
| Author_xml | – sequence: 1 givenname: Daniel surname: McDonald fullname: McDonald, Daniel organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 2 givenname: Gail surname: Ackermann fullname: Ackermann, Gail organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 3 givenname: Ludmila surname: Khailova fullname: Khailova, Ludmila organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA – sequence: 4 givenname: Christine surname: Baird fullname: Baird, Christine organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA – sequence: 5 givenname: Daren surname: Heyland fullname: Heyland, Daren organization: Department of Critical Care Medicine, Queen’s University and Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada – sequence: 6 givenname: Rosemary surname: Kozar fullname: Kozar, Rosemary organization: Shock Trauma Center, University of Maryland, University of Maryland Medical Center, Baltimore, Maryland, USA – sequence: 7 givenname: Margot surname: Lemieux fullname: Lemieux, Margot organization: Department of Critical Care Medicine, Queen’s University and Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada – sequence: 8 givenname: Karrie surname: Derenski fullname: Derenski, Karrie organization: Department of Pharmacy, Cox Health, Springfield, Missouri, USA – sequence: 9 givenname: Judy surname: King fullname: King, Judy organization: Critical Care Department, Southlake Regional Health Centre, Newmarket, Ontario, Canada – sequence: 10 givenname: Christine surname: Vis-Kampen fullname: Vis-Kampen, Christine organization: Critical Care Department, Southlake Regional Health Centre, Newmarket, Ontario, Canada – sequence: 11 givenname: Rob surname: Knight fullname: Knight, Rob organization: Department of Pediatrics, University of California San Diego, La Jolla, California, USA – sequence: 12 givenname: Paul E. surname: Wischmeyer fullname: Wischmeyer, Paul E. organization: Department of Anesthesiology and Pediatrics (Nutrition Section), University of Colorado Denver, Aurora, Colorado, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27602409$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kstvEzEQhy1URB_0zgmtxIXLFo-9fl2QUGghUhEH4Gz5tY2j3XWwNxX973GaULWVOHk885tP8zpFR1OaAkJvAF8AEPlh_LFZhRwuMAalWuAv0AmhQrUMd-TokX2MzktZ4yrjhHPBX6FjIjgmHVYnSFz-mXMYQ_P5rtiYSixN6pt5FZpv0eVUXTUWp2aR4xydGZrlMEyhlNfoZW-GEs4P7xn6dXX5c_G1vf7-Zbn4dN06xvjcMm7BYmNML7tOeSsMV44SL6TzHReCBVBU9dYpTry3vcSOSW_B15-XmNIztNxzfTJrvclxNPlOJxP1vSPlG21yrWwIWnAKpCdcWWs6DiAd-N52ovYcKGOisj7uWZutHYN3YZqzGZ5An0amuNI36VYzjEVHoQLeHwA5_d6GMusxFheGwUwhbYsGCUISjpmq0nfPpOu0zVMdlQbFKBVQ51NVbx9X9FDKv_1UAd4L6i5KyaF_kADWuyvQhyvQ91egYcfkz1JcnM0c066nOPw_8S_bnrdP |
| CitedBy_id | crossref_primary_10_1016_j_chest_2016_10_006 crossref_primary_10_1097_SHK_0000000000001654 crossref_primary_10_3390_nu14132620 crossref_primary_10_1073_pnas_1620673114 crossref_primary_10_3390_nu11040923 crossref_primary_10_1371_journal_pone_0326582 crossref_primary_10_5604_01_3001_0014_7701 crossref_primary_10_1097_SHK_0000000000001098 crossref_primary_10_3390_jpm14020217 crossref_primary_10_1016_j_jhazmat_2025_137419 crossref_primary_10_3390_gastroent12020022 crossref_primary_10_3389_fmicb_2024_1407324 crossref_primary_10_1002_jnr_24729 crossref_primary_10_1007_s10123_023_00349_x crossref_primary_10_1186_s13054_020_03208_7 crossref_primary_10_1007_s40137_019_0243_z crossref_primary_10_1186_s13054_022_04259_8 crossref_primary_10_21307_jofnem_2017_082 crossref_primary_10_1080_19490976_2025_2552346 crossref_primary_10_1186_s13054_024_04848_9 crossref_primary_10_3390_biomedicines11051335 crossref_primary_10_1186_s40168_020_00925_7 crossref_primary_10_1080_00365513_2022_2107567 crossref_primary_10_1186_s13613_024_01350_x crossref_primary_10_38124_ijisrt_25jul144 crossref_primary_10_1128_spectrum_03441_23 crossref_primary_10_1016_j_bbadis_2017_03_005 crossref_primary_10_3390_nu17081352 crossref_primary_10_1099_mgen_0_001314 crossref_primary_10_1177_1756284820939447 crossref_primary_10_1186_s13054_020_03031_0 crossref_primary_10_3389_fmicb_2020_00953 crossref_primary_10_1038_s41575_021_00519_0 crossref_primary_10_1002_ams2_383 crossref_primary_10_1002_jpen_2198 crossref_primary_10_3389_fmed_2023_1320015 crossref_primary_10_1186_s13054_020_03219_4 crossref_primary_10_1093_cid_ciab902 crossref_primary_10_3389_fimmu_2024_1266579 crossref_primary_10_1126_scitranslmed_aba0501 crossref_primary_10_1186_s12866_019_1399_5 crossref_primary_10_1097_MCC_0000000000001015 crossref_primary_10_3389_fmicb_2019_01676 crossref_primary_10_3390_nu10050539 crossref_primary_10_3389_fimmu_2019_00891 crossref_primary_10_1111_ics_12845 crossref_primary_10_1097_SLA_0000000000006385 crossref_primary_10_1097_MCC_0000000000001019 crossref_primary_10_1126_sciadv_adt1466 crossref_primary_10_1128_msystems_01148_20 crossref_primary_10_1016_j_heliyon_2024_e34549 crossref_primary_10_1007_s10620_019_05628_0 crossref_primary_10_3389_fcimb_2019_00467 crossref_primary_10_1097_PCC_0000000000002929 crossref_primary_10_1186_s13054_020_02989_1 crossref_primary_10_1186_s13054_019_2688_y crossref_primary_10_1016_j_jhin_2020_04_028 crossref_primary_10_1093_cid_ciy936 crossref_primary_10_1186_s13063_022_06668_0 crossref_primary_10_1007_s00134_019_05645_7 crossref_primary_10_2147_IDR_S529414 crossref_primary_10_1097_CCM_0000000000003225 crossref_primary_10_1128_mSphere_00219_18 crossref_primary_10_1096_fj_201802188R crossref_primary_10_1097_MD_0000000000041631 crossref_primary_10_1186_s13054_022_03980_8 crossref_primary_10_3389_fimmu_2018_02042 crossref_primary_10_1038_s41598_018_24342_x crossref_primary_10_1016_j_yasa_2023_04_005 crossref_primary_10_1186_s13054_023_04539_x crossref_primary_10_1093_cid_ciy709 crossref_primary_10_1097_MCC_0000000000000424 crossref_primary_10_1007_s10620_019_05581_y crossref_primary_10_1097_CCM_0000000000005708 crossref_primary_10_1128_mSphere_00358_19 crossref_primary_10_1001_jama_2021_13355 crossref_primary_10_1038_s41370_019_0157_y crossref_primary_10_1007_s10151_016_1576_6 crossref_primary_10_1038_nmicrobiol_2017_121 crossref_primary_10_1186_s13054_018_1999_8 crossref_primary_10_1007_s00134_020_05929_3 crossref_primary_10_3389_fcimb_2022_954347 crossref_primary_10_1007_s00063_018_0475_1 crossref_primary_10_1186_s43556_022_00103_1 crossref_primary_10_1053_j_scrs_2017_09_007 crossref_primary_10_3390_microorganisms11112804 crossref_primary_10_1038_s41522_025_00791_x crossref_primary_10_1016_j_chest_2020_06_079 crossref_primary_10_1080_21688370_2021_1879719 crossref_primary_10_1016_j_biopha_2020_110947 crossref_primary_10_3390_jpm13030537 crossref_primary_10_1016_j_jcms_2021_11_002 crossref_primary_10_1186_s40560_019_0372_6 crossref_primary_10_1038_s41598_021_85946_4 crossref_primary_10_1097_ACO_0000000000000734 crossref_primary_10_1016_j_biopha_2022_113778 crossref_primary_10_3389_fcimb_2020_558644 crossref_primary_10_1242_dmm_052086 crossref_primary_10_3389_fmed_2021_588584 crossref_primary_10_1016_j_ccc_2024_11_002 crossref_primary_10_1186_s13054_024_04855_w crossref_primary_10_2174_0929867328666210915115056 crossref_primary_10_1097_ANA_0000000000000789 crossref_primary_10_1128_msystems_01399_21 crossref_primary_10_1016_j_suc_2018_01_005 crossref_primary_10_3390_microorganisms9122542 crossref_primary_10_1177_0148607117700572 crossref_primary_10_1016_j_cytogfr_2017_12_002 crossref_primary_10_1080_19490976_2024_2351478 crossref_primary_10_1186_s13756_024_01474_6 crossref_primary_10_7717_peerj_9580 crossref_primary_10_1093_jac_dkac408 crossref_primary_10_3389_fimmu_2020_01994 crossref_primary_10_1186_s13613_024_01407_x crossref_primary_10_3390_ijms21165619 crossref_primary_10_1186_s40168_021_01190_y crossref_primary_10_1038_s41598_024_78102_1 crossref_primary_10_25298_2616_5546_2020_4_2_155_159 crossref_primary_10_3390_antibiotics13111096 crossref_primary_10_1136_bmjopen_2019_035930 crossref_primary_10_3390_nu11123002 crossref_primary_10_3389_fcimb_2019_00440 crossref_primary_10_1111_ijcp_14815 crossref_primary_10_2119_molmed_2016_00256 crossref_primary_10_1186_s13568_025_01903_8 crossref_primary_10_1186_s40168_025_02051_8 crossref_primary_10_3390_jpm14040419 crossref_primary_10_1002_cti2_1278 crossref_primary_10_1016_j_jfma_2023_09_019 crossref_primary_10_1007_s11894_024_00954_4 crossref_primary_10_1073_pnas_2217877121 crossref_primary_10_1186_s13054_016_1567_z crossref_primary_10_1097_CM9_0000000000000242 crossref_primary_10_1016_j_heliyon_2024_e28480 crossref_primary_10_1038_s41598_023_46490_5 crossref_primary_10_1002_iid3_483 crossref_primary_10_1016_j_ebiom_2022_104363 crossref_primary_10_1080_14787210_2024_2354828 crossref_primary_10_1096_fj_201700015RR crossref_primary_10_1186_s12915_022_01347_7 crossref_primary_10_3390_jpm11111113 crossref_primary_10_1097_MCC_0000000000000469 crossref_primary_10_1186_s40168_017_0309_z crossref_primary_10_1007_s11894_021_00814_5 crossref_primary_10_1016_j_cmi_2024_05_020 crossref_primary_10_1111_1751_7915_13358 crossref_primary_10_1016_j_amjsurg_2018_07_026 crossref_primary_10_3389_fmed_2024_1400166 crossref_primary_10_3390_brainsci8060113 crossref_primary_10_17816_clinutr321122 crossref_primary_10_1016_j_ijantimicag_2021_106471 crossref_primary_10_1007_s11306_020_01658_2 crossref_primary_10_1007_s10620_021_07000_7 crossref_primary_10_1016_j_chest_2024_02_031 crossref_primary_10_7759_cureus_60480 crossref_primary_10_1016_j_clnesp_2022_03_038 crossref_primary_10_1016_j_jhin_2023_12_002 crossref_primary_10_3390_microorganisms10071309 crossref_primary_10_1007_s11940_021_00670_8 crossref_primary_10_1128_spectrum_03078_23 crossref_primary_10_3389_fmicb_2025_1598443 crossref_primary_10_3233_NHA_210129 crossref_primary_10_1016_j_neuroscience_2018_11_048 crossref_primary_10_3390_nu14010024 crossref_primary_10_1097_CCM_0000000000003841 crossref_primary_10_3390_antibiotics11020217 crossref_primary_10_1016_j_arr_2024_102400 crossref_primary_10_3390_life11030246 crossref_primary_10_1186_s13054_019_2488_4 crossref_primary_10_3389_fimmu_2017_01389 crossref_primary_10_3748_wjg_v27_i19_2376 crossref_primary_10_1038_s41591_023_02243_5 crossref_primary_10_1016_j_nupar_2022_01_003 crossref_primary_10_1080_14767058_2017_1317738 crossref_primary_10_1016_j_heliyon_2023_e17880 crossref_primary_10_1097_MD_0000000000027763 crossref_primary_10_1002_ncp_10758 crossref_primary_10_1177_0310057X20903732 crossref_primary_10_1097_CCM_0000000000005139 crossref_primary_10_1038_s41598_020_72511_8 crossref_primary_10_1186_s40560_025_00786_y crossref_primary_10_1371_journal_pone_0289923 crossref_primary_10_1016_j_gpb_2020_06_011 crossref_primary_10_1038_s41390_021_01878_9 crossref_primary_10_3390_children9010114 crossref_primary_10_1038_s41598_025_10848_8 crossref_primary_10_3389_fmicb_2017_01523 crossref_primary_10_3390_antibiotics12030498 crossref_primary_10_1186_s12931_018_0950_5 crossref_primary_10_1007_s00134_018_5268_8 crossref_primary_10_1016_j_jcrc_2023_154436 crossref_primary_10_1128_mSystems_00031_18 crossref_primary_10_1016_j_nut_2018_07_017 crossref_primary_10_1186_s12879_023_08608_y crossref_primary_10_1097_PCC_0000000000001428 crossref_primary_10_1186_s13054_025_05309_7 crossref_primary_10_3389_fcimb_2022_848580 crossref_primary_10_1097_SLA_0000000000002167 crossref_primary_10_3390_diseases13080250 crossref_primary_10_1128_spectrum_02348_21 crossref_primary_10_1038_s41385_022_00539_2 crossref_primary_10_3389_fmicb_2023_1237993 crossref_primary_10_1007_s00134_022_06663_8 crossref_primary_10_1097_MCC_0000000000000582 crossref_primary_10_1016_j_chom_2020_12_012 crossref_primary_10_1186_s13054_024_05006_x crossref_primary_10_1177_08850666231216361 crossref_primary_10_3389_fcimb_2023_1330900 crossref_primary_10_1016_j_clnu_2016_09_025 crossref_primary_10_1007_s00134_024_07513_5 crossref_primary_10_1089_sur_2023_029 crossref_primary_10_3390_v17091187 crossref_primary_10_3389_fpubh_2022_989496 crossref_primary_10_1128_msystems_01444_24 crossref_primary_10_3389_fcimb_2021_669409 crossref_primary_10_1097_MCO_0000000000000348 crossref_primary_10_1016_j_ebiom_2020_102995 crossref_primary_10_1111_jgh_14268 crossref_primary_10_1097_MCC_0000000000000390 crossref_primary_10_1186_s40635_023_00589_1 crossref_primary_10_1136_tsaco_2017_000108 crossref_primary_10_1007_s00134_020_06322_w crossref_primary_10_3389_fimmu_2019_01873 crossref_primary_10_1177_0884533617694612 crossref_primary_10_1097_JTN_0000000000000744 crossref_primary_10_3389_fcimb_2022_857035 crossref_primary_10_1016_j_jpba_2023_115719 crossref_primary_10_1371_journal_pone_0200322 crossref_primary_10_1038_s41390_020_0824_7 crossref_primary_10_3390_ijms252413415 crossref_primary_10_1186_s40635_022_00486_z crossref_primary_10_3390_nu13020483 crossref_primary_10_1097_MCC_0000000000000800 crossref_primary_10_1080_19490976_2021_1993598 crossref_primary_10_1186_s13054_022_04090_1 crossref_primary_10_1002_imt2_75 crossref_primary_10_1038_s41592_019_0431_x crossref_primary_10_1111_php_13962 crossref_primary_10_1186_s13099_023_00567_8 crossref_primary_10_1186_s40168_021_01083_0 crossref_primary_10_1080_14787210_2019_1648208 crossref_primary_10_1016_j_ijid_2022_05_006 crossref_primary_10_1097_QCO_0000000000000352 crossref_primary_10_1128_mSphere_00537_20 crossref_primary_10_1016_j_jcrc_2021_01_005 crossref_primary_10_1371_journal_pone_0234656 crossref_primary_10_1016_j_healun_2024_04_069 crossref_primary_10_1186_s40168_016_0211_0 crossref_primary_10_3390_nu15184052 crossref_primary_10_3389_fmicb_2022_1051687 crossref_primary_10_1099_mgen_0_000293 crossref_primary_10_1186_s13054_023_04780_4 crossref_primary_10_1097_MCC_0000000000000386 crossref_primary_10_4274_tybd_galenos_2019_70883 crossref_primary_10_1016_j_anclin_2022_10_007 crossref_primary_10_3390_ph18040475 crossref_primary_10_1016_j_immuni_2021_10_012 crossref_primary_10_3390_v17040520 crossref_primary_10_3390_metabo11020122 crossref_primary_10_3390_nu12092728 |
| Cites_doi | 10.1038/nmeth.f.303 10.1038/ismej.2015.235 10.1186/s40168-015-0070-0 10.1073/pnas.0804812105 10.1001/jama.2009.1754 10.1097/CCM.0b013e318183ef84 10.1097/01.ta.0000236019.00650.00 10.1128/mBio.01361-14 10.1016/j.molmed.2013.08.004 10.1126/science.aad2646 10.1007/s10620-015-4011-3 10.1126/science.1254529 10.1038/nmeth.1650 10.1189/jlb.0607372 10.3748/wjg.v21.i37.10487 10.3402/mehd.v26.27663 10.1016/j.ccc.2015.11.004 10.1073/pnas.0700440104 10.1128/AEM.71.12.8228-8235.2005 10.1128/IAI.73.6.3686-3692.2005 10.1038/ismej.2012.8 10.1186/s12915-014-0069-1 10.1038/nature11234 10.1186/s13054-015-0738-7 10.1016/j.chom.2014.02.005 10.1007/s10620-016-4092-7 10.1016/0006-3207(92)91201-3 10.1371/journal.pcbi.1002687 10.1038/nature11053 10.1038/ismej.2011.139 |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 McDonald et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 McDonald et al. 2016 McDonald et al. |
| Copyright_xml | – notice: Copyright © 2016 McDonald et al. This work is licensed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 McDonald et al. 2016 McDonald et al. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1128/mSphere.00199-16 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Extreme Dysbiosis of the Microbiome in Critical Illness |
| EISSN | 2379-5042 |
| ExternalDocumentID | oai_doaj_org_article_76312f269bba46118c1dfb47667e3557 PMC5007431 27602409 10_1128_mSphere_00199_16 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NSF grantid: IGERT 1144807 |
| GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ADBBV ADRAZ AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK EBS EJD FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC R9- RHI RPM RSF UKHRP 3V. ALIPV NPM RHF 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c556t-56b1b0aaaf8449db7a69c32d78cd46775e1939fbc962ddbf80c58db1d2ddd8033 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 302 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392586000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2379-5042 |
| IngestDate | Fri Oct 03 12:33:37 EDT 2025 Tue Nov 04 02:04:53 EST 2025 Sun Nov 09 13:47:53 EST 2025 Sat Nov 29 14:41:11 EST 2025 Thu Jan 02 22:19:18 EST 2025 Sat Nov 29 03:33:38 EST 2025 Tue Nov 18 22:14:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | critical care 16S RNA fecal organisms human microbial source tracking |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-56b1b0aaaf8449db7a69c32d78cd46775e1939fbc962ddbf80c58db1d2ddd8033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Citation McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, Lemieux M, Derenski K, King J, Vis-Kampen C, Knight R, Wischmeyer PE. 2016. Extreme dysbiosis of the microbiome in critical illness. mSphere 1(4):e00199-16. doi:10.1128/mSphere.00199-16. |
| OpenAccessLink | https://www.proquest.com/docview/1953371556?pq-origsite=%requestingapplication% |
| PMID | 27602409 |
| PQID | 1953371556 |
| PQPubID | 2045592 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_76312f269bba46118c1dfb47667e3557 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5007431 proquest_miscellaneous_1817826059 proquest_journals_1953371556 pubmed_primary_27602409 crossref_primary_10_1128_mSphere_00199_16 crossref_citationtrail_10_1128_mSphere_00199_16 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
| PublicationTitle | mSphere |
| PublicationTitleAlternate | mSphere |
| PublicationYear | 2016 |
| Publisher | American Society for Microbiology |
| Publisher_xml | – name: American Society for Microbiology |
| References | e_1_3_1_21_2 e_1_3_1_22_2 e_1_3_1_23_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_7_2 e_1_3_1_9_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_6_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_26_2 e_1_3_1_2_2 e_1_3_1_27_2 e_1_3_1_28_2 e_1_3_1_32_2 e_1_3_1_33_2 e_1_3_1_13_2 e_1_3_1_12_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_17_2 e_1_3_1_16_2 e_1_3_1_15_2 e_1_3_1_14_2 e_1_3_1_19_2 e_1_3_1_18_2 25881250 - Crit Care. 2015 Feb 09;19:37 26715502 - Dig Dis Sci. 2016 Jun;61(6):1628-34 20383131 - Nat Methods. 2010 May;7(5):335-6 26457009 - World J Gastroenterol. 2015 Oct 7;21(37):10487-92 19952319 - JAMA. 2009 Dec 2;302(21):2323-9 21765408 - Nat Methods. 2011 Jul 17;8(9):761-3 26028277 - Microb Ecol Health Dis. 2015 May 29;26:27663 18936492 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731-6 26905627 - ISME J. 2016 Jul;10(7):1669-81 26657285 - Science. 2016 Jan 8;351(6269):158-62 22699611 - Nature. 2012 May 09;486(7402):222-7 25249279 - MBio. 2014 Sep 23;5(5):e01361-14 22699609 - Nature. 2012 Jun 13;486(7402):207-14 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 18679127 - Crit Care Med. 2008 Sep;36(9):2504-10 17456596 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7617-21 25825673 - Microbiome. 2015 Mar 30;3:10 17426542 - J Trauma. 2007 Apr;62(4):880-5 25170151 - Science. 2014 Aug 29;345(6200):1048-52 26923947 - Dig Dis Sci. 2016 Jun;61(6):1420-1 23028285 - PLoS Comput Biol. 2012;8(9):e1002687 15908398 - Infect Immun. 2005 Jun;73(6):3686-92 24629344 - Cell Host Microbe. 2014 Mar 12;15(3):382-92 22402401 - ISME J. 2012 Aug;6(8):1621-4 18160538 - J Leukoc Biol. 2008 Mar;83(3):461-6 27016162 - Crit Care Clin. 2016 Apr;32(2):203-12 25184604 - BMC Biol. 2014 Aug 22;12:69 22134646 - ISME J. 2012 Mar;6(3):610-8 24055446 - Trends Mol Med. 2014 Apr;20(4):214-23 |
| References_xml | – ident: e_1_3_1_32_2 doi: 10.1038/nmeth.f.303 – ident: e_1_3_1_23_2 doi: 10.1038/ismej.2015.235 – ident: e_1_3_1_4_2 doi: 10.1186/s40168-015-0070-0 – ident: e_1_3_1_22_2 doi: 10.1073/pnas.0804812105 – ident: e_1_3_1_24_2 doi: 10.1001/jama.2009.1754 – ident: e_1_3_1_5_2 doi: 10.1097/CCM.0b013e318183ef84 – ident: e_1_3_1_26_2 doi: 10.1097/01.ta.0000236019.00650.00 – ident: e_1_3_1_9_2 doi: 10.1128/mBio.01361-14 – ident: e_1_3_1_28_2 doi: 10.1016/j.molmed.2013.08.004 – ident: e_1_3_1_19_2 doi: 10.1126/science.aad2646 – ident: e_1_3_1_10_2 doi: 10.1007/s10620-015-4011-3 – ident: e_1_3_1_18_2 doi: 10.1126/science.1254529 – ident: e_1_3_1_15_2 – ident: e_1_3_1_12_2 doi: 10.1038/nmeth.1650 – ident: e_1_3_1_6_2 doi: 10.1189/jlb.0607372 – ident: e_1_3_1_7_2 doi: 10.3748/wjg.v21.i37.10487 – ident: e_1_3_1_13_2 doi: 10.3402/mehd.v26.27663 – ident: e_1_3_1_8_2 doi: 10.1016/j.ccc.2015.11.004 – ident: e_1_3_1_27_2 doi: 10.1073/pnas.0700440104 – ident: e_1_3_1_21_2 doi: 10.1128/AEM.71.12.8228-8235.2005 – ident: e_1_3_1_25_2 doi: 10.1128/IAI.73.6.3686-3692.2005 – ident: e_1_3_1_31_2 doi: 10.1038/ismej.2012.8 – ident: e_1_3_1_30_2 doi: 10.1186/s12915-014-0069-1 – ident: e_1_3_1_2_2 doi: 10.1038/nature11234 – ident: e_1_3_1_29_2 doi: 10.1186/s13054-015-0738-7 – ident: e_1_3_1_3_2 doi: 10.1016/j.chom.2014.02.005 – ident: e_1_3_1_11_2 doi: 10.1007/s10620-016-4092-7 – ident: e_1_3_1_20_2 doi: 10.1016/0006-3207(92)91201-3 – ident: e_1_3_1_14_2 doi: 10.1371/journal.pcbi.1002687 – ident: e_1_3_1_16_2 – ident: e_1_3_1_17_2 doi: 10.1038/nature11053 – ident: e_1_3_1_33_2 doi: 10.1038/ismej.2011.139 – reference: 22699611 - Nature. 2012 May 09;486(7402):222-7 – reference: 27016162 - Crit Care Clin. 2016 Apr;32(2):203-12 – reference: 23028285 - PLoS Comput Biol. 2012;8(9):e1002687 – reference: 22402401 - ISME J. 2012 Aug;6(8):1621-4 – reference: 26028277 - Microb Ecol Health Dis. 2015 May 29;26:27663 – reference: 17426542 - J Trauma. 2007 Apr;62(4):880-5 – reference: 24629344 - Cell Host Microbe. 2014 Mar 12;15(3):382-92 – reference: 16332807 - Appl Environ Microbiol. 2005 Dec;71(12):8228-35 – reference: 18160538 - J Leukoc Biol. 2008 Mar;83(3):461-6 – reference: 25184604 - BMC Biol. 2014 Aug 22;12:69 – reference: 25825673 - Microbiome. 2015 Mar 30;3:10 – reference: 20383131 - Nat Methods. 2010 May;7(5):335-6 – reference: 25249279 - MBio. 2014 Sep 23;5(5):e01361-14 – reference: 25881250 - Crit Care. 2015 Feb 09;19:37 – reference: 26457009 - World J Gastroenterol. 2015 Oct 7;21(37):10487-92 – reference: 15908398 - Infect Immun. 2005 Jun;73(6):3686-92 – reference: 19952319 - JAMA. 2009 Dec 2;302(21):2323-9 – reference: 18679127 - Crit Care Med. 2008 Sep;36(9):2504-10 – reference: 26715502 - Dig Dis Sci. 2016 Jun;61(6):1628-34 – reference: 18936492 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731-6 – reference: 26657285 - Science. 2016 Jan 8;351(6269):158-62 – reference: 22699609 - Nature. 2012 Jun 13;486(7402):207-14 – reference: 17456596 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7617-21 – reference: 24055446 - Trends Mol Med. 2014 Apr;20(4):214-23 – reference: 25170151 - Science. 2014 Aug 29;345(6200):1048-52 – reference: 26923947 - Dig Dis Sci. 2016 Jun;61(6):1420-1 – reference: 26905627 - ISME J. 2016 Jul;10(7):1669-81 – reference: 21765408 - Nat Methods. 2011 Jul 17;8(9):761-3 – reference: 22134646 - ISME J. 2012 Mar;6(3):610-8 |
| SSID | ssj0001626676 |
| Score | 2.4989824 |
| Snippet | Critical illness may be associated with the loss of normal, “health promoting” bacteria, allowing overgrowth of disease-promoting pathogenic bacteria... Critical illness is hypothesized to associate with loss of "health-promoting" commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This... ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis).... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | 16S RNA Bacteria Children critical care Dysbacteriosis fecal organisms Feces Hospitals human microbial source tracking Microbiomes Nosocomial infection Observation Patients Podcasts Probiotics Sepsis Therapeutic applications |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5FFPpStFp7assW-uLDcrfZTSZ5VKu00EqhWnwL-bHBhetecU_R_95JsrfcFdGXPu5Olk1mksyXTPINIZ-pY1JLsLlkFeQV2DrX2I9zjVOfsBZdSIzo_v4O5-fi6kr-XEr1Fc6EJXrgpLgx9v-CesqlMbriCIdt4bypgHOo0VfGe-SIepYWU3F3BXE6hyEuScX4z69wTb8OkQcp85DefMkPRbr-pzDmv0cll3zP2SZ504PG7ChVdou8qtu3ZCOlkXzYJnB6Pw_bfNmXh840s67pspnPENllP5rEs4Syps0WaQ2yb9NpmOF2yOXZ6cXJ17xPiJBbxvg8Z9wUZqK19qKqpDOgubQldRAyEHEAViMck95YyalzxouJZcKZwuGTE5OyfEfW2llbvycZQOlKXZqKM12VlhrgHjyFQloDhZ-MyHihHmV7tvCQtGKq4qqBCtUrVEWFqoKPyOHwxd_ElPFM2eOg8aFc4LiOL9Dyqre8esnyI3KwsJfqB16nQlSwBARJ-I9PgxiHTIiD6Lae3WIZUSAuwnWcHJHdZN6hJhR4YH1DCawYfqWqq5K2uY603CzBsb3_0bZ98hqRGU_ngg_I2vzmtv5A1u3dvOluPsa-_ggSOQMf priority: 102 providerName: Directory of Open Access Journals |
| Title | Extreme Dysbiosis of the Microbiome in Critical Illness |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27602409 https://www.proquest.com/docview/1953371556 https://www.proquest.com/docview/1817826059 https://pubmed.ncbi.nlm.nih.gov/PMC5007431 https://doaj.org/article/76312f269bba46118c1dfb47667e3557 |
| Volume | 1 |
| WOSCitedRecordID | wos000392586000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2379-5042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626676 issn: 2379-5042 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFCQuvB-BEhmJCwcr8dre2T0hCqmoRCOLl8LJ2ocNloJd4hTRf8-svXEbhHrhYsmetTTyPPbbmfEMwAtmU6kkmlCmCYYJmiJUpMehItcnjKEtpMvofnmPi4VYLmXmA26tL6vc-sTOUdvGuBj51KV7YqTdj786_Rm6qVEuu-pHaOzBvutUloxg_3C-yD5cRFkIr3Mc8pNMTH98dL_rFy4DIWXoxpxf2o-6tv3_wpp_l0xe2oOObv8v93fglkefweteXe7CtaK-Bzf6eZTn9wHnvzcuXhi8PW911bRVGzRlQBAxOKn6hk1Eq-pgOx8hOF6tnKt8AJ-P5p_evAv9ZIXQEAubMOU60jOlVCmSRFqNiksTM4tulBFHTAvCdbLURnJmrS7FzKTC6sjSnRWzOH4Io7qpi8cQIMY2VrFOeKqS2DCNvMSSYSSNxqicjWG6_b658W3H3fSLVd4dP5jIvUTyTiJ5xMfwcnjjtG-5ccXaQyeyYZ1rlt09aNbfcm97ObnQiJWMS61VwulEZSJb6gRJMwqCWziGg63Qcm_BbX4hsTE8H8hkey6houqiOaM1IiKARQdCOYZHvX4MnDDkrn0cUXBHc3ZY3aXU1feuv3fa47onV7P1FG4SeON96fABjDbrs-IZXDe_NlW7nsAeLrG7iok3ikkXb5i46taMnmXHJ9nXPyacGPM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBUQvvB-BAkGCA4doN07iiQ8IAW3VVbcrJAram_EjoZGWpGy2wP4pfiPjPLZdhHrrgWNiWxrFn-fhmcwH8ILZRCiBJhBJjEGMJgsU4ThQpPpSY8iENBndz2OcTNLpVHzYgN_9vzCurLLXiY2itpVxd-QDl-6JkKwff3PyPXCsUS672lNotLA4yJY_KWSrX492aH9fMra3e_R-P-hYBQJDixdBwnWoh0qpPI1jYTUqLkzELDoaH46YZOTTiFwbwZm1Ok-HJkmtDi092XToLkBJ5V8hPY6uhAyneHanQ9EBx1U2lKWDbx9dc4DM5TuECByp-jnr15AE_Muz_btA85zF27v5v32rW3Cj8639t-1huA0bWXkHrrVsm8u7gLu_Fu421N9Z1rqo6qL2q9wnB9g_LNp2VDRWlH7P_uCPZjNnCO7Bp0uR-j5sllWZPQQfMbKRinTMExVHhmnkOeYMQ2E0hvnQg0G_n9J0TdUdt8dMNsEVS2WHANkgQIbcg1erFSdtQ5EL5r5zEFnNc63AmxfV_KvsNIskAxGynHGhtYo5xYsmtLmOkZCYkTOJHmz3IJGdfqrlGUI8eL4aJs3i0kWqzKpTmpOG5D5SuCs8eNDicSUJQ-6a49EIriF1TdT1kbI4brqXJ63X-uhisZ7B9f2jw7EcjyYHj2GL3FTeFklvw-Zifpo9gavmx6Ko50-bI-jDl8vG8R8JAnE4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqFhAX3o9AgSDBgUO0GyfxxAeEKLsrVi2rFS_15voRQ6QlKZstsH-NX8c4r3YR6q0HjomdyIo_z3zjceYj5Bk1CZccdMCTGIIYdBZIxHEg0fSlWqMLqTO6nw9gNksPD_l8i_zu_oVxxyo7m1gbalNqt0c-cOmeCND7sYFtj0XMR5NXx98DpyDlMq2dnEYDkf1s_RPDt-rldIRz_ZzSyfjjm7dBqzAQaHzRKkiYCtVQSmnTOOZGgWRcR9SAk_RhAEmG_IZbpTmjxiibDnWSGhUavDLp0G2GovnfASQZuLp29saz-fvTHR6MFRj0uVGaDr59cKUCMpf94DxwEutnfGEtGfAvnvv3cc0z_m9y_X_-cjfItZZ1-6-bZXKTbGXFLXK50eFc3yYw_rVy-6T-aF2pvKzyyi-tj9TYf5c3haqwLS_8ThfCny4WzkXcIZ8uZNR3yXZRFtl94gNEJpKRilki40hTBcyCpRByrSC0Q48MurkVui237lQ_FqIOu2gqWjSIGg0iZB550T9x3JQaOafvnoNL388VCa9vlMsvorU5Al1HSC1lXCkZM4wkdWisigFRmSHNBI_sdoARreWqxClaPPK0b0ab4xJJssjKE-yThkgsMRDmHrnXYLMfCQXmyuZhC2ygdmOomy1F_rWua540fPbB-cN6Qq4gfMXBdLb_kFxF_sqa09O7ZHu1PMkekUv6xyqvlo_b9eiTo4sG8h8ggntZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme+Dysbiosis+of+the+Microbiome+in+Critical+Illness&rft.jtitle=mSphere&rft.au=McDonald%2C+Daniel&rft.au=Ackermann%2C+Gail&rft.au=Khailova%2C+Ludmila&rft.au=Baird%2C+Christine&rft.date=2016-07-01&rft.issn=2379-5042&rft.eissn=2379-5042&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1128%2FmSphere.00199-16&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5042&client=summon |