TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes

Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathw...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 150; no. 4; p. 697
Main Authors: Gudjonsson, Thorkell, Altmeyer, Matthias, Savic, Velibor, Toledo, Luis, Dinant, Christoffel, Grøfte, Merete, Bartkova, Jirina, Poulsen, Maria, Oka, Yasuyoshi, Bekker-Jensen, Simon, Mailand, Niels, Neumann, Beate, Heriche, Jean-Karim, Shearer, Robert, Saunders, Darren, Bartek, Jiri, Lukas, Jiri, Lukas, Claudia
Format: Journal Article
Language:English
Published: United States 17.08.2012
Subjects:
ISSN:1097-4172, 1097-4172
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.
AbstractList Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.
Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood. Here, we show that TRIP12 and UBR5, two HECT domain ubiquitin E3 ligases, control accumulation of RNF168, a rate-limiting component of a pathway that ubiquitylates histones after DNA breakage. We find that RNF168 can be saturated by increasing amounts of DSBs. Depletion of TRIP12 and UBR5 allows accumulation of RNF168 to supraphysiological levels, followed by massive spreading of ubiquitin conjugates and hyperaccumulation of ubiquitin-regulated genome caretakers such as 53BP1 and BRCA1. Thus, regulatory and proteolytic ubiquitylations are wired in a self-limiting circuit that promotes histone ubiquitylation near the DNA lesions but at the same time counteracts its excessive spreading to undamaged chromosomes. We provide evidence that this mechanism is vital for the homeostasis of ubiquitin-controlled events after DNA breakage and can be subverted during tumorigenesis.
Author Savic, Velibor
Grøfte, Merete
Bartek, Jiri
Gudjonsson, Thorkell
Dinant, Christoffel
Bekker-Jensen, Simon
Toledo, Luis
Heriche, Jean-Karim
Mailand, Niels
Lukas, Jiri
Oka, Yasuyoshi
Lukas, Claudia
Neumann, Beate
Shearer, Robert
Saunders, Darren
Bartkova, Jirina
Poulsen, Maria
Altmeyer, Matthias
Author_xml – sequence: 1
  givenname: Thorkell
  surname: Gudjonsson
  fullname: Gudjonsson, Thorkell
  organization: Chromosome Biology Unit, Danish Cancer Society Research Center and Center for Genotoxic Stress Research, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
– sequence: 2
  givenname: Matthias
  surname: Altmeyer
  fullname: Altmeyer, Matthias
– sequence: 3
  givenname: Velibor
  surname: Savic
  fullname: Savic, Velibor
– sequence: 4
  givenname: Luis
  surname: Toledo
  fullname: Toledo, Luis
– sequence: 5
  givenname: Christoffel
  surname: Dinant
  fullname: Dinant, Christoffel
– sequence: 6
  givenname: Merete
  surname: Grøfte
  fullname: Grøfte, Merete
– sequence: 7
  givenname: Jirina
  surname: Bartkova
  fullname: Bartkova, Jirina
– sequence: 8
  givenname: Maria
  surname: Poulsen
  fullname: Poulsen, Maria
– sequence: 9
  givenname: Yasuyoshi
  surname: Oka
  fullname: Oka, Yasuyoshi
– sequence: 10
  givenname: Simon
  surname: Bekker-Jensen
  fullname: Bekker-Jensen, Simon
– sequence: 11
  givenname: Niels
  surname: Mailand
  fullname: Mailand, Niels
– sequence: 12
  givenname: Beate
  surname: Neumann
  fullname: Neumann, Beate
– sequence: 13
  givenname: Jean-Karim
  surname: Heriche
  fullname: Heriche, Jean-Karim
– sequence: 14
  givenname: Robert
  surname: Shearer
  fullname: Shearer, Robert
– sequence: 15
  givenname: Darren
  surname: Saunders
  fullname: Saunders, Darren
– sequence: 16
  givenname: Jiri
  surname: Bartek
  fullname: Bartek, Jiri
– sequence: 17
  givenname: Jiri
  surname: Lukas
  fullname: Lukas, Jiri
– sequence: 18
  givenname: Claudia
  surname: Lukas
  fullname: Lukas, Claudia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22884692$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAYRS1URB_wBxiQR5aEz65fGaHiUakSqGrnyI7dkiqx0zgZ-u8JapGY7r3S0R3OFI188A6hewIpASKeDmnhqiqlQGgKIoV5doUmBDKZMCLp6F8fo2mMBwBQnPMbNKZUKSYyOkHbzXr5RSjW3uLty5rj2DdN62LEcQhtS7_HYYeL7zbUuis97k157MvuVA0reKw7bHWt986emRBD7eItut7pKrq7S87Q9u11s_hIVp_vy8XzKik4F11CtbGcgQYlpTXaWkN0IRTJuHSSq4KDcFZmO0ZAakcZGFHMFVgCc2klM3SGHs-_TRuOvYtdXpfxV4r2LvQxH0DGiQBGBvThgvamdjZv2rLW7Sn_U0F_AIGKYvk
CitedBy_id crossref_primary_10_1128_msphere_00131_24
crossref_primary_10_1371_journal_pone_0157079
crossref_primary_10_1038_s41589_023_01414_2
crossref_primary_10_1016_j_jmb_2016_11_002
crossref_primary_10_1038_onc_2016_392
crossref_primary_10_1016_j_jbc_2023_105043
crossref_primary_10_1093_nar_gkz1167
crossref_primary_10_1016_j_molcel_2013_01_028
crossref_primary_10_1073_pnas_1400230111
crossref_primary_10_1016_j_molcel_2016_03_031
crossref_primary_10_1007_s42764_019_00007_5
crossref_primary_10_1038_s41580_025_00870_z
crossref_primary_10_1084_jem_20131436
crossref_primary_10_1093_nar_gkv1383
crossref_primary_10_7554_eLife_06857
crossref_primary_10_1093_nar_gkt802
crossref_primary_10_1016_j_ymeth_2015_10_006
crossref_primary_10_1016_j_jbc_2024_105670
crossref_primary_10_1016_j_tcb_2013_09_003
crossref_primary_10_3390_ijms14022355
crossref_primary_10_1016_j_molcel_2013_01_017
crossref_primary_10_1016_j_molcel_2013_08_025
crossref_primary_10_1016_j_tcb_2013_09_008
crossref_primary_10_1128_MCB_01639_13
crossref_primary_10_1007_s00439_017_1763_1
crossref_primary_10_1016_j_devcel_2012_10_010
crossref_primary_10_15252_embj_2018101379
crossref_primary_10_1038_onc_2013_60
crossref_primary_10_3390_genes10100815
crossref_primary_10_1038_s41418_019_0397_3
crossref_primary_10_1016_j_mrfmmm_2017_04_003
crossref_primary_10_1002_ctm2_1153
crossref_primary_10_1038_s41388_024_03136_8
crossref_primary_10_1093_nar_gku421
crossref_primary_10_1038_onc_2013_275
crossref_primary_10_1093_nar_gky104
crossref_primary_10_3389_fgene_2016_00103
crossref_primary_10_1016_j_molcel_2017_01_004
crossref_primary_10_1016_j_bcp_2024_116684
crossref_primary_10_1038_nature11873
crossref_primary_10_1038_ncb3358
crossref_primary_10_1016_j_cell_2013_05_044
crossref_primary_10_1172_JCI120518
crossref_primary_10_1002_1873_3468_13559
crossref_primary_10_1093_mutage_gez024
crossref_primary_10_1074_jbc_M113_459917
crossref_primary_10_1097_HEP_0000000000001214
crossref_primary_10_1016_j_dnarep_2017_06_011
crossref_primary_10_1038_nsmb_3296
crossref_primary_10_3390_cells9122547
crossref_primary_10_1016_j_cell_2013_10_011
crossref_primary_10_1111_febs_14048
crossref_primary_10_3390_ijms21186602
crossref_primary_10_7554_eLife_20922
crossref_primary_10_1038_s41420_024_02154_5
crossref_primary_10_1038_s42003_024_06584_w
crossref_primary_10_1038_s41420_021_00479_z
crossref_primary_10_1038_ncb3007
crossref_primary_10_1038_s41467_021_22319_5
crossref_primary_10_1017_erm_2024_10
crossref_primary_10_1146_annurev_cellbio_100617_062802
crossref_primary_10_1002_stem_2195
crossref_primary_10_1097_JS9_0000000000001541
crossref_primary_10_1073_pnas_1408538111
crossref_primary_10_1002_1878_0261_13058
crossref_primary_10_1093_nar_gkv336
crossref_primary_10_15252_embj_2022113348
crossref_primary_10_1016_j_semcdb_2018_04_009
crossref_primary_10_1002_path_6298
crossref_primary_10_1158_1541_7786_MCR_20_1076
crossref_primary_10_1002_1873_3468_12471
crossref_primary_10_1016_j_mrfmmm_2017_07_006
crossref_primary_10_1016_j_jbc_2024_107545
crossref_primary_10_1016_j_bbamcr_2013_03_024
crossref_primary_10_15252_embj_2019102361
crossref_primary_10_1371_journal_pone_0110994
crossref_primary_10_1074_jbc_M117_785170
crossref_primary_10_1186_s13326_016_0074_0
crossref_primary_10_1074_jbc_M116_765602
crossref_primary_10_1093_nar_gkz824
crossref_primary_10_1074_jbc_M114_599605
crossref_primary_10_1128_MCB_00768_15
crossref_primary_10_1242_jcs_109413
crossref_primary_10_1016_j_ydbio_2015_04_021
crossref_primary_10_1074_jbc_RA120_013780
crossref_primary_10_1038_ncb3260
crossref_primary_10_3389_fgene_2017_00067
crossref_primary_10_1038_s41467_018_05320_3
crossref_primary_10_1038_s41598_020_57762_9
crossref_primary_10_1002_1878_0261_12061
crossref_primary_10_3390_ijms24087041
crossref_primary_10_1016_j_molcel_2020_12_035
crossref_primary_10_1242_jcs_263483
crossref_primary_10_1158_1541_7786_MCR_15_0383
crossref_primary_10_3390_genes12060845
crossref_primary_10_1038_nature21358
crossref_primary_10_1042_BCJ20230284
crossref_primary_10_1038_onc_2016_250
crossref_primary_10_1097_MOH_0000000000000057
crossref_primary_10_3389_fonc_2021_772233
crossref_primary_10_1177_1535370220962715
crossref_primary_10_1038_ncomms10660
crossref_primary_10_1038_cdd_2016_88
crossref_primary_10_1038_s41589_025_01901_8
crossref_primary_10_1093_carcin_bgt489
crossref_primary_10_1016_j_molcel_2018_02_002
crossref_primary_10_1038_s41467_021_23806_5
crossref_primary_10_1007_s00439_016_1743_x
crossref_primary_10_1080_15384101_2015_1049087
crossref_primary_10_1111_febs_15857
crossref_primary_10_1074_jbc_M116_758854
crossref_primary_10_1038_s41598_022_16965_y
crossref_primary_10_1093_nar_gkab892
crossref_primary_10_1038_nrm3719
crossref_primary_10_1038_s41467_023_40054_x
crossref_primary_10_1093_nar_gkaf574
crossref_primary_10_1186_s13039_019_0415_7
crossref_primary_10_3389_fnagi_2014_00323
crossref_primary_10_1016_j_dnarep_2021_103129
crossref_primary_10_1016_j_semcdb_2021_01_004
crossref_primary_10_1158_2159_8290_CD_19_1508
crossref_primary_10_1186_2044_5040_3_11
crossref_primary_10_1016_j_neo_2025_101142
crossref_primary_10_1146_annurev_biochem_061809_174504
crossref_primary_10_1038_s41419_023_06215_y
crossref_primary_10_3390_cancers12061617
crossref_primary_10_3390_ijms23094653
crossref_primary_10_4161_trns_22879
crossref_primary_10_1016_j_cellsig_2014_11_016
crossref_primary_10_1128_jvi_00201_23
crossref_primary_10_1016_j_gene_2017_05_032
crossref_primary_10_1073_pnas_1610735113
crossref_primary_10_3390_ijms24098441
crossref_primary_10_1038_nrm3659
crossref_primary_10_1371_journal_pone_0136760
crossref_primary_10_3389_fonc_2021_634167
crossref_primary_10_1083_jcb_202111050
crossref_primary_10_3390_genes13122390
crossref_primary_10_1038_s41467_024_49431_6
crossref_primary_10_1242_jcs_233437
crossref_primary_10_1038_s41467_020_19502_5
crossref_primary_10_1016_j_dnarep_2024_103779
crossref_primary_10_1038_nsmb_2499
crossref_primary_10_1091_mbc_e17_05_0333
crossref_primary_10_1038_s41401_023_01082_x
crossref_primary_10_1016_j_molcel_2014_12_001
crossref_primary_10_1016_j_molcel_2021_04_010
crossref_primary_10_1016_j_ajhg_2020_11_018
crossref_primary_10_3390_dna5010003
crossref_primary_10_1091_mbc_E17_04_0248
crossref_primary_10_3892_ijmm_2022_5145
crossref_primary_10_1016_j_ygeno_2020_06_021
crossref_primary_10_1042_BCJ20160719
crossref_primary_10_4161_cc_23104
crossref_primary_10_1038_s41598_020_71783_4
crossref_primary_10_1242_jcs_228072
crossref_primary_10_1038_onc_2013_550
crossref_primary_10_1158_0008_5472_CAN_19_1647
crossref_primary_10_3390_cells12111503
crossref_primary_10_1038_onc_2016_336
crossref_primary_10_1016_j_bbrc_2016_08_170
crossref_primary_10_1038_s41594_025_01561_1
crossref_primary_10_14348_molcells_2014_2245
crossref_primary_10_1016_j_molcel_2019_03_018
crossref_primary_10_1016_j_molcel_2021_01_023
crossref_primary_10_1038_s41467_019_12910_2
crossref_primary_10_1073_pnas_1906102116
crossref_primary_10_1074_jbc_M114_620104
crossref_primary_10_1101_gad_271841_115
crossref_primary_10_1038_s41467_025_60535_5
crossref_primary_10_1523_JNEUROSCI_1631_18_2018
crossref_primary_10_1073_pnas_1918659117
crossref_primary_10_1186_s10020_025_01141_5
crossref_primary_10_1101_gad_264192_115
crossref_primary_10_1158_0008_5472_CAN_19_3033
crossref_primary_10_1016_j_molcel_2018_12_010
crossref_primary_10_1093_nar_gkt622
crossref_primary_10_3389_fgene_2015_00069
crossref_primary_10_3390_cells11111749
crossref_primary_10_1016_j_pharmthera_2021_107809
crossref_primary_10_3390_ijms21228515
crossref_primary_10_3389_fgene_2016_00063
crossref_primary_10_1016_j_molcel_2017_06_009
crossref_primary_10_1038_s41467_024_45141_1
crossref_primary_10_3389_fgene_2016_00058
crossref_primary_10_1016_j_gde_2012_11_001
crossref_primary_10_1093_humrep_deu003
crossref_primary_10_1158_2159_8290_CD_13_0891
crossref_primary_10_1093_nar_gkad631
crossref_primary_10_1016_j_vetmic_2022_109580
crossref_primary_10_1038_nature12318
crossref_primary_10_1182_blood_2019002102
crossref_primary_10_1080_19768354_2023_2175497
crossref_primary_10_1093_nar_gkv613
crossref_primary_10_1182_blood_2013_01_478834
crossref_primary_10_3390_cancers17020161
crossref_primary_10_1080_17501911_2025_2501524
crossref_primary_10_1016_j_cell_2013_02_011
crossref_primary_10_3389_fgene_2015_00282
crossref_primary_10_3389_fgene_2016_00122
crossref_primary_10_1038_s41467_025_56974_9
crossref_primary_10_1038_s41556_017_0033_8
crossref_primary_10_3389_fgene_2018_00029
crossref_primary_10_3390_cancers13236040
crossref_primary_10_1134_S000629792312009X
crossref_primary_10_15252_embj_201592595
crossref_primary_10_1016_j_jbc_2021_101049
crossref_primary_10_1016_j_mam_2012_12_005
crossref_primary_10_3389_fgeed_2023_1218328
crossref_primary_10_1002_pmic_201700403
crossref_primary_10_1038_nsmb_3274
crossref_primary_10_1042_BCJ20240124
crossref_primary_10_1016_j_semradonc_2021_02_009
crossref_primary_10_1016_j_neuron_2021_09_031
crossref_primary_10_1038_s41586_025_08986_0
crossref_primary_10_1146_annurev_virology_111821_103452
crossref_primary_10_3390_ijms18122611
crossref_primary_10_1038_ncomms9088
crossref_primary_10_1093_nar_gkz518
crossref_primary_10_1134_S0006297921140066
crossref_primary_10_1016_j_dnarep_2019_04_001
crossref_primary_10_1016_j_immuni_2016_01_027
crossref_primary_10_1016_j_cellimm_2019_02_004
crossref_primary_10_1074_jbc_M114_625673
crossref_primary_10_1074_jbc_M116_760645
crossref_primary_10_3390_cells9010153
crossref_primary_10_1073_pnas_2003043117
crossref_primary_10_1038_ncb3436
crossref_primary_10_1093_nar_gkaa154
crossref_primary_10_1038_nsmb_2702
crossref_primary_10_1128_MCB_00847_15
crossref_primary_10_1371_journal_ppat_1010237
crossref_primary_10_1038_nrm3437
crossref_primary_10_1016_j_freeradbiomed_2020_10_013
crossref_primary_10_1126_scitranslmed_abc7211
crossref_primary_10_1371_journal_pgen_1004178
crossref_primary_10_3390_cancers15020505
crossref_primary_10_1002_ijc_34769
crossref_primary_10_1038_nsmb_3251
crossref_primary_10_1093_procel_pwad045
crossref_primary_10_1038_s41418_019_0406_6
crossref_primary_10_1016_j_mrfmmm_2013_08_003
crossref_primary_10_1080_15384101_2018_1542899
crossref_primary_10_1098_rsob_150018
crossref_primary_10_3390_cancers16091662
crossref_primary_10_1038_s41416_022_01995_0
crossref_primary_10_1111_imr_12236
crossref_primary_10_1038_nrm_2016_58
crossref_primary_10_1016_j_urolonc_2022_04_019
crossref_primary_10_1016_j_bbagrm_2014_08_001
crossref_primary_10_3389_fcell_2022_928113
crossref_primary_10_1038_s41418_025_01472_0
ContentType Journal Article
Copyright Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2012.06.039
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 22884692
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0SF
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
NPM
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
YYQ
YZZ
ZCA
ZY4
7X8
AAYWO
ABDGV
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c556t-2abd540a0877dbaddb1ac681957e758c506ed79f4107ae240b6c380d1037d74b2
IEDL.DBID 7X8
ISICitedReferencesCount 280
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308002300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Thu Oct 02 06:23:03 EDT 2025
Thu Jan 02 22:08:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-2abd540a0877dbaddb1ac681957e758c506ed79f4107ae240b6c380d1037d74b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cell.2012.06.039
PMID 22884692
PQID 1034516041
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1034516041
pubmed_primary_22884692
PublicationCentury 2000
PublicationDate 2012-08-17
PublicationDateYYYYMMDD 2012-08-17
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
References Cell. 2014 Dec 4;159(6):1476-7
22948019 - Nat Rev Mol Cell Biol. 2012 Oct;13(10):601
References_xml – reference: 22948019 - Nat Rev Mol Cell Biol. 2012 Oct;13(10):601
– reference: - Cell. 2014 Dec 4;159(6):1476-7
SSID ssj0008555
Score 2.5402982
Snippet Histone ubiquitylation is a prominent response to DNA double-strand breaks (DSBs), but how these modifications are confined to DNA lesions is not understood....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 697
SubjectTerms Alphapapillomavirus
Carrier Proteins - metabolism
Cell Line
Cell Line, Tumor
Chromatin - metabolism
DNA Breaks, Double-Stranded
DNA Repair
Gene Silencing
Humans
Intracellular Signaling Peptides and Proteins - metabolism
Neoplasms - metabolism
Neoplasms - pathology
Neoplasms - virology
Papillomavirus Infections - metabolism
Papillomavirus Infections - pathology
Transcription, Genetic
Tumor Suppressor p53-Binding Protein 1
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes
URI https://www.ncbi.nlm.nih.gov/pubmed/22884692
https://www.proquest.com/docview/1034516041
Volume 150
WOSCitedRecordID wos000308002300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvAaSDabTXISFYuCllJa6C3sEz00aZtG8N87k6T0JoKX5JJAmMzOfDP77XyE3DEeJiKwGp0XChTlhJdI4XvOV4oLxZmT9ZzZt7jfTyaTdNA23MqWVrmKiXWgNoXGHjms7hA1ZX0e3M_mHqpG4e5qK6GxSTohQBn06niynhaeRLXqKW6yehwydXtopuF3YWMcqV2snt8Z_gIx61TT2__vRx6QvRZk0ofGKw7Jhs2PyE4jO_l9TMaj4esgYFTmho4fhxEtq1nNh6Ul3GpSPS0c1R-LAvFsTiv1Oa8Arje8OSqX1MgpBCLTPFOUxdSWJ2Tcex49vXitvIKno0gsPSaVAbwmcSSgURDnVCC1wH212EIVoSNfWBOnjkOFKC1kfiV0mPgGTxaamCt2SrbyIrfnhMYRSy0LbKiV4Q6KLkBxLGWa48A57bsuuV3ZKwP3RdPL3BZVma0t1iVnjdGzWTNnI2MsAXSUsos_vH1JdvFfYrc3iK9Ix8HitddkW38tP8vFTe0XcO0P3n8AmuDAyw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIP12+and+UBR5+suppress+spreading+of+chromatin+ubiquitylation+at+damaged+chromosomes&rft.jtitle=Cell&rft.au=Gudjonsson%2C+Thorkell&rft.au=Altmeyer%2C+Matthias&rft.au=Savic%2C+Velibor&rft.au=Toledo%2C+Luis&rft.date=2012-08-17&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=150&rft.issue=4&rft.spage=697&rft_id=info:doi/10.1016%2Fj.cell.2012.06.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon