TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes
Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathw...
Saved in:
| Published in: | Cell Vol. 150; no. 4; p. 697 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
17.08.2012
|
| Subjects: | |
| ISSN: | 1097-4172, 1097-4172 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis. |
|---|---|
| AbstractList | Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis. Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis. |
| Author | Savic, Velibor Grøfte, Merete Bartek, Jiri Gudjonsson, Thorkell Dinant, Christoffel Bekker-Jensen, Simon Toledo, Luis Heriche, Jean-Karim Mailand, Niels Lukas, Jiri Oka, Yasuyoshi Lukas, Claudia Neumann, Beate Shearer, Robert Saunders, Darren Bartkova, Jirina Poulsen, Maria Altmeyer, Matthias |
| Author_xml | – sequence: 1 givenname: Thorkell surname: Gudjonsson fullname: Gudjonsson, Thorkell organization: Chromosome Biology Unit, Danish Cancer Society Research Center and Center for Genotoxic Stress Research, Strandboulevarden 49, DK-2100 Copenhagen, Denmark – sequence: 2 givenname: Matthias surname: Altmeyer fullname: Altmeyer, Matthias – sequence: 3 givenname: Velibor surname: Savic fullname: Savic, Velibor – sequence: 4 givenname: Luis surname: Toledo fullname: Toledo, Luis – sequence: 5 givenname: Christoffel surname: Dinant fullname: Dinant, Christoffel – sequence: 6 givenname: Merete surname: Grøfte fullname: Grøfte, Merete – sequence: 7 givenname: Jirina surname: Bartkova fullname: Bartkova, Jirina – sequence: 8 givenname: Maria surname: Poulsen fullname: Poulsen, Maria – sequence: 9 givenname: Yasuyoshi surname: Oka fullname: Oka, Yasuyoshi – sequence: 10 givenname: Simon surname: Bekker-Jensen fullname: Bekker-Jensen, Simon – sequence: 11 givenname: Niels surname: Mailand fullname: Mailand, Niels – sequence: 12 givenname: Beate surname: Neumann fullname: Neumann, Beate – sequence: 13 givenname: Jean-Karim surname: Heriche fullname: Heriche, Jean-Karim – sequence: 14 givenname: Robert surname: Shearer fullname: Shearer, Robert – sequence: 15 givenname: Darren surname: Saunders fullname: Saunders, Darren – sequence: 16 givenname: Jiri surname: Bartek fullname: Bartek, Jiri – sequence: 17 givenname: Jiri surname: Lukas fullname: Lukas, Jiri – sequence: 18 givenname: Claudia surname: Lukas fullname: Lukas, Claudia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22884692$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAYRS1URB_wBxiQR5aEz65fGaHiUakSqGrnyI7dkiqx0zgZ-u8JapGY7r3S0R3OFI188A6hewIpASKeDmnhqiqlQGgKIoV5doUmBDKZMCLp6F8fo2mMBwBQnPMbNKZUKSYyOkHbzXr5RSjW3uLty5rj2DdN62LEcQhtS7_HYYeL7zbUuis97k157MvuVA0reKw7bHWt986emRBD7eItut7pKrq7S87Q9u11s_hIVp_vy8XzKik4F11CtbGcgQYlpTXaWkN0IRTJuHSSq4KDcFZmO0ZAakcZGFHMFVgCc2klM3SGHs-_TRuOvYtdXpfxV4r2LvQxH0DGiQBGBvThgvamdjZv2rLW7Sn_U0F_AIGKYvk |
| CitedBy_id | crossref_primary_10_1128_msphere_00131_24 crossref_primary_10_1371_journal_pone_0157079 crossref_primary_10_1038_s41589_023_01414_2 crossref_primary_10_1016_j_jmb_2016_11_002 crossref_primary_10_1038_onc_2016_392 crossref_primary_10_1016_j_jbc_2023_105043 crossref_primary_10_1093_nar_gkz1167 crossref_primary_10_1016_j_molcel_2013_01_028 crossref_primary_10_1073_pnas_1400230111 crossref_primary_10_1016_j_molcel_2016_03_031 crossref_primary_10_1007_s42764_019_00007_5 crossref_primary_10_1038_s41580_025_00870_z crossref_primary_10_1084_jem_20131436 crossref_primary_10_1093_nar_gkv1383 crossref_primary_10_7554_eLife_06857 crossref_primary_10_1093_nar_gkt802 crossref_primary_10_1016_j_ymeth_2015_10_006 crossref_primary_10_1016_j_jbc_2024_105670 crossref_primary_10_1016_j_tcb_2013_09_003 crossref_primary_10_3390_ijms14022355 crossref_primary_10_1016_j_molcel_2013_01_017 crossref_primary_10_1016_j_molcel_2013_08_025 crossref_primary_10_1016_j_tcb_2013_09_008 crossref_primary_10_1128_MCB_01639_13 crossref_primary_10_1007_s00439_017_1763_1 crossref_primary_10_1016_j_devcel_2012_10_010 crossref_primary_10_15252_embj_2018101379 crossref_primary_10_1038_onc_2013_60 crossref_primary_10_3390_genes10100815 crossref_primary_10_1038_s41418_019_0397_3 crossref_primary_10_1016_j_mrfmmm_2017_04_003 crossref_primary_10_1002_ctm2_1153 crossref_primary_10_1038_s41388_024_03136_8 crossref_primary_10_1093_nar_gku421 crossref_primary_10_1038_onc_2013_275 crossref_primary_10_1093_nar_gky104 crossref_primary_10_3389_fgene_2016_00103 crossref_primary_10_1016_j_molcel_2017_01_004 crossref_primary_10_1016_j_bcp_2024_116684 crossref_primary_10_1038_nature11873 crossref_primary_10_1038_ncb3358 crossref_primary_10_1016_j_cell_2013_05_044 crossref_primary_10_1172_JCI120518 crossref_primary_10_1002_1873_3468_13559 crossref_primary_10_1093_mutage_gez024 crossref_primary_10_1074_jbc_M113_459917 crossref_primary_10_1097_HEP_0000000000001214 crossref_primary_10_1016_j_dnarep_2017_06_011 crossref_primary_10_1038_nsmb_3296 crossref_primary_10_3390_cells9122547 crossref_primary_10_1016_j_cell_2013_10_011 crossref_primary_10_1111_febs_14048 crossref_primary_10_3390_ijms21186602 crossref_primary_10_7554_eLife_20922 crossref_primary_10_1038_s41420_024_02154_5 crossref_primary_10_1038_s42003_024_06584_w crossref_primary_10_1038_s41420_021_00479_z crossref_primary_10_1038_ncb3007 crossref_primary_10_1038_s41467_021_22319_5 crossref_primary_10_1017_erm_2024_10 crossref_primary_10_1146_annurev_cellbio_100617_062802 crossref_primary_10_1002_stem_2195 crossref_primary_10_1097_JS9_0000000000001541 crossref_primary_10_1073_pnas_1408538111 crossref_primary_10_1002_1878_0261_13058 crossref_primary_10_1093_nar_gkv336 crossref_primary_10_15252_embj_2022113348 crossref_primary_10_1016_j_semcdb_2018_04_009 crossref_primary_10_1002_path_6298 crossref_primary_10_1158_1541_7786_MCR_20_1076 crossref_primary_10_1002_1873_3468_12471 crossref_primary_10_1016_j_mrfmmm_2017_07_006 crossref_primary_10_1016_j_jbc_2024_107545 crossref_primary_10_1016_j_bbamcr_2013_03_024 crossref_primary_10_15252_embj_2019102361 crossref_primary_10_1371_journal_pone_0110994 crossref_primary_10_1074_jbc_M117_785170 crossref_primary_10_1186_s13326_016_0074_0 crossref_primary_10_1074_jbc_M116_765602 crossref_primary_10_1093_nar_gkz824 crossref_primary_10_1074_jbc_M114_599605 crossref_primary_10_1128_MCB_00768_15 crossref_primary_10_1242_jcs_109413 crossref_primary_10_1016_j_ydbio_2015_04_021 crossref_primary_10_1074_jbc_RA120_013780 crossref_primary_10_1038_ncb3260 crossref_primary_10_3389_fgene_2017_00067 crossref_primary_10_1038_s41467_018_05320_3 crossref_primary_10_1038_s41598_020_57762_9 crossref_primary_10_1002_1878_0261_12061 crossref_primary_10_3390_ijms24087041 crossref_primary_10_1016_j_molcel_2020_12_035 crossref_primary_10_1242_jcs_263483 crossref_primary_10_1158_1541_7786_MCR_15_0383 crossref_primary_10_3390_genes12060845 crossref_primary_10_1038_nature21358 crossref_primary_10_1042_BCJ20230284 crossref_primary_10_1038_onc_2016_250 crossref_primary_10_1097_MOH_0000000000000057 crossref_primary_10_3389_fonc_2021_772233 crossref_primary_10_1177_1535370220962715 crossref_primary_10_1038_ncomms10660 crossref_primary_10_1038_cdd_2016_88 crossref_primary_10_1038_s41589_025_01901_8 crossref_primary_10_1093_carcin_bgt489 crossref_primary_10_1016_j_molcel_2018_02_002 crossref_primary_10_1038_s41467_021_23806_5 crossref_primary_10_1007_s00439_016_1743_x crossref_primary_10_1080_15384101_2015_1049087 crossref_primary_10_1111_febs_15857 crossref_primary_10_1074_jbc_M116_758854 crossref_primary_10_1038_s41598_022_16965_y crossref_primary_10_1093_nar_gkab892 crossref_primary_10_1038_nrm3719 crossref_primary_10_1038_s41467_023_40054_x crossref_primary_10_1093_nar_gkaf574 crossref_primary_10_1186_s13039_019_0415_7 crossref_primary_10_3389_fnagi_2014_00323 crossref_primary_10_1016_j_dnarep_2021_103129 crossref_primary_10_1016_j_semcdb_2021_01_004 crossref_primary_10_1158_2159_8290_CD_19_1508 crossref_primary_10_1186_2044_5040_3_11 crossref_primary_10_1016_j_neo_2025_101142 crossref_primary_10_1146_annurev_biochem_061809_174504 crossref_primary_10_1038_s41419_023_06215_y crossref_primary_10_3390_cancers12061617 crossref_primary_10_3390_ijms23094653 crossref_primary_10_4161_trns_22879 crossref_primary_10_1016_j_cellsig_2014_11_016 crossref_primary_10_1128_jvi_00201_23 crossref_primary_10_1016_j_gene_2017_05_032 crossref_primary_10_1073_pnas_1610735113 crossref_primary_10_3390_ijms24098441 crossref_primary_10_1038_nrm3659 crossref_primary_10_1371_journal_pone_0136760 crossref_primary_10_3389_fonc_2021_634167 crossref_primary_10_1083_jcb_202111050 crossref_primary_10_3390_genes13122390 crossref_primary_10_1038_s41467_024_49431_6 crossref_primary_10_1242_jcs_233437 crossref_primary_10_1038_s41467_020_19502_5 crossref_primary_10_1016_j_dnarep_2024_103779 crossref_primary_10_1038_nsmb_2499 crossref_primary_10_1091_mbc_e17_05_0333 crossref_primary_10_1038_s41401_023_01082_x crossref_primary_10_1016_j_molcel_2014_12_001 crossref_primary_10_1016_j_molcel_2021_04_010 crossref_primary_10_1016_j_ajhg_2020_11_018 crossref_primary_10_3390_dna5010003 crossref_primary_10_1091_mbc_E17_04_0248 crossref_primary_10_3892_ijmm_2022_5145 crossref_primary_10_1016_j_ygeno_2020_06_021 crossref_primary_10_1042_BCJ20160719 crossref_primary_10_4161_cc_23104 crossref_primary_10_1038_s41598_020_71783_4 crossref_primary_10_1242_jcs_228072 crossref_primary_10_1038_onc_2013_550 crossref_primary_10_1158_0008_5472_CAN_19_1647 crossref_primary_10_3390_cells12111503 crossref_primary_10_1038_onc_2016_336 crossref_primary_10_1016_j_bbrc_2016_08_170 crossref_primary_10_1038_s41594_025_01561_1 crossref_primary_10_14348_molcells_2014_2245 crossref_primary_10_1016_j_molcel_2019_03_018 crossref_primary_10_1016_j_molcel_2021_01_023 crossref_primary_10_1038_s41467_019_12910_2 crossref_primary_10_1073_pnas_1906102116 crossref_primary_10_1074_jbc_M114_620104 crossref_primary_10_1101_gad_271841_115 crossref_primary_10_1038_s41467_025_60535_5 crossref_primary_10_1523_JNEUROSCI_1631_18_2018 crossref_primary_10_1073_pnas_1918659117 crossref_primary_10_1186_s10020_025_01141_5 crossref_primary_10_1101_gad_264192_115 crossref_primary_10_1158_0008_5472_CAN_19_3033 crossref_primary_10_1016_j_molcel_2018_12_010 crossref_primary_10_1093_nar_gkt622 crossref_primary_10_3389_fgene_2015_00069 crossref_primary_10_3390_cells11111749 crossref_primary_10_1016_j_pharmthera_2021_107809 crossref_primary_10_3390_ijms21228515 crossref_primary_10_3389_fgene_2016_00063 crossref_primary_10_1016_j_molcel_2017_06_009 crossref_primary_10_1038_s41467_024_45141_1 crossref_primary_10_3389_fgene_2016_00058 crossref_primary_10_1016_j_gde_2012_11_001 crossref_primary_10_1093_humrep_deu003 crossref_primary_10_1158_2159_8290_CD_13_0891 crossref_primary_10_1093_nar_gkad631 crossref_primary_10_1016_j_vetmic_2022_109580 crossref_primary_10_1038_nature12318 crossref_primary_10_1182_blood_2019002102 crossref_primary_10_1080_19768354_2023_2175497 crossref_primary_10_1093_nar_gkv613 crossref_primary_10_1182_blood_2013_01_478834 crossref_primary_10_3390_cancers17020161 crossref_primary_10_1080_17501911_2025_2501524 crossref_primary_10_1016_j_cell_2013_02_011 crossref_primary_10_3389_fgene_2015_00282 crossref_primary_10_3389_fgene_2016_00122 crossref_primary_10_1038_s41467_025_56974_9 crossref_primary_10_1038_s41556_017_0033_8 crossref_primary_10_3389_fgene_2018_00029 crossref_primary_10_3390_cancers13236040 crossref_primary_10_1134_S000629792312009X crossref_primary_10_15252_embj_201592595 crossref_primary_10_1016_j_jbc_2021_101049 crossref_primary_10_1016_j_mam_2012_12_005 crossref_primary_10_3389_fgeed_2023_1218328 crossref_primary_10_1002_pmic_201700403 crossref_primary_10_1038_nsmb_3274 crossref_primary_10_1042_BCJ20240124 crossref_primary_10_1016_j_semradonc_2021_02_009 crossref_primary_10_1016_j_neuron_2021_09_031 crossref_primary_10_1038_s41586_025_08986_0 crossref_primary_10_1146_annurev_virology_111821_103452 crossref_primary_10_3390_ijms18122611 crossref_primary_10_1038_ncomms9088 crossref_primary_10_1093_nar_gkz518 crossref_primary_10_1134_S0006297921140066 crossref_primary_10_1016_j_dnarep_2019_04_001 crossref_primary_10_1016_j_immuni_2016_01_027 crossref_primary_10_1016_j_cellimm_2019_02_004 crossref_primary_10_1074_jbc_M114_625673 crossref_primary_10_1074_jbc_M116_760645 crossref_primary_10_3390_cells9010153 crossref_primary_10_1073_pnas_2003043117 crossref_primary_10_1038_ncb3436 crossref_primary_10_1093_nar_gkaa154 crossref_primary_10_1038_nsmb_2702 crossref_primary_10_1128_MCB_00847_15 crossref_primary_10_1371_journal_ppat_1010237 crossref_primary_10_1038_nrm3437 crossref_primary_10_1016_j_freeradbiomed_2020_10_013 crossref_primary_10_1126_scitranslmed_abc7211 crossref_primary_10_1371_journal_pgen_1004178 crossref_primary_10_3390_cancers15020505 crossref_primary_10_1002_ijc_34769 crossref_primary_10_1038_nsmb_3251 crossref_primary_10_1093_procel_pwad045 crossref_primary_10_1038_s41418_019_0406_6 crossref_primary_10_1016_j_mrfmmm_2013_08_003 crossref_primary_10_1080_15384101_2018_1542899 crossref_primary_10_1098_rsob_150018 crossref_primary_10_3390_cancers16091662 crossref_primary_10_1038_s41416_022_01995_0 crossref_primary_10_1111_imr_12236 crossref_primary_10_1038_nrm_2016_58 crossref_primary_10_1016_j_urolonc_2022_04_019 crossref_primary_10_1016_j_bbagrm_2014_08_001 crossref_primary_10_3389_fcell_2022_928113 crossref_primary_10_1038_s41418_025_01472_0 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2012 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cell.2012.06.039 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4172 |
| ExternalDocumentID | 22884692 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K -DZ -ET -~X 0R~ 0SF 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO AAYJJ ABCQX ABJNI ABMAC ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ NPM O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 YYQ YZZ ZCA ZY4 7X8 AAYWO ABDGV ACVFH ADCNI ADXHL AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c556t-2abd540a0877dbaddb1ac681957e758c506ed79f4107ae240b6c380d1037d74b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 280 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308002300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4172 |
| IngestDate | Thu Oct 02 06:23:03 EDT 2025 Thu Jan 02 22:08:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Copyright © 2012 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-2abd540a0877dbaddb1ac681957e758c506ed79f4107ae240b6c380d1037d74b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cell.2012.06.039 |
| PMID | 22884692 |
| PQID | 1034516041 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1034516041 pubmed_primary_22884692 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-17 |
| PublicationDateYYYYMMDD | 2012-08-17 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell |
| PublicationTitleAlternate | Cell |
| PublicationYear | 2012 |
| References | Cell. 2014 Dec 4;159(6):1476-7 22948019 - Nat Rev Mol Cell Biol. 2012 Oct;13(10):601 |
| References_xml | – reference: 22948019 - Nat Rev Mol Cell Biol. 2012 Oct;13(10):601 – reference: - Cell. 2014 Dec 4;159(6):1476-7 |
| SSID | ssj0008555 |
| Score | 2.5402982 |
| Snippet | Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 697 |
| SubjectTerms | Alphapapillomavirus Carrier Proteins - metabolism Cell Line Cell Line, Tumor Chromatin - metabolism DNA Breaks, Double-Stranded DNA Repair Gene Silencing Humans Intracellular Signaling Peptides and Proteins - metabolism Neoplasms - metabolism Neoplasms - pathology Neoplasms - virology Papillomavirus Infections - metabolism Papillomavirus Infections - pathology Transcription, Genetic Tumor Suppressor p53-Binding Protein 1 Ubiquitin-Protein Ligases - metabolism Ubiquitination |
| Title | TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22884692 https://www.proquest.com/docview/1034516041 |
| Volume | 150 |
| WOSCitedRecordID | wos000308002300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvAaSDabTXISFYuCllJa6C3sEz00aZtG8N87k6T0JoKX5JJAmMzOfDP77XyE3DEeJiKwGp0XChTlhJdI4XvOV4oLxZmT9ZzZt7jfTyaTdNA23MqWVrmKiXWgNoXGHjms7hA1ZX0e3M_mHqpG4e5qK6GxSTohQBn06niynhaeRLXqKW6yehwydXtopuF3YWMcqV2snt8Z_gIx61TT2__vRx6QvRZk0ofGKw7Jhs2PyE4jO_l9TMaj4esgYFTmho4fhxEtq1nNh6Ul3GpSPS0c1R-LAvFsTiv1Oa8Arje8OSqX1MgpBCLTPFOUxdSWJ2Tcex49vXitvIKno0gsPSaVAbwmcSSgURDnVCC1wH212EIVoSNfWBOnjkOFKC1kfiV0mPgGTxaamCt2SrbyIrfnhMYRSy0LbKiV4Q6KLkBxLGWa48A57bsuuV3ZKwP3RdPL3BZVma0t1iVnjdGzWTNnI2MsAXSUsos_vH1JdvFfYrc3iK9Ix8HitddkW38tP8vFTe0XcO0P3n8AmuDAyw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIP12+and+UBR5+suppress+spreading+of+chromatin+ubiquitylation+at+damaged+chromosomes&rft.jtitle=Cell&rft.au=Gudjonsson%2C+Thorkell&rft.au=Altmeyer%2C+Matthias&rft.au=Savic%2C+Velibor&rft.au=Toledo%2C+Luis&rft.date=2012-08-17&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=150&rft.issue=4&rft.spage=697&rft_id=info:doi/10.1016%2Fj.cell.2012.06.039&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon |