HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python

The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation m...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics Vol. 7; p. 14
Main Authors: Wiecki, Thomas V., Sofer, Imri, Frank, Michael J.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 01.01.2013
Frontiers Media S.A
Subjects:
ISSN:1662-5196, 1662-5196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
AbstractList The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on reaction times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of reaction time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject / condition than non-hierarchical method, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g. fMRI) influence decision making parameters. This paper will first describe the theoretical background of drift-diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the chi-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ2-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/
Author Sofer, Imri
Wiecki, Thomas V.
Frank, Michael J.
AuthorAffiliation Department of Cognitive, Linguistic and Psychological Sciences, Brown University Providence, RI, USA
AuthorAffiliation_xml – name: Department of Cognitive, Linguistic and Psychological Sciences, Brown University Providence, RI, USA
Author_xml – sequence: 1
  givenname: Thomas V.
  surname: Wiecki
  fullname: Wiecki, Thomas V.
– sequence: 2
  givenname: Imri
  surname: Sofer
  fullname: Sofer, Imri
– sequence: 3
  givenname: Michael J.
  surname: Frank
  fullname: Frank, Michael J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23935581$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhi1URNvAnRNaiQuXDfb6a80BCRpKKjWCQ-_WrNduHG3sYu8i5d_jJG3VVuJka_zMO-OZ9xydhBgsQu8JnlPaqs8u-ODmDSZ0jjEm7BU6I0I0NSdKnDy5n6LznDcYi0Zw-QadNlRRzltyhlbLxWL1pVp6myCZtTcwVN9hZ7OHUNk8-i2MPoYqumpc22qRvBvrhXduyvvwKvZ2qHyofu_GdQxv0WsHQ7bv7s8Zurn8cXOxrK9__by6-HZdG87FWDOjeqsYdLw3gqrOWNVy4iRnTBrRC6EktsJ1AnNjMTAnjDSNki0tPCN0hq6Osn2Ejb5Lpcm00xG8PgRiutWQRm8Gq7FxHbFCmZ4A64kDTlumFFBQBNpSfYa-HrXupm5re2PDmGB4Jvr8Jfi1vo1_NZWUCImLwKd7gRT_TGVkeuuzscMAwcYpa8LKfngrVVPQjy_QTZxSKJPSTaM4k5hLVagPTzt6bOVhaQXAR8CkmHOy7hEhWO99oQ--0Htf6IMvSop4kWL8eNhs-ZMf_p_4Dw6LvRg
CitedBy_id crossref_primary_10_1177_25152459251357565
crossref_primary_10_3389_fpsyt_2017_00001
crossref_primary_10_1016_j_actpsy_2020_103122
crossref_primary_10_1016_j_cognition_2022_105356
crossref_primary_10_1007_s00426_022_01724_5
crossref_primary_10_1111_ejn_16048
crossref_primary_10_1016_j_neuroimage_2021_118827
crossref_primary_10_1016_j_trb_2021_04_001
crossref_primary_10_1137_23M1577110
crossref_primary_10_1016_j_pneurobio_2022_102367
crossref_primary_10_1111_adb_12412
crossref_primary_10_1162_jocn_a_02258
crossref_primary_10_1016_j_cognition_2025_106280
crossref_primary_10_3758_s13423_020_01742_7
crossref_primary_10_1016_j_neuropsychologia_2015_12_017
crossref_primary_10_1177_2167702614565359
crossref_primary_10_1126_scitranslmed_adp1723
crossref_primary_10_1016_j_jmp_2016_11_003
crossref_primary_10_1093_braincomms_fcaf283
crossref_primary_10_1016_j_cognition_2015_10_009
crossref_primary_10_1016_j_jpain_2023_03_003
crossref_primary_10_1016_j_paid_2024_113033
crossref_primary_10_1523_JNEUROSCI_1103_20_2020
crossref_primary_10_1016_j_brs_2025_05_105
crossref_primary_10_1371_journal_pbio_3002978
crossref_primary_10_1523_JNEUROSCI_2036_14_2015
crossref_primary_10_1093_scan_nsaa089
crossref_primary_10_7554_eLife_42607
crossref_primary_10_7554_eLife_64978
crossref_primary_10_1016_j_intell_2022_101704
crossref_primary_10_1016_j_jmp_2016_03_003
crossref_primary_10_1016_j_schres_2017_12_018
crossref_primary_10_1016_j_jmp_2020_102449
crossref_primary_10_3389_fnint_2018_00001
crossref_primary_10_3389_fpsyt_2021_680811
crossref_primary_10_1002_sdr_1712
crossref_primary_10_1098_rsos_202159
crossref_primary_10_1038_s41598_017_06116_z
crossref_primary_10_1080_02699931_2025_2519665
crossref_primary_10_1080_02643294_2019_1610371
crossref_primary_10_3389_frai_2021_531316
crossref_primary_10_1093_nc_nix007
crossref_primary_10_1073_pnas_1800795115
crossref_primary_10_1016_j_neuroimage_2021_118841
crossref_primary_10_1080_20445911_2023_2187714
crossref_primary_10_1016_j_cortex_2019_06_003
crossref_primary_10_3389_fnins_2022_794681
crossref_primary_10_7717_peerj_4701
crossref_primary_10_1007_s12144_022_03797_2
crossref_primary_10_1111_psyp_14749
crossref_primary_10_3389_fncom_2017_00029
crossref_primary_10_1080_13506285_2024_2435652
crossref_primary_10_1016_j_jad_2016_09_011
crossref_primary_10_1126_science_abm9922
crossref_primary_10_1177_09567976211032225
crossref_primary_10_1007_s12144_021_01686_8
crossref_primary_10_1186_s13023_020_1298_8
crossref_primary_10_7554_eLife_85223
crossref_primary_10_1073_pnas_2101508119
crossref_primary_10_1016_j_cognition_2025_106146
crossref_primary_10_1177_1747021819844219
crossref_primary_10_7554_eLife_36018
crossref_primary_10_3389_fpsyt_2021_687680
crossref_primary_10_1038_s41386_019_0377_9
crossref_primary_10_1007_s00429_021_02241_8
crossref_primary_10_7554_eLife_98345_3
crossref_primary_10_1080_00273171_2025_2561944
crossref_primary_10_3758_s13428_013_0369_3
crossref_primary_10_1016_j_cognition_2019_01_009
crossref_primary_10_1371_journal_pone_0275914
crossref_primary_10_1016_j_cortex_2022_05_026
crossref_primary_10_3758_s13423_022_02077_1
crossref_primary_10_3758_s13421_025_01748_3
crossref_primary_10_1016_j_ajp_2023_103721
crossref_primary_10_3389_fpsyg_2024_1380196
crossref_primary_10_1016_j_schres_2025_06_012
crossref_primary_10_1111_cogs_70037
crossref_primary_10_1080_16066359_2025_2549295
crossref_primary_10_1016_j_jmp_2016_04_012
crossref_primary_10_1080_02699931_2024_2431152
crossref_primary_10_1080_13825585_2023_2271583
crossref_primary_10_3758_s13414_019_01733_4
crossref_primary_10_1016_j_psychsport_2025_102999
crossref_primary_10_1016_j_concog_2023_103493
crossref_primary_10_1007_s10802_022_00936_y
crossref_primary_10_1111_cogs_70041
crossref_primary_10_7554_eLife_37321
crossref_primary_10_1371_journal_pone_0226428
crossref_primary_10_1080_17470919_2022_2115550
crossref_primary_10_1515_jafio_2015_0016
crossref_primary_10_1038_s41562_019_0682_7
crossref_primary_10_1038_s41598_020_60943_1
crossref_primary_10_1521_pedi_2017_31_299
crossref_primary_10_3389_fpsyg_2022_1039172
crossref_primary_10_1016_j_cognition_2022_105304
crossref_primary_10_1027_1618_3169_a000422
crossref_primary_10_1186_s12888_025_07200_9
crossref_primary_10_3390_brainsci10080540
crossref_primary_10_1007_s10802_022_01012_1
crossref_primary_10_1016_j_neuroimage_2014_12_072
crossref_primary_10_7554_eLife_49547
crossref_primary_10_7554_eLife_63607
crossref_primary_10_1007_s00426_020_01337_w
crossref_primary_10_1016_j_concog_2024_103763
crossref_primary_10_1038_s41562_019_0584_8
crossref_primary_10_1111_desc_13252
crossref_primary_10_3758_s13414_017_1304_y
crossref_primary_10_1080_00273171_2023_2171356
crossref_primary_10_3758_s13428_018_1172_y
crossref_primary_10_1162_jocn_a_01134
crossref_primary_10_1016_j_bpsc_2024_02_005
crossref_primary_10_1016_j_neuropsychologia_2021_107821
crossref_primary_10_1177_1747021820913016
crossref_primary_10_1080_0361073X_2024_2409588
crossref_primary_10_1038_s41598_021_82530_8
crossref_primary_10_1038_s41598_021_90990_1
crossref_primary_10_1016_j_ijhcs_2023_103200
crossref_primary_10_1016_j_neubiorev_2023_105083
crossref_primary_10_3389_fpsyg_2016_01324
crossref_primary_10_1038_s41598_023_29614_9
crossref_primary_10_7554_eLife_98345
crossref_primary_10_1016_j_concog_2023_103475
crossref_primary_10_1093_scan_nsaf009
crossref_primary_10_3390_electronics12030485
crossref_primary_10_3390_nu13062001
crossref_primary_10_1038_s41467_023_41130_y
crossref_primary_10_1038_s41539_025_00343_0
crossref_primary_10_3389_fncom_2021_678232
crossref_primary_10_1080_13506285_2020_1733155
crossref_primary_10_3389_fpsyg_2018_01423
crossref_primary_10_1016_j_bpsgos_2021_12_005
crossref_primary_10_1007_s10802_025_01351_9
crossref_primary_10_1038_s41598_022_22226_9
crossref_primary_10_1002_eat_24176
crossref_primary_10_1016_j_ijpsycho_2024_112359
crossref_primary_10_1371_journal_pcbi_1009096
crossref_primary_10_3758_s13414_015_0911_8
crossref_primary_10_1177_1948550617703174
crossref_primary_10_3758_s13428_022_01793_9
crossref_primary_10_1038_s41598_022_26333_5
crossref_primary_10_3758_s13415_020_00845_x
crossref_primary_10_1016_j_cognition_2022_105207
crossref_primary_10_1016_j_neuroimage_2018_03_035
crossref_primary_10_1016_j_physbeh_2023_114235
crossref_primary_10_1073_pnas_1818430116
crossref_primary_10_1016_j_concog_2024_103786
crossref_primary_10_3758_s13423_016_1199_y
crossref_primary_10_1177_17470218241283630
crossref_primary_10_1186_s41235_022_00412_7
crossref_primary_10_3389_fpsyg_2021_675558
crossref_primary_10_1093_schbul_sbx177
crossref_primary_10_1111_desc_13478
crossref_primary_10_1152_jn_00498_2016
crossref_primary_10_1111_ejn_15918
crossref_primary_10_1093_cercor_bhac452
crossref_primary_10_1186_s13023_019_1221_3
crossref_primary_10_1007_s00429_020_02101_x
crossref_primary_10_1080_20445911_2018_1539002
crossref_primary_10_7554_eLife_57012
crossref_primary_10_1016_j_cub_2016_01_051
crossref_primary_10_1038_s41467_021_23890_7
crossref_primary_10_1007_s42113_025_00252_w
crossref_primary_10_1016_j_neuroimage_2021_118798
crossref_primary_10_1093_brain_awz013
crossref_primary_10_1162_jocn_a_00596
crossref_primary_10_1371_journal_pcbi_1010255
crossref_primary_10_1016_j_cognition_2019_04_026
crossref_primary_10_3389_fnint_2019_00053
crossref_primary_10_1371_journal_pone_0140361
crossref_primary_10_1038_s41467_022_35121_8
crossref_primary_10_1016_j_neuroimage_2015_12_015
crossref_primary_10_1038_s41598_019_52359_3
crossref_primary_10_1177_27538699241231026
crossref_primary_10_3389_fnins_2018_00957
crossref_primary_10_7554_eLife_60535
crossref_primary_10_1038_s41467_020_16278_6
crossref_primary_10_1016_j_bpsc_2023_05_011
crossref_primary_10_1371_journal_pcbi_1007089
crossref_primary_10_3758_s13428_019_01290_6
crossref_primary_10_1038_s41562_019_0801_5
crossref_primary_10_1016_j_jebo_2018_02_007
crossref_primary_10_1017_S0033291725000595
crossref_primary_10_1093_brain_awz242
crossref_primary_10_1523_JNEUROSCI_2079_23_2024
crossref_primary_10_3758_s13428_017_0901_y
crossref_primary_10_1080_13506285_2017_1323813
crossref_primary_10_1007_s00426_024_02028_6
crossref_primary_10_1002_hbm_25730
crossref_primary_10_1016_j_biopsych_2017_12_017
crossref_primary_10_1007_s10802_023_01148_8
crossref_primary_10_1016_j_tics_2024_07_004
crossref_primary_10_3389_fpsyg_2020_608287
crossref_primary_10_1038_s41598_021_98351_8
crossref_primary_10_1038_s41467_018_04723_6
crossref_primary_10_1523_JNEUROSCI_0182_21_2021
crossref_primary_10_1073_pnas_1919670117
crossref_primary_10_1093_brain_awz276
crossref_primary_10_1073_pnas_2220749120
crossref_primary_10_1111_bjso_12781
crossref_primary_10_1093_cercor_bhad447
crossref_primary_10_3758_s13423_024_02638_6
crossref_primary_10_3389_fnins_2025_1513083
crossref_primary_10_1016_j_bpsc_2017_04_007
crossref_primary_10_1038_npp_2017_58
crossref_primary_10_1016_j_dcn_2020_100754
crossref_primary_10_1093_cercor_bhab393
crossref_primary_10_1177_17470218211012852
crossref_primary_10_1007_s42113_023_00167_4
crossref_primary_10_7554_eLife_23232
crossref_primary_10_1038_ncomms13061
crossref_primary_10_7554_eLife_46331
crossref_primary_10_1016_j_isci_2024_109951
crossref_primary_10_7554_eLife_60874
crossref_primary_10_3758_s13423_017_1369_6
crossref_primary_10_1016_j_bpsc_2022_03_012
crossref_primary_10_1016_j_bpsc_2022_03_010
crossref_primary_10_1371_journal_pcbi_1003854
crossref_primary_10_1038_s41598_018_26385_6
crossref_primary_10_1093_schbul_sbw168
crossref_primary_10_1177_00027642231207073
crossref_primary_10_1016_j_bpsc_2024_06_007
crossref_primary_10_1523_JNEUROSCI_0250_18_2018
crossref_primary_10_1007_s10802_023_01080_x
crossref_primary_10_1016_j_bandc_2021_105788
crossref_primary_10_1016_j_neuroimage_2019_04_052
crossref_primary_10_1007_s42113_019_00042_1
crossref_primary_10_3758_s13428_018_1054_3
crossref_primary_10_7554_eLife_79642
crossref_primary_10_1038_s41467_021_22511_7
crossref_primary_10_1162_jocn_a_00792
crossref_primary_10_7554_eLife_77220
crossref_primary_10_1111_ejn_14861
crossref_primary_10_3758_s13423_025_02720_7
crossref_primary_10_1523_JNEUROSCI_2307_17_2018
crossref_primary_10_7554_eLife_87022
crossref_primary_10_3389_fpsyg_2017_01077
crossref_primary_10_7554_eLife_65074
crossref_primary_10_1016_j_bpsgos_2023_07_005
crossref_primary_10_1016_j_neucli_2021_11_005
crossref_primary_10_1038_s42003_024_06416_x
crossref_primary_10_1038_s41583_025_00916_3
crossref_primary_10_1371_journal_pone_0268501
crossref_primary_10_1038_s41598_024_65549_5
crossref_primary_10_1111_ejn_13303
crossref_primary_10_3389_fpsyg_2022_854747
crossref_primary_10_1038_s41598_021_88946_6
crossref_primary_10_1017_S0033291719001570
crossref_primary_10_1093_cercor_bhaa129
crossref_primary_10_1038_s41467_020_19306_7
crossref_primary_10_1038_s41598_024_61687_y
crossref_primary_10_1525_collabra_301
crossref_primary_10_1111_jora_12999
crossref_primary_10_3758_s13428_017_0921_7
crossref_primary_10_7554_eLife_87022_3
crossref_primary_10_1016_j_ijhcs_2025_103643
crossref_primary_10_1016_j_jmp_2016_06_007
crossref_primary_10_1016_j_cognition_2021_104685
crossref_primary_10_1186_s12888_024_06353_3
crossref_primary_10_7554_eLife_21481
crossref_primary_10_1523_JNEUROSCI_1415_23_2023
crossref_primary_10_3389_fpsyg_2016_00081
crossref_primary_10_7554_eLife_67477
crossref_primary_10_1126_scirobotics_abc5044
crossref_primary_10_1007_s12144_025_07371_4
crossref_primary_10_1109_JBHI_2025_3537757
crossref_primary_10_1080_00273171_2022_2136613
crossref_primary_10_3758_s13428_019_01269_3
crossref_primary_10_1038_s44271_024_00106_4
crossref_primary_10_1167_iovs_64_7_25
crossref_primary_10_7554_eLife_56694
crossref_primary_10_1080_20445911_2024_2384666
crossref_primary_10_1016_j_jmp_2016_12_001
crossref_primary_10_1093_cercor_bhy076
crossref_primary_10_3389_fpsyg_2020_484737
crossref_primary_10_1111_ejn_14890
crossref_primary_10_1038_s41467_024_55416_2
crossref_primary_10_1016_j_jmp_2018_09_004
crossref_primary_10_1186_s40359_022_00877_7
crossref_primary_10_1038_s41598_022_18437_9
crossref_primary_10_1371_journal_pone_0218182
crossref_primary_10_1016_j_isci_2024_111716
crossref_primary_10_1093_cercor_bhab359
crossref_primary_10_1007_s42113_020_00087_7
crossref_primary_10_1523_JNEUROSCI_2260_21_2023
crossref_primary_10_1007_s00426_024_01945_w
crossref_primary_10_1016_j_neuroimage_2021_118390
crossref_primary_10_3389_fnins_2025_1638734
crossref_primary_10_1016_j_ijhcs_2024_103220
crossref_primary_10_1080_02109395_2022_2056802
crossref_primary_10_3758_s13423_024_02621_1
crossref_primary_10_3390_jintelligence9020026
crossref_primary_10_1016_j_ynirp_2025_100289
crossref_primary_10_1038_s41598_024_55508_5
crossref_primary_10_1093_joc_jqad020
crossref_primary_10_1038_s41562_019_0537_2
crossref_primary_10_1371_journal_pcbi_1009674
crossref_primary_10_1093_sleep_zsaf034
crossref_primary_10_1016_j_neuropsychologia_2014_06_024
crossref_primary_10_1177_0956797620939588
crossref_primary_10_3758_s13423_025_02696_4
crossref_primary_10_1093_cercor_bhaf212
crossref_primary_10_1177_0956797618810521
crossref_primary_10_7554_eLife_54014
crossref_primary_10_3758_s13423_018_1491_0
crossref_primary_10_1016_j_neuroscience_2023_04_025
crossref_primary_10_1038_s44220_024_00289_z
crossref_primary_10_1523_JNEUROSCI_1311_21_2021
crossref_primary_10_1038_s41598_018_31678_x
crossref_primary_10_1371_journal_pbio_3003033
crossref_primary_10_7554_eLife_43499
crossref_primary_10_1002_hbm_23918
crossref_primary_10_1007_s42113_021_00116_z
crossref_primary_10_1111_cdev_13959
crossref_primary_10_1007_s00221_014_4032_8
crossref_primary_10_1523_JNEUROSCI_3104_20_2021
crossref_primary_10_1016_j_dcn_2022_101118
crossref_primary_10_1093_geronb_gbaf037
crossref_primary_10_1038_s41598_024_80597_7
crossref_primary_10_1093_brain_awab013
crossref_primary_10_3390_brainsci9100271
crossref_primary_10_1016_j_cognition_2014_12_004
crossref_primary_10_1016_j_cognition_2021_104641
crossref_primary_10_1080_02699931_2025_2533382
crossref_primary_10_1016_j_neuropsychologia_2017_12_031
crossref_primary_10_1002_wcs_1458
crossref_primary_10_1162_jocn_a_00739
crossref_primary_10_3758_s13428_016_0740_2
crossref_primary_10_1093_cercor_bhae019
crossref_primary_10_1121_1_4979470
crossref_primary_10_1152_jn_00329_2024
crossref_primary_10_1007_s42761_024_00271_z
crossref_primary_10_1080_00224545_2024_2363366
crossref_primary_10_1093_cercor_bhad175
crossref_primary_10_1016_j_cortex_2023_04_016
crossref_primary_10_1177_09637214221077060
crossref_primary_10_3758_s13421_017_0722_3
crossref_primary_10_1016_j_isci_2023_107750
crossref_primary_10_1017_pen_2018_14
crossref_primary_10_1016_j_tics_2016_01_007
crossref_primary_10_1093_schbul_sbad105
crossref_primary_10_1002_wcs_1571
crossref_primary_10_1038_s41562_019_0637_z
crossref_primary_10_1016_j_ynirp_2021_100052
crossref_primary_10_1111_cdev_13614
crossref_primary_10_3390_bioengineering10060721
crossref_primary_10_1038_s41467_024_50394_x
crossref_primary_10_1016_j_chb_2022_107441
crossref_primary_10_1016_j_jpain_2019_06_009
crossref_primary_10_1186_s41235_025_00615_8
crossref_primary_10_7554_eLife_84955
crossref_primary_10_1038_s41398_020_01118_4
crossref_primary_10_1038_s41598_024_58509_6
crossref_primary_10_1007_s42113_022_00148_z
crossref_primary_10_1016_j_neures_2024_12_003
crossref_primary_10_1016_j_cell_2024_09_028
crossref_primary_10_1038_s41380_023_02232_7
crossref_primary_10_3389_fnins_2018_00410
crossref_primary_10_1093_cercor_bhac139
crossref_primary_10_1007_s42113_020_00096_6
crossref_primary_10_1016_j_cub_2018_02_057
crossref_primary_10_1093_brain_awac032
crossref_primary_10_1177_17470218241228859
crossref_primary_10_1093_sleep_zsae006
crossref_primary_10_1007_s12264_024_01289_w
crossref_primary_10_1093_cercor_bhab292
crossref_primary_10_1016_j_cobeha_2016_04_003
crossref_primary_10_1007_s40167_018_0068_0
crossref_primary_10_1152_jn_00309_2022
crossref_primary_10_1371_journal_pcbi_1009737
crossref_primary_10_1016_j_concog_2019_102797
crossref_primary_10_3758_s13415_024_01222_8
crossref_primary_10_3758_s13428_023_02331_x
crossref_primary_10_1016_j_cortex_2022_03_018
crossref_primary_10_1111_cogs_13078
crossref_primary_10_1093_emph_eoad032
crossref_primary_10_3390_sym14061244
crossref_primary_10_1038_s42003_025_08627_2
crossref_primary_10_1177_25152459251336127
crossref_primary_10_3758_s13428_017_0940_4
crossref_primary_10_1016_j_neuroimage_2017_06_059
crossref_primary_10_1016_j_jmp_2023_102815
crossref_primary_10_1093_cercor_bhad240
crossref_primary_10_3758_s13414_021_02434_7
crossref_primary_10_1007_s11571_020_09661_y
crossref_primary_10_1016_j_jphysparis_2014_08_003
crossref_primary_10_1016_j_ijchp_2024_100462
crossref_primary_10_1038_s44271_024_00152_y
crossref_primary_10_1038_s41598_020_79765_2
crossref_primary_10_1093_brain_awz073
crossref_primary_10_1177_09567976211017505
crossref_primary_10_1038_s41598_022_24849_4
crossref_primary_10_1097_j_pain_0000000000001730
crossref_primary_10_1038_s41598_024_67770_8
crossref_primary_10_1016_j_cogpsych_2025_101764
crossref_primary_10_1162_jocn_a_01902
crossref_primary_10_3758_s13428_023_02179_1
crossref_primary_10_1017_S0033291718004117
crossref_primary_10_3758_s13423_022_02237_3
crossref_primary_10_1038_s41380_021_01022_3
crossref_primary_10_1177_09567976211004547
crossref_primary_10_1007_s00426_025_02160_x
crossref_primary_10_1136_bmjno_2022_000268
crossref_primary_10_1523_JNEUROSCI_2008_23_2024
crossref_primary_10_1080_02699931_2024_2331817
crossref_primary_10_1038_s41598_024_63651_2
crossref_primary_10_1111_psyp_14396
crossref_primary_10_1177_17470218231176950
crossref_primary_10_1523_JNEUROSCI_0861_21_2022
crossref_primary_10_1111_psyp_14270
crossref_primary_10_1523_JNEUROSCI_0684_23_2023
crossref_primary_10_1007_s42113_020_00084_w
crossref_primary_10_1073_pnas_2114914119
crossref_primary_10_1089_neu_2018_6087
crossref_primary_10_1016_j_ijpsycho_2019_03_001
crossref_primary_10_3758_s13423_023_02439_3
crossref_primary_10_1016_j_cobeha_2016_07_004
crossref_primary_10_1016_j_biopsycho_2024_108893
crossref_primary_10_1038_s41467_017_00826_8
crossref_primary_10_1016_j_jpsychires_2021_07_044
crossref_primary_10_1016_j_cub_2023_12_045
crossref_primary_10_3758_s13415_022_01010_2
crossref_primary_10_1016_j_neuropsychologia_2019_02_003
crossref_primary_10_3389_fpsyg_2016_01863
crossref_primary_10_1016_j_concog_2021_103175
crossref_primary_10_1016_j_neuroimage_2025_121282
crossref_primary_10_3758_s13415_022_01033_9
crossref_primary_10_1016_j_cognition_2020_104429
crossref_primary_10_1038_srep35122
crossref_primary_10_1111_psyp_70037
crossref_primary_10_1038_npp_2014_303
crossref_primary_10_1097_j_pain_0000000000002322
crossref_primary_10_1007_s00426_024_01994_1
crossref_primary_10_1093_brain_awv331
crossref_primary_10_1111_cogs_13046
crossref_primary_10_3758_s13428_025_02740_0
crossref_primary_10_1177_17470218211041953
crossref_primary_10_3389_fpsyg_2017_01708
crossref_primary_10_1038_s41467_024_52290_w
crossref_primary_10_1016_j_cortex_2019_04_019
crossref_primary_10_1080_00223980_2023_2296946
crossref_primary_10_1371_journal_pone_0148409
crossref_primary_10_1007_s10551_024_05865_y
crossref_primary_10_1093_schbul_sbae014
crossref_primary_10_1371_journal_pcbi_1013086
crossref_primary_10_3389_fpsyg_2020_00955
crossref_primary_10_3389_fnins_2023_998017
crossref_primary_10_1177_1747021820925396
crossref_primary_10_7554_eLife_65540
crossref_primary_10_1016_j_cognition_2016_02_007
crossref_primary_10_1177_0963721415596228
crossref_primary_10_1162_imag_a_00496
crossref_primary_10_1016_j_cogpsych_2022_101516
crossref_primary_10_1016_j_isci_2024_110153
crossref_primary_10_1007_s12021_025_09738_1
crossref_primary_10_3758_s13428_021_01786_0
crossref_primary_10_1093_pnasnexus_pgae232
crossref_primary_10_1016_j_addbeh_2025_108430
crossref_primary_10_1016_j_jneumeth_2019_108432
crossref_primary_10_1016_j_cognition_2024_105973
crossref_primary_10_1016_j_neuropharm_2020_108278
crossref_primary_10_1007_s00426_018_1092_6
crossref_primary_10_1038_s41598_020_67661_8
crossref_primary_10_1007_s00221_016_4796_0
crossref_primary_10_3758_s13423_017_1417_2
crossref_primary_10_1016_j_psychsport_2025_102819
crossref_primary_10_1073_pnas_2400678121
crossref_primary_10_1523_JNEUROSCI_0469_24_2025
crossref_primary_10_1002_hbm_70290
crossref_primary_10_3758_s13423_023_02380_5
crossref_primary_10_1038_s41598_023_30325_4
crossref_primary_10_3390_bs15040440
crossref_primary_10_1016_j_concog_2023_103602
crossref_primary_10_1038_s41598_025_96656_6
crossref_primary_10_1007_s00426_021_01562_x
crossref_primary_10_3389_fpsyg_2015_00336
crossref_primary_10_1016_j_bpsc_2015_11_004
crossref_primary_10_1038_nn_4615
crossref_primary_10_1146_annurev_psych_122414_033645
crossref_primary_10_1016_j_cognition_2023_105386
crossref_primary_10_1111_desc_13039
crossref_primary_10_1016_j_euroneuro_2015_06_024
crossref_primary_10_7554_eLife_56938
crossref_primary_10_1016_j_tics_2019_04_005
crossref_primary_10_1371_journal_pcbi_1006690
crossref_primary_10_3758_s13423_018_1560_4
crossref_primary_10_3758_s13428_023_02162_w
crossref_primary_10_1093_brain_awae184
crossref_primary_10_1016_j_neubiorev_2018_04_011
crossref_primary_10_1093_cercor_bhae272
crossref_primary_10_1111_ajsp_12638
crossref_primary_10_1371_journal_pcbi_1006998
crossref_primary_10_1162_jocn_a_02299
crossref_primary_10_7554_eLife_85767
crossref_primary_10_1038_s41467_023_40445_0
crossref_primary_10_3390_brainsci14101005
crossref_primary_10_1073_pnas_2014271117
crossref_primary_10_1111_bmsp_12100
crossref_primary_10_1007_s00426_019_01235_w
crossref_primary_10_1523_JNEUROSCI_0550_24_2024
crossref_primary_10_1016_j_psychsport_2025_102919
crossref_primary_10_1098_rsos_211983
crossref_primary_10_1177_1747021820918533
crossref_primary_10_1016_j_neuroimage_2018_05_040
crossref_primary_10_1111_aphw_12522
crossref_primary_10_1016_j_isci_2025_112645
crossref_primary_10_1016_j_neubiorev_2016_09_002
crossref_primary_10_1093_brain_awae296
crossref_primary_10_1523_JNEUROSCI_0902_23_2023
crossref_primary_10_1162_imag_a_00338
crossref_primary_10_1080_23249935_2025_2532104
crossref_primary_10_3758_s13428_020_01372_w
crossref_primary_10_3758_s13423_022_02197_8
crossref_primary_10_1111_psyp_14532
crossref_primary_10_1111_psyp_13565
crossref_primary_10_7717_peerj_12273
crossref_primary_10_1016_j_jad_2025_119764
crossref_primary_10_1162_jocn_a_02064
crossref_primary_10_1111_jopy_12614
crossref_primary_10_1287_mnsc_2023_4738
crossref_primary_10_1007_s12553_025_00946_y
crossref_primary_10_1016_j_neuropsychologia_2020_107560
crossref_primary_10_1016_j_jpain_2017_04_011
crossref_primary_10_1038_s41467_019_09330_7
crossref_primary_10_1371_journal_pcbi_1006632
crossref_primary_10_1016_j_joep_2018_09_008
crossref_primary_10_1177_1747021818778970
crossref_primary_10_1080_02699931_2014_985635
crossref_primary_10_1016_j_cogpsych_2020_101331
crossref_primary_10_1016_j_psychsport_2025_102804
crossref_primary_10_1371_journal_pone_0165297
crossref_primary_10_3758_s13428_024_02568_0
crossref_primary_10_1038_s42003_024_06210_9
crossref_primary_10_1016_j_neuroimage_2022_119222
crossref_primary_10_3389_fnins_2014_00069
crossref_primary_10_1093_cercor_bhad080
crossref_primary_10_1016_j_cogpsych_2019_101261
crossref_primary_10_1016_j_envres_2021_112593
crossref_primary_10_1177_1071181321651154
crossref_primary_10_3758_s13414_020_02117_9
crossref_primary_10_1162_jocn_a_02150
crossref_primary_10_1371_journal_pcbi_1008955
crossref_primary_10_3758_s13414_024_02930_6
crossref_primary_10_1162_jocn_a_02272
crossref_primary_10_1016_j_ridd_2022_104262
crossref_primary_10_1126_science_aaz5891
crossref_primary_10_1111_jopy_12628
crossref_primary_10_1007_s00426_016_0770_5
crossref_primary_10_1016_j_bpsc_2016_05_001
crossref_primary_10_1371_journal_pcbi_1006301
crossref_primary_10_1007_s42761_025_00323_y
crossref_primary_10_1097_j_pain_0000000000003514
crossref_primary_10_1371_journal_pone_0311992
crossref_primary_10_1038_s41598_019_48050_2
crossref_primary_10_1287_mnsc_2017_2931
crossref_primary_10_3758_s13423_021_01939_4
crossref_primary_10_1016_j_neuroimage_2023_119871
crossref_primary_10_3758_s13423_019_01579_9
crossref_primary_10_1038_s41467_022_33237_5
crossref_primary_10_1162_imag_a_00439
crossref_primary_10_1371_journal_pcbi_1007615
crossref_primary_10_1016_j_neuroscience_2014_07_031
crossref_primary_10_3390_jintelligence11040068
crossref_primary_10_1007_s42761_023_00197_y
crossref_primary_10_1016_j_bpsc_2025_02_006
crossref_primary_10_1016_j_bbr_2016_08_023
crossref_primary_10_3389_fpsyg_2022_822234
crossref_primary_10_1016_j_intell_2022_101681
ContentType Journal Article
Copyright 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2013 Wiecki, Sofer and Frank. 2013
Copyright_xml – notice: 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2013 Wiecki, Sofer and Frank. 2013
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2013.00014
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
ProQuest Biological Science
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_0cfb1e69cd1a4d1fa538499a3a91a8c6
PMC3731670
23935581
10_3389_fninf_2013_00014
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH080066
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RIG
RNS
RPM
TR2
ACXDI
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-4c9de94ab5dc639bce9851f75447c6d66970e6fb605ce0a4f6c7c29783dc6413
IEDL.DBID BENPR
ISICitedReferencesCount 714
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209207300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Mon Nov 10 04:23:16 EST 2025
Tue Nov 04 01:47:37 EST 2025
Thu Oct 02 08:30:18 EDT 2025
Fri Jul 25 11:51:32 EDT 2025
Mon Jul 21 05:50:20 EDT 2025
Sat Nov 29 02:31:24 EST 2025
Tue Nov 18 22:43:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords drift diffusion model
software
decision-making
Bayesian modeling
Python
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-4c9de94ab5dc639bce9851f75447c6d66970e6fb605ce0a4f6c7c29783dc6413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors have contributed equally to this work.
Reviewed by: Michael Hanke, Otto-von-Guericke-University, Germany; Eric-Jan Wagenmakers, University of Amsterdam, Netherlands; Dylan D. Wagner, Dartmouth College, USA
Edited by: Yaroslav O. Halchenko, Dartmouth College, USA
OpenAccessLink https://www.proquest.com/docview/2295470579?pq-origsite=%requestingapplication%
PMID 23935581
PQID 2295470579
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_0cfb1e69cd1a4d1fa538499a3a91a8c6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3731670
proquest_miscellaneous_1420158792
proquest_journals_2295470579
pubmed_primary_23935581
crossref_primary_10_3389_fninf_2013_00014
crossref_citationtrail_10_3389_fninf_2013_00014
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2013
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 22295983 - Neural Comput. 2012 May;24(5):1186-229
18183889 - Behav Res Methods. 2007 Nov;39(4):767-75
18085991 - Neural Comput. 2008 Apr;20(4):873-922
12412886 - Psychon Bull Rev. 2002 Sep;9(3):438-81
21585453 - Cogn Sci. 2008 Dec;32(8):1248-84
5416868 - Ergonomics. 1970 Jan;13(1):37-58
21603108 - J Stat Softw. 2010 Jul;35(4):1-81
19815782 - Psychon Bull Rev. 2009 Oct;16(5):798-817
21299302 - Psychol Methods. 2011 Mar;16(1):44-62
20064637 - Cogn Psychol. 2010 May;60(3):158-89
21471371 - J Neurosci. 2011 Apr 6;31(14):5365-77
15036882 - Trends Neurosci. 2004 Mar;27(3):161-8
18209015 - Biostatistics. 2008 Jul;9(3):523-39
18243170 - Cogn Psychol. 2008 Nov;57(3):153-78
22131410 - J Neurosci. 2011 Nov 30;31(48):17488-95
21946325 - Nat Neurosci. 2011 Sep 25;14(11):1462-7
18981414 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17538-42
19342495 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6539-44
18411528 - Behav Res Methods. 2008 Feb;40(1):61-72
19763151 - Nat Rev Genet. 2009 Oct;10(10):681-90
References_xml – reference: 18209015 - Biostatistics. 2008 Jul;9(3):523-39
– reference: 19763151 - Nat Rev Genet. 2009 Oct;10(10):681-90
– reference: 18085991 - Neural Comput. 2008 Apr;20(4):873-922
– reference: 5416868 - Ergonomics. 1970 Jan;13(1):37-58
– reference: 12412886 - Psychon Bull Rev. 2002 Sep;9(3):438-81
– reference: 18981414 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17538-42
– reference: 21299302 - Psychol Methods. 2011 Mar;16(1):44-62
– reference: 21585453 - Cogn Sci. 2008 Dec;32(8):1248-84
– reference: 21471371 - J Neurosci. 2011 Apr 6;31(14):5365-77
– reference: 18183889 - Behav Res Methods. 2007 Nov;39(4):767-75
– reference: 19815782 - Psychon Bull Rev. 2009 Oct;16(5):798-817
– reference: 21946325 - Nat Neurosci. 2011 Sep 25;14(11):1462-7
– reference: 22295983 - Neural Comput. 2012 May;24(5):1186-229
– reference: 19342495 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6539-44
– reference: 15036882 - Trends Neurosci. 2004 Mar;27(3):161-8
– reference: 18411528 - Behav Res Methods. 2008 Feb;40(1):61-72
– reference: 20064637 - Cogn Psychol. 2010 May;60(3):158-89
– reference: 18243170 - Cogn Psychol. 2008 Nov;57(3):153-78
– reference: 21603108 - J Stat Softw. 2010 Jul;35(4):1-81
– reference: 22131410 - J Neurosci. 2011 Nov 30;31(48):17488-95
SSID ssj0062657
Score 2.5238473
Snippet The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on...
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision making, and to link them to neural mechanisms based on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 14
SubjectTerms Bayesian analysis
Bayesian modeling
Computer programs
Decision Making
Diffusion
Drift
Drift diffusion model
Economic models
Functional magnetic resonance imaging
Hypothesis testing
Methods
Neuroscience
Neurosciences
Open source software
Parameter estimation
python
Quantitative psychology
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5C6KGXkjZN6zYNKpRADmattR5Wb0m3YS8JOeSQm5H1oIaNt-yjsP--M7J3yZbSXHq1ZJBHM9Y30uj7AL4IjxhEOZ43UctcyEbkiONKDDzuHBeSFuEkNqFvb6uHB3P3ROqLasJ6euDecKPCxYYHZZznVngeLUYoonRbWsNt5RLZNqKebTLV_4MRpUvdH0piCmZGscPpojouojMtuNhbhBJX_98A5p91kk8WnusjeDUgRnbZj_Q1HITuDRxfdpgtP27YOUs1nGlz_BhuppPJzVc2belacVI5mbEruwl0U5IRn0Z_UZHNI0PgxyaLNq7ySRvjmjbNGAmjzVjbsbsNUQq8hfvr7_ffpvkgmJA7KdUqF874YIRtpHeIPBoXDAKqSBx32imvlNFFULHBFMaFwoqonHZj2vzB_riancBhN-_Ce2BGhXHUZSi9rwTa2UarfKQzN259EEUGo60BazeQiZOmxazGpIJMXieT12TydL4tMrjYvfGzJ9L4R98rmpNdP6LATg_QMerBMernHCOD0-2M1kNcLmsSLxeaLuBm8HnXjBFFxyS2C_P1EpMhHImstBln8K53gN1IEmGcrHgGes819oa639K1PxJrd0kaYbr48D--7SO8HCdZDtoKOoXD1WIdPsEL92vVLhdnKRR-A8sXD2U
  priority: 102
  providerName: Directory of Open Access Journals
Title HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
URI https://www.ncbi.nlm.nih.gov/pubmed/23935581
https://www.proquest.com/docview/2295470579
https://www.proquest.com/docview/1420158792
https://pubmed.ncbi.nlm.nih.gov/PMC3731670
https://doaj.org/article/0cfb1e69cd1a4d1fa538499a3a91a8c6
Volume 7
WOSCitedRecordID wos000209207300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xXQ5ceC2PwFIZCSFxiJq0jp1wQVvaVTm0itAeyily_FgilXTpA6kXfjszTlooQnvh4kPsSCONx_Oyvw_gDTcYgwgdh6WTSciTkocYxw3Q8GKtY56QE_ZkE3I2S-fzLG8Lbuv2WuX-TPQHtVlqqpH3iHaaS3o6-eHme0isUdRdbSk0TuCUkMp4B06H41n-eX8WY7SeyKY5ialY1nM1qo3ucxGsaRTzI2fkMfv_FWj-fV_yDwd0-eB_RX8I99vQk100e-UR3LH1Yzi7qDHt_rZjb5m_DOqr7GcwnYxG0_dsUtH7ZE-XsmBDtbP05JIRMEfz4pEtHcMIko1WlduEo8q5LVXfGDGsLVhVs3xH2ARP4OpyfPVxErbMC6FOErEJuc6MzbgqE6MxhCm1zTAycwSWJ7UwQmQyssKVmAtpGynuhJa6T1UkXI9u8Sl06mVtnwPLhO07ObADY1Ieq1Q5JYyj5l2sjOVRAL29BgrdopITOcaiwOyEdFZ4nRWkM98o5wG8O_xx0yBy3LJ2SEo9rCMsbf9hubouWtMsIu3K2IpMm1hxEzuFPgDzQDVQGQqsRQDne7UWrYGvi986DeD1YRpNk_otqrbL7RqzKpQkSWXWD-BZs4MOknjkuSSNA5BHe-tI1OOZuvrq4b8HRDYmoxe3i_US7vU9cwdVi86hs1lt7Su4q39sqvWqCydynnZba-n6QgSO035Oo_TjzzHO55-m-Zdf6vEktg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qBQkubGUxFBgkQOJgxXbGMzYSQi2hStUmyqGH3qzxLGAp2CULKD-K_8h74zgQhHrrgas9iZ7tb94yb_kAXnGDPojQcVg6mYY8LXmIflwfN16sdcxTMsKebEKOx9n5eT7ZgZ9dLwyVVXY60Stq02g6I-8R7TSX1Dr54eJbSKxRlF3tKDRaWJzY1Q8M2ebvjwf4fV8nydGns4_DcM0qEOo0FYuQ69zYnKsyNRrNc6ltjl6Ho0FwUgsjRC4jK1yJfr62keJOaKkTOiHB9ajy8W-vwXX0IpLMVwpOOsWPoUEq20woxn15z9WIESoeoxmqUcy3LJ8nCPiXV_t3ceYf1u7ozn_2nu7C7bVbzQ7afXAPdmx9H_YOarVovq7YG-YLXX0GYQ9Gw8Fg9I4NK-q99lQwU3aoVpbaSRkNHWm7OVnjGHrHbDCr3CIcVM4t6WSREXvclFU1m6xo7sIDOLuK53oIu3VT28fAcmETJ_u2b0zGY5Upp4RxlJiMlbE8CqDXffBCryeuE_HHtMDIiyBSeIgUBBFfBMADeLv5xUU7beSStYeEoc06mhPuLzSzz8Va7RSRdmVsRa5NrLiJnUL7hjGu6qscBdYigP0ORcVaec2L3xAK4OXmNqodyiWp2jbLOUaMKEmayTwJ4FEL2I0kfqpemsUByC0ob4m6faeuvvjR5n0iUpPRk8vFegE3h2ej0-L0eHzyFG4lnqGETsX2YXcxW9pncEN_X1Tz2XO_QRkUVwz0XyipeTs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qBSEubKVgKDBIgMTBipexJ0ZCqMVEqUqjHHrozRrPApaCXbKA8tP4d7w3tgNBqLceuMZj68X-5i3zlg_gJdfog6Qq9EsrEp8nJffRj4tx44VKhTwhI-zIJsRkMjw_z6Y78LPvhaGyyl4nOkWtG0Vn5AOineaCWicHtiuLmOaj9xfffGKQokxrT6fRQuTErH9g-LZ4d5zjt34VRaOPZx_Gfscw4KskSZc-V5k2GZdlohWa6lKZDD0QS0PhhEp1mmYiMKkt0edXJpDcpkqoiE5LcD2qf3zsNbguOD6MqgajaW8EMExIRJsVxRgQRa4RL1RIRvNUg5BvWUFHFvAvD_fvQs0_LN_ozn_8zu7C7c7dZoft_rgHO6a-D3uHtVw2X9fsNXMFsC6zsAen4zw_fcvGFfVkO4qYGTuSa0NtpoyGkbRdnqyxDL1mls8ru_TzytoVnTgyYpWbsapm0zXNY3gAZ1fxv_Zht25q8whYlprIitjEWg95KIfSylRbSliGUhseeDDoP36huknsRAgyKzAiI7gUDi4FwcUVB3AP3mzuuGinkFyy9ojwtFlH88PdD838c9GpoyJQtgxNmikdSq5DK9HuYewrY5mhwCr14KBHVNEptUXxG04evNhcRnVEOSZZm2a1wEgSJUmGIos8eNiCdyOJm7aXDEMPxBast0TdvlJXX9zI85gI1kTw-HKxnsNNxHfx6Xhy8gRuRY64hA7LDmB3OV-Zp3BDfV9Wi_kzt1cZFFeM81_gwYH3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDDM%3A+Hierarchical+Bayesian+estimation+of+the+Drift-Diffusion+Model+in+Python&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Wiecki%2C+Thomas+V&rft.au=Sofer%2C+Imri&rft.au=Frank%2C+Michael+J&rft.date=2013-01-01&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=7&rft.spage=14&rft_id=info:doi/10.3389%2Ffninf.2013.00014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon