Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)

A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroscience Jg. 14; S. 424
Hauptverfasser: Kaiser, Jacques, Mostafa, Hesham, Neftci, Emre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 12.05.2020
Frontiers Media S.A
Schlagworte:
ISSN:1662-453X, 1662-4548, 1662-453X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in spiking neural networks. The challenge preventing this is largely caused by the discrepancy between the dynamical properties of synaptic plasticity and the requirements for gradient backpropagation. Learning algorithms that approximate gradient backpropagation using local error functions can overcome this challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking neural network equipped with local error functions for online learning with no memory overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal representations from spikes relying solely on local information, making it compatible with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived systematically from user-defined cost functions and neural dynamics by leveraging existing autodifferentiation methods of machine learning frameworks. We benchmark our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture, on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks provide continuously learning machines that are relevant to biology and supportive of event-based, low-power computer vision architectures matching the accuracies of conventional computers on tasks where temporal precision and speed are essential.
AbstractList A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in spiking neural networks. The challenge preventing this is largely caused by the discrepancy between the dynamical properties of synaptic plasticity and the requirements for gradient backpropagation. Learning algorithms that approximate gradient backpropagation using local error functions can overcome this challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking neural network equipped with local error functions for online learning with no memory overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal representations from spikes relying solely on local information, making it compatible with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived systematically from user-defined cost functions and neural dynamics by leveraging existing autodifferentiation methods of machine learning frameworks. We benchmark our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture, on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks provide continuously learning machines that are relevant to biology and supportive of event-based, low-power computer vision architectures matching the accuracies of conventional computers on tasks where temporal precision and speed are essential.
A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, discusses similarities between learning dynamics employed in deep Artificial Neural Network and synaptic plasticity in spiking neural networks. The challenge preventing this is largely caused by the discrepancy between the dynamical properties of synaptic plasticity and the requirements for gradient backpropagation. Learning algorithms that approximate gradient backpropagation using locally synthesized gradients can overcome this challenge. Here, we show that synthetic gradients enable the derivation of Deep Continuous Local Learning (DECOLLE) in spiking neural networks. DECOLLE is capable of learning deep spatio-temporal representations from spikes relying solely on local information. Synaptic plasticity rules are derived systematically from user-defined cost functions and neural dynamics by leveraging existing autodifferentiation methods of machine learning frameworks. We benchmark our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture, on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks provide continuously learning machines that are relevant to biology and supportive of event-based, low-power computer vision architectures matching the accuracies of conventional computers on tasks where temporal precision and speed are essential.
A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in spiking neural networks. The challenge preventing this is largely caused by the discrepancy between the dynamical properties of synaptic plasticity and the requirements for gradient backpropagation. Learning algorithms that approximate gradient backpropagation using local error functions can overcome this challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking neural network equipped with local error functions for online learning with no memory overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal representations from spikes relying solely on local information, making it compatible with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived systematically from user-defined cost functions and neural dynamics by leveraging existing autodifferentiation methods of machine learning frameworks. We benchmark our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture, on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks provide continuously learning machines that are relevant to biology and supportive of event-based, low-power computer vision architectures matching the accuracies of conventional computers on tasks where temporal precision and speed are essential.A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in spiking neural networks. The challenge preventing this is largely caused by the discrepancy between the dynamical properties of synaptic plasticity and the requirements for gradient backpropagation. Learning algorithms that approximate gradient backpropagation using local error functions can overcome this challenge. Here, we introduce Deep Continuous Local Learning (DECOLLE), a spiking neural network equipped with local error functions for online learning with no memory overhead for computing gradients. DECOLLE is capable of learning deep spatio temporal representations from spikes relying solely on local information, making it compatible with neurobiology and neuromorphic hardware. Synaptic plasticity rules are derived systematically from user-defined cost functions and neural dynamics by leveraging existing autodifferentiation methods of machine learning frameworks. We benchmark our approach on the event-based neuromorphic dataset N-MNIST and DvsGesture, on which DECOLLE performs comparably to the state-of-the-art. DECOLLE networks provide continuously learning machines that are relevant to biology and supportive of event-based, low-power computer vision architectures matching the accuracies of conventional computers on tasks where temporal precision and speed are essential.
Author Mostafa, Hesham
Kaiser, Jacques
Neftci, Emre
AuthorAffiliation 4 Department of Computer Science, University of California, Irvine , Irvine, CA , United States
1 FZI Research Center for Information Technology , Karlsruhe , Germany
3 Department of Cognitive Sciences, University of California, Irvine , Irvine, CA , United States
2 Department of Bioengineering, University of California, San Diego , La Jolla, CA , United States
AuthorAffiliation_xml – name: 2 Department of Bioengineering, University of California, San Diego , La Jolla, CA , United States
– name: 1 FZI Research Center for Information Technology , Karlsruhe , Germany
– name: 4 Department of Computer Science, University of California, Irvine , Irvine, CA , United States
– name: 3 Department of Cognitive Sciences, University of California, Irvine , Irvine, CA , United States
Author_xml – sequence: 1
  givenname: Jacques
  surname: Kaiser
  fullname: Kaiser, Jacques
– sequence: 2
  givenname: Hesham
  surname: Mostafa
  fullname: Mostafa, Hesham
– sequence: 3
  givenname: Emre
  surname: Neftci
  fullname: Neftci, Emre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32477050$$D View this record in MEDLINE/PubMed
BookMark eNp1UstqGzEUFSWlebT7rspAN8nCjt7SbArFdlLDQAJtoTuhkTSuzFhypZmC_z6ynYYk0IW44uqco_s45-AkxOAA-IjglBBZX3fBhzzFEMMphBTTN-AMcY4nlJFfJ8_up-A85zWEHEuK34FTgqkQkMEzsPy-C3o7eFPd9zqX6IddNS-5jTe56mKq5s5tq1kMgw9jHHPVRKP7qnE6lc9X1eV8MbtrmsXVe_C20312Hx7jBfh5s_gx-zZp7m6Xs6_NxDDGhwkjBlLLueGGUamJNQgbJyhGsOOdo7KFqJYIt8IiJlrOO9t2nEODCZfMtuQCLI-6Nuq12ia_0WmnovbqkIhppXQqjfROcWtwbSVFnNXUCdfC2hFNiWmJQMS4ovXlqLUd242zxoUh6f6F6MuX4H-rVfyrBCaMUl4ELh8FUvwzujyojc_G9b0OrgxLYQolK0fUBfr5FXQdxxTKqPYoRGUtpSyoT88reirl38YKAB4BJsWck-ueIAiqvSnUwRRqbwp1MEWh8FeUsmU9-Ljvyff_Jz4Agy-7Pg
CitedBy_id crossref_primary_10_1038_s41598_023_31365_6
crossref_primary_10_3389_fncom_2022_1037976
crossref_primary_10_1109_TNNLS_2022_3230914
crossref_primary_10_1016_j_cogsys_2023_101188
crossref_primary_10_3389_fnins_2024_1523331
crossref_primary_10_1007_s10044_021_01011_w
crossref_primary_10_3389_fnins_2021_664208
crossref_primary_10_1016_j_neunet_2024_106415
crossref_primary_10_1038_s41598_022_11073_3
crossref_primary_10_1016_j_smhl_2021_100261
crossref_primary_10_1109_LCOMM_2021_3050207
crossref_primary_10_1088_1741_2552_ad1787
crossref_primary_10_3389_fncom_2024_1508297
crossref_primary_10_1088_2632_2153_ad8061
crossref_primary_10_1088_2634_4386_ad05da
crossref_primary_10_1093_tse_tdac050
crossref_primary_10_1088_2634_4386_ac970d
crossref_primary_10_3390_jcm14020550
crossref_primary_10_1088_2634_4386_ace64c
crossref_primary_10_1145_3571155
crossref_primary_10_1109_TCAD_2023_3264167
crossref_primary_10_3390_make5030052
crossref_primary_10_3389_fnins_2024_1516868
crossref_primary_10_1109_TNSRE_2023_3295658
crossref_primary_10_1109_ACCESS_2023_3328220
crossref_primary_10_1016_j_neucom_2023_126234
crossref_primary_10_1002_adma_202203352
crossref_primary_10_1109_TNNLS_2022_3153985
crossref_primary_10_1109_ACCESS_2022_3179968
crossref_primary_10_1109_JPROC_2023_3308088
crossref_primary_10_1002_aisy_202400265
crossref_primary_10_1109_JETCAS_2020_3032058
crossref_primary_10_1109_TETCI_2024_3370028
crossref_primary_10_1109_TPAMI_2023_3286121
crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1109_TSP_2021_3121632
crossref_primary_10_1016_j_chaos_2024_115060
crossref_primary_10_1109_TNNLS_2022_3144296
crossref_primary_10_3389_fnins_2022_1079357
crossref_primary_10_1016_j_patrec_2025_05_018
crossref_primary_10_1109_JETCAS_2020_3040248
crossref_primary_10_1109_TNNLS_2021_3109958
crossref_primary_10_3390_nano13243139
crossref_primary_10_1016_j_neucom_2025_131402
crossref_primary_10_1109_TVLSI_2022_3208191
crossref_primary_10_1155_2022_4242235
crossref_primary_10_1007_s11760_023_02569_0
crossref_primary_10_3390_s23249781
crossref_primary_10_3389_fnins_2023_1270090
crossref_primary_10_1038_s41928_022_00840_9
crossref_primary_10_1109_JSEN_2024_3454153
crossref_primary_10_1162_neco_a_01702
crossref_primary_10_1109_TBCAS_2022_3209073
crossref_primary_10_1016_j_neucom_2023_126773
crossref_primary_10_1063_5_0238638
crossref_primary_10_1088_2634_4386_ad3a95
crossref_primary_10_1109_ACCESS_2022_3209671
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_1109_TBCAS_2024_3470520
crossref_primary_10_1038_s41598_024_78290_w
crossref_primary_10_1038_s41598_021_02779_x
crossref_primary_10_3389_fnins_2023_1047008
crossref_primary_10_1109_TCYB_2022_3188015
crossref_primary_10_1109_TNNLS_2021_3055421
crossref_primary_10_3390_electronics14010043
crossref_primary_10_1016_j_asoc_2025_113471
crossref_primary_10_1088_2634_4386_ada852
crossref_primary_10_1109_TPAMI_2023_3311336
crossref_primary_10_1109_TNNLS_2023_3336690
crossref_primary_10_1109_TCDS_2021_3073846
crossref_primary_10_3390_photonics9040217
crossref_primary_10_1007_s10489_024_05982_1
crossref_primary_10_1002_aisy_202400353
crossref_primary_10_1088_1674_1056_acb9f6
crossref_primary_10_1088_2634_4386_ac8828
crossref_primary_10_3389_fnins_2024_1372257
crossref_primary_10_1016_j_neunet_2025_107789
crossref_primary_10_1088_2634_4386_ac8bef
crossref_primary_10_1016_j_neucom_2023_02_026
crossref_primary_10_1109_THMS_2022_3176212
crossref_primary_10_1109_ACCESS_2025_3588665
crossref_primary_10_1063_5_0162712
crossref_primary_10_3389_fnins_2021_629892
crossref_primary_10_1109_LSP_2023_3289111
crossref_primary_10_1007_s10015_022_00769_4
crossref_primary_10_1109_MM_2022_3195634
crossref_primary_10_3389_fnins_2024_1449181
crossref_primary_10_1016_j_neucom_2022_06_036
crossref_primary_10_1038_s41467_021_27653_2
crossref_primary_10_1088_2634_4386_ad2ec3
crossref_primary_10_1109_ACCESS_2025_3582564
crossref_primary_10_1088_2634_4386_ac4a83
crossref_primary_10_1088_2634_4386_ad6733
crossref_primary_10_3389_fnins_2022_760298
crossref_primary_10_1109_TNNLS_2024_3377717
crossref_primary_10_3389_fnins_2023_1107089
crossref_primary_10_1109_TCDS_2024_3396431
crossref_primary_10_1162_neco_a_01752
crossref_primary_10_1088_2634_4386_acf1c5
crossref_primary_10_3389_fnins_2022_1018006
crossref_primary_10_3389_fnins_2022_929644
crossref_primary_10_3389_fnins_2021_608567
crossref_primary_10_1063_5_0179424
crossref_primary_10_1088_2634_4386_ac5ac5
crossref_primary_10_1109_TSG_2025_3547928
crossref_primary_10_1038_s42256_023_00650_4
crossref_primary_10_1109_JPROC_2020_3045625
crossref_primary_10_1162_neco_a_01480
crossref_primary_10_1016_j_neucom_2022_11_046
crossref_primary_10_1109_TETC_2024_3440932
crossref_primary_10_1038_s41467_020_17236_y
crossref_primary_10_1016_j_neunet_2025_107154
crossref_primary_10_1109_LED_2023_3347333
crossref_primary_10_1109_TCDS_2023_3308347
crossref_primary_10_1038_s41377_021_00686_4
crossref_primary_10_1109_LCOMM_2021_3050242
crossref_primary_10_1109_TCSII_2021_3098633
crossref_primary_10_1109_TNNLS_2022_3195918
crossref_primary_10_3389_fnins_2023_1266003
crossref_primary_10_1016_j_neucom_2024_128657
crossref_primary_10_1109_TBCAS_2020_3036081
crossref_primary_10_1109_JSEN_2021_3098013
crossref_primary_10_1016_j_engappai_2025_111543
crossref_primary_10_1016_j_neunet_2022_07_010
crossref_primary_10_1016_j_eswa_2025_128850
Cites_doi 10.1038/nn.2479
10.1016/j.neunet.2017.08.008
10.1162/neco_a_01086
10.3389/fnins.2016.00508
10.1038/nn1643
10.1017/CBO9780511815706
10.1007/s10827-007-0038-6
10.3389/fnins.2017.00324
10.3389/fnins.2018.00608
10.1162/NECO_a_00182
10.1016/j.neuron.2009.07.018
10.1109/JPROC.2014.2313954
10.1109/MSP.2019.2931595
10.3389/fnins.2015.00437
10.1073/pnas.1604850113
10.1109/JSSC.2007.914337
10.1126/science.1254642
10.1109/AICAS48895.2020.9073998
10.1016/j.neuron.2013.11.030
10.1162/neco.2006.18.6.1318
10.1109/TCSI.2016.2616169
10.1038/ncomms13276
10.1109/MM.2018.112130359
10.1109/5.726791
10.1162/089976602760407955
10.1162/neco.2007.19.11.2881
10.1017/CBO9781107447615
10.1162/neco.1989.1.2.270
ContentType Journal Article
Copyright Copyright © 2020 Kaiser, Mostafa and Neftci.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Kaiser, Mostafa and Neftci. 2020 Kaiser, Mostafa and Neftci
Copyright_xml – notice: Copyright © 2020 Kaiser, Mostafa and Neftci.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Kaiser, Mostafa and Neftci. 2020 Kaiser, Mostafa and Neftci
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.00424
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_6dc29d8416594e7eb09e3a43cb3713ce
PMC7235446
32477050
10_3389_fnins_2020_00424
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-53c04d66c6c548a3dc12ce74210f6fe48b019812b7d157b66fdbf660c23685db3
IEDL.DBID DOA
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537106300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Tue Oct 14 19:09:08 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Fri Sep 05 13:35:40 EDT 2025
Fri Jul 25 11:56:36 EDT 2025
Mon Jul 21 06:06:22 EDT 2025
Sat Nov 29 02:54:51 EST 2025
Tue Nov 18 21:26:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neuromorphic hardware
surrogate gradient algorithm
embedded learning
spiking neural network
backpropagataon
Language English
License Copyright © 2020 Kaiser, Mostafa and Neftci.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-53c04d66c6c548a3dc12ce74210f6fe48b019812b7d157b66fdbf660c23685db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neuromorphic Engineering, a section of the journal Frontiers in Neuroscience
Edited by: Kaushik Roy, Purdue University, United States
Reviewed by: James Courtney Knight, University of Sussex, United Kingdom; Yulia Sandamirskaya, Intel, Germany
OpenAccessLink https://doaj.org/article/6dc29d8416594e7eb09e3a43cb3713ce
PMID 32477050
PQID 2401489888
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_6dc29d8416594e7eb09e3a43cb3713ce
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7235446
proquest_miscellaneous_2408540879
proquest_journals_2401489888
pubmed_primary_32477050
crossref_primary_10_3389_fnins_2020_00424
crossref_citationtrail_10_3389_fnins_2020_00424
PublicationCentury 2000
PublicationDate 2020-05-12
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Eliasmith (B15) 2004
Huh (B21) 2017
Gerstner (B17) 2002
Mostafa (B35) 2017
Gerstner (B18) 2014
Sussillo (B45) 2009; 63
Bohte (B8) 2000
Bartolozzi (B3) 2006
Chicca (B11) 2013; 102
Tran (B46) 2015
Pfister (B41) 2006; 18
Gütig (B19) 2006; 9
Jaderberg (B23) 2016
Bellec (B6) 2018
Lillicrap (B31) 2014
Springenberg (B44) 2014
Williams (B48) 1989; 1
Lillicrap (B32) 2016; 7
Clopath (B12) 2010; 13
Kubilius (B27) 2019
Baldi (B2) 2017; 95
Payvand (B40) 2020
Zenke (B49) 2017
Neftci (B36) 2017; 11
Amir (B1) 2017
Lichtsteiner (B30) 2008; 43
Neftci (B38) 2019; 36
Merolla (B34) 2014; 345
Kingma (B26) 2014
Courbariaux (B13) 2016
Maass (B33) 2002; 14
Jaeger (B24) 2001
Esser (B16) 2016; 113
Neftci (B37) 2011; 23
Rastegari (B42) 2016
Shrestha (B43) 2018
Bartunov (B4) 2018
Brader (B9) 2007; 19
Orchard (B39) 2015; 9
LeCun (B28) 1998; 86
Kaiser (B25) 2018
Baydin (B5) 2017; 18
Lee (B29) 2016; 10
Urbanczik (B47) 2014; 81
Brette (B10) 2007; 23
Iyer (B22) 2018
Davies (B14) 2018; 38
Bellec (B7) 2019
Huayaney (B20) 2016; 63
References_xml – volume: 13
  start-page: 344
  year: 2010
  ident: B12
  article-title: Connectivity reflects coding: a model of voltage-based STDP with homeostasis
  publication-title: Nat. Neurosci
  doi: 10.1038/nn.2479
– volume: 95
  start-page: 110
  year: 2017
  ident: B2
  article-title: Learning in the machine: the symmetries of the deep learning channel
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.08.008
– year: 2017
  ident: B49
  article-title: Superspike: Supervised learning in multi-layer spiking neural networks
  publication-title: arXiv [Preprint]. arXiv:1705.11146
  doi: 10.1162/neco_a_01086
– volume: 10
  start-page: 508
  year: 2016
  ident: B29
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2016.00508
– start-page: 525
  volume-title: European Conference on Computer Vision
  year: 2016
  ident: B42
  article-title: “Xnor-net: Imagenet classification using binary convolutional neural networks,”
– year: 2018
  ident: B25
  article-title: Synaptic plasticity for deep continuous local learning
  publication-title: arXiv [Preprint]. arXiv:1812.10766
– volume: 9
  start-page: 420
  year: 2006
  ident: B19
  article-title: The tempotron: a neuron that learns spike timing-based decisions
  publication-title: Nat. Neurosci
  doi: 10.1038/nn1643
– start-page: 1
  volume-title: Brain Inspired Cognitive Systems, BICS 2006
  year: 2006
  ident: B3
  article-title: “Silicon synaptic homeostasis,”
– year: 2002
  ident: B17
  publication-title: Spiking Neuron Models. Single Neurons, Populations, Plasticity
  doi: 10.1017/CBO9780511815706
– volume: 23
  start-page: 349
  year: 2007
  ident: B10
  article-title: Simulation of networks of spiking neurons: a review of tools and strategies
  publication-title: J. Comput. Neurosci
  doi: 10.1007/s10827-007-0038-6
– year: 2004
  ident: B15
  publication-title: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems
– volume: 11
  start-page: 324
  year: 2017
  ident: B36
  article-title: Event-driven random back-propagation: Enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2017.00324
– year: 2014
  ident: B44
  article-title: Striving for simplicity: the all convolutional net
  publication-title: arXiv [Preprint]. arXiv:1412.6806
– year: 2017
  ident: B35
  article-title: Deep supervised learning using local errors
  publication-title: arXiv [Preprint]. arXiv:1711.06756
  doi: 10.3389/fnins.2018.00608
– volume: 23
  start-page: 2457
  year: 2011
  ident: B37
  article-title: A systematic method for configuring VLSI networks of spiking neurons
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00182
– volume: 63
  start-page: 544
  year: 2009
  ident: B45
  article-title: Generating coherent patterns of activity from chaotic neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.018
– year: 2018
  ident: B6
  article-title: Long short-term memory and learning-to-learn in networks of spiking neurons
  publication-title: arXiv [Preprint]. arXiv:1803.09574
– volume: 102
  start-page: 1367
  year: 2013
  ident: B11
  article-title: Neuromorphic electronic circuits for building autonomous cognitive systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2313954
– volume: 36
  start-page: 51
  year: 2019
  ident: B38
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2019.2931595
– year: 2001
  ident: B24
  publication-title: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note
– volume: 9
  start-page: 437
  year: 2015
  ident: B39
  article-title: Converting static image datasets to spiking neuromorphic datasets using saccades
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2015.00437
– start-page: 9368
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: B4
  article-title: “Assessing the scalability of biologically-motivated deep learning algorithms and architectures,”
– volume: 113
  start-page: 11441
  year: 2016
  ident: B16
  article-title: Convolutional networks for fast, energy-efficient neuromorphic computing
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.1604850113
– volume: 43
  start-page: 566
  year: 2008
  ident: B30
  article-title: An 128x128 120dB 15μs-latency temporal contrast vision sensor
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2007.914337
– start-page: 1412
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: B43
  article-title: “Slayer: Spike layer error reassignment in time,”
– volume: 345
  start-page: 668
  year: 2014
  ident: B34
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume-title: 2020 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
  year: 2020
  ident: B40
  article-title: “Error-triggered three-factor learning dynamics for crossbar arrays,”
  doi: 10.1109/AICAS48895.2020.9073998
– start-page: 4489
  volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2015
  ident: B46
  article-title: “Learning spatiotemporal features with 3D convolutional networks,”
– volume: 81
  start-page: 521
  year: 2014
  ident: B47
  article-title: Learning by the dendritic prediction of somatic spiking
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.030
– year: 2018
  ident: B22
  article-title: Is neuromorphic mnist neuromorphic? Analyzing the discriminative power of neuromorphic datasets in the time domain
  publication-title: arXiv [Preprint]. arXiv:1807.01013
– volume: 18
  start-page: 1318
  year: 2006
  ident: B41
  article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.6.1318
– volume: 63
  start-page: 2189
  year: 2016
  ident: B20
  article-title: Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with calcium-based dynamics
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/TCSI.2016.2616169
– year: 2016
  ident: B13
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1
  publication-title: arXiv [Preprint]. arXiv:1602.02830
– volume: 7
  start-page: 13276
  year: 2016
  ident: B32
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nat. Commun
  doi: 10.1038/ncomms13276
– volume: 38
  start-page: 82
  year: 2018
  ident: B14
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– start-page: 419
  volume-title: ESANN
  year: 2000
  ident: B8
  article-title: “Spikeprop: backpropagation for networks of spiking neurons,”
– year: 2019
  ident: B7
  article-title: Biologically inspired alternatives to backpropagation through time for learning in recurrent neural nets
  publication-title: arXiv [Preprint]. arXiv:1901.09049
– volume: 86
  start-page: 2278
  year: 1998
  ident: B28
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 18
  start-page: 5595
  year: 2017
  ident: B5
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res
– volume: 14
  start-page: 2531
  year: 2002
  ident: B33
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput
  doi: 10.1162/089976602760407955
– year: 2014
  ident: B26
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv Preprint. arXiv:1412.6980
– start-page: 7243
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B1
  article-title: “A low power, fully event-based gesture recognition system,”
– volume: 19
  start-page: 2881
  year: 2007
  ident: B9
  article-title: Learning real world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.11.2881
– year: 2019
  ident: B27
  article-title: Brain-like object recognition with high-performing shallow recurrent ANNs
  publication-title: arXiv [Preprint]. arXiv:1909.06161
– year: 2014
  ident: B31
  article-title: Random feedback weights support learning in deep neural networks
  publication-title: arXiv [Preprint]. arXiv:1411.0247
– year: 2014
  ident: B18
  publication-title: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
  doi: 10.1017/CBO9781107447615
– volume: 1
  start-page: 270
  year: 1989
  ident: B48
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.270
– year: 2016
  ident: B23
  article-title: Decoupled neural interfaces using synthetic gradients
  publication-title: arXiv [Preprint]. arXiv:1608.05343
– year: 2017
  ident: B21
  article-title: Gradient descent for spiking neural networks
  publication-title: arXiv [Preprint]. arXiv:1706.04698
SSID ssj0062842
Score 2.6502807
Snippet A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 424
SubjectTerms Back propagation
backpropagataon
Computers
Deep learning
embedded learning
Firing pattern
Learning algorithms
Machine learning
Neural networks
neuromorphic hardware
Neurons
Neuroplasticity
Neuroscience
Propagation
spiking neural network
surrogate gradient algorithm
Synaptic plasticity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagy4ELr4XdwIKMhBB7iOokjh2f0O62K5CqUvGQ9hYlfiyVWLf0gdR_z4zjVhShvXDIJXEUx2PPfOMZf0PIG-Y0Z7YSqSkNxyM5PFWOmxTMTSutqACUV6HYhByPq6srNYkbbsuYVrnViUFRm5nGPfI-WB5A7goctvfznylWjcLoaiyhcZccIFMZ75GD8-F48nmriwUo3xDvFHg2CMB5F6gEt0z1nZ965OvOMbeL53zPMAX-_n-Bzr9zJ_8wRpcP__c3HpEHEYbSs27ePCZ3rH9CDs88uOA3G_qWhsTQsON-SD5-2fgGNIumE4DamIW92tBBV8l-SQH00oG1c4o8V1O_nq2XdIQGkkbq1mv6bjC8-DQaDU-fkm-Xw68XH9JYgSHVZSlWaVloxo0QWmgYvKYwOsu1BW86Y044y6sWECJAhFaarJStEM60Tgimc-S1N23xjPT8zNtjQmGyFEwDntGN5cq4SkvXNko0mcsk0zwh_e3w1zrSk2OVjB81uCkosDoIrEaB1UFgCTndvTHvqDluaXuOEt21Q1LtcGO2uK7jGq2F0bkyGIctFbfStkzZouGFbgtw5bVNyMlWpnVc6fCNnUAT8nr3GNYoBl4ab2HU60AjB5dUCTnqps-uJwBopWQlS4jcm1h7Xd1_4qffAw-4zIsSvPnnt3frBbmP44AZD1l-Qnqrxdq-JPf0r9V0uXgVF8xvycsesA
  priority: 102
  providerName: ProQuest
Title Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)
URI https://www.ncbi.nlm.nih.gov/pubmed/32477050
https://www.proquest.com/docview/2401489888
https://www.proquest.com/docview/2408540879
https://pubmed.ncbi.nlm.nih.gov/PMC7235446
https://doaj.org/article/6dc29d8416594e7eb09e3a43cb3713ce
Volume 14
WOSCitedRecordID wos000537106300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5By4ELAsojUFZGQogeojqJY8fHtrsVlbZLxENaTlHiB6wEpmq3SPvvmXGyqy5CcOEQH_JQnPFjvs-efAPwinsjuKtkaksr6JcckWovbIruplNOVgjKq5hsQs1m1Xyu6xupvigmrJcH7g13KK3JtaXNsVILp1zHtStaUZiuQH5lHM2-iHrWZKqfgyVOunm_KYkUTB_6sAikzZ1THJfIxZYTilr9fwKYv8dJ3nA8p_fh3oAY2VFf0wdwy4WHsHcUkC1_X7HXLMZwxsXxPTj7sAotTgKG1YiKKWB6uWLjPun8FUN8ysbOXTCSpFqEayT9bEq-jA0qq1_Ym_Hk5N10Ojl4BJ9OJx9P3qZDsoTUlKVcpmVhuLBSGmmQhLSFNVluHBLfjHvpnag6BHPozTtls1J1UnrbeSm5yUmC3nbFY9gJP4J7CgzbteAGoYdpndDWV0b5rtWyzXymuBEJHK6t15hBSZwSWnxrkFGQvZto74bs3UR7J3CweeKiV9H4y73H1CCb-0j_Op7AXtEMvaL5V69IYH_dnM0wKPEdgpZPNXL-BF5uLuNwoj2SNji0ehMV3_BQOoEnfetvaoLYUyle8gTUVr_Yqur2lbD4GiW7VV6USLyf_Y9vew53yVoUwpDl-7CzvLx2L-CO-blcXF2O4LaaVyPYPZ7M6vejOCqwPM9rKhWWu_XZef35F8SlE4c
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXXuVhKLBIgOjBih_rXfuAUGlSNaoJkShSb669uy6RqB3yAOVP8RuZ2dgWQai3HjjkYjvOZv3tzDee2W8AXnml4p6JhasjzWlLDneTkmsX3U0hjYiRlMe22YQcjeLT02S8Bb_avTBUVtnaRGuoda3oHXkPPQ8y9wQDtvfT7y51jaLsattCYw2LY7P6iSHb_N2wj8_3dRAcDk4Ojtymq4Crokgs3ChUHtdCKKGQreehVn6gDEaIvleK0vC4QNaDbq-Q2o9kIUSpi1IITwWk1a6LEO97Da4jjQhiWyo4bi2_QFNvs6uCdiLhzddpUQwCk15ZTSpSBw-okowHfMMN2m4B_6K4f1dq_uH6Du_8b5N2F243JJvtr1fFPdgy1X3Y2a_yRX2xYm-YLXu1-YQdGH5eVTnaTcXGGEhQjflixfp47GKi5gwpPesbM2Wk4jWplvVyzlJy_6wRpj1nb_uDg09pOth7AF-u5E89hO2qrsxjYLgUQk8hW1O54YkuYyXLIk9E7pe-9BR3oNc-7kw14uvUA-RbhkEYASSzAMkIIJkFiAN73Tema-GRS679QAjqriPJcHugnp1njQXKhFZBoinLHCXcSFN4iQlzHqoilH6ojAO7LYayxo7hb3QAcuBldxotEKWV8srgrGdWJA8_MnHg0Rqu3UiQrkvpRZ4DcgPIG0PdPFNNvlqVcxmEEefiyeXDegE3j04-plk6HB0_hVs0J1Tb4Qe7sL2YLc0zuKF-LCbz2XO7VBmcXTXMfwMonXlx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghAXXuVhKLBIgOjBih_rXfuAUGkSETUKkQCpN2Pvo43UOiFxQPlr_DpmNnZEEOqtBw6-2Ov1ev3tzDee2RmAV4FVPDCp8HWiOW3J4X5mufZR3ZTSiBRJeeqKTcjRKD05ycY78KvdC0Nhla1MdIJaTxX9I--g5kHmnpHBZpuwiHG3_3723acKUuRpbctprCFybFY_0XxbvBt08Vu_jqJ-78vRR7-pMOCrJBG1n8Qq4FoIJRQy9yLWKoyUQWsxDKywhqclMiBUgaXUYSJLIawurRCBiihvuy5j7PcaXJcce6OwwWjcagGBYt95WgXtSsLO1y5SNAizjq0mFWUKjyiqjEd8SyW6ygH_ort_R23-oQb7d_7nCbwLtxvyzQ7Xq-Ue7JjqPuwdVkU9vVixN8yFwzo_wx4MPq-qAuWpYmM0MCj2vF6xLp67mKgFQ6rPusbMGGX3mlTL6XLBhkQLWJOw9pS97faOPg2HvYMH8PVKXuoh7FbTyjwGhkskDhSyOFUYnmmbKmnLIhNFaEMZKO5Bp_30uWqSslNtkPMcjTMCS-7AkhNYcgcWDw42d8zWCUkuafuB0LRpR6nE3Ynp_DRvJFMutIoyTd7nJONGmjLITFzwWJWxDGNlPNhv8ZQ38g2fsQGTBy83l1EykbupqAzOeu6S5-EhMw8eraG7GQnSeCmDJPBAboF6a6jbV6rJmct-LqM44Vw8uXxYL-AmojsfDkbHT-EWTQmFfITRPuzW86V5BjfUj3qymD93q5bBt6tG-W8y6oIt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synaptic+Plasticity+Dynamics+for+Deep+Continuous+Local+Learning+%28DECOLLE%29&rft.jtitle=Frontiers+in+neuroscience&rft.au=Kaiser%2C+Jacques&rft.au=Mostafa%2C+Hesham&rft.au=Neftci%2C+Emre&rft.date=2020-05-12&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.00424&rft_id=info%3Apmid%2F32477050&rft.externalDocID=PMC7235446
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon