Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression pro...
Uloženo v:
| Vydáno v: | Frontiers in cellular neuroscience Ročník 13; s. 87 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
Frontiers Research Foundation
12.03.2019
Frontiers Media S.A |
| Témata: | |
| ISSN: | 1662-5102, 1662-5102 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABA
and GABA
receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression. |
|---|---|
| AbstractList | Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression. Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABA and GABA receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression. Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation–inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression. |
| Author | Duman, Ronald S. Fogaça, Manoela V. |
| AuthorAffiliation | Department of Psychiatry, Yale University School of Medicine , New Haven, CT , United States |
| AuthorAffiliation_xml | – name: Department of Psychiatry, Yale University School of Medicine , New Haven, CT , United States |
| Author_xml | – sequence: 1 givenname: Manoela V. surname: Fogaça fullname: Fogaça, Manoela V. – sequence: 2 givenname: Ronald S. surname: Duman fullname: Duman, Ronald S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30914923$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1vEzEQxVeoiH7AnRNaiQuXhPF417vmgJSmtESq4EA5W44_EkcbO9i7Rf3v8SZt1VbiZMvz5qcZv3daHPngTVG8JzCltOWfrVemmyIQPgWAtnlVnBDGcFITwKMn9-PiNKUNAENWtW-KYwqcVBzpSaHmIfZOya68mp3PTFw5VV7cJTt41bvgS-fLX300KZXS6_LC7MZ7Lnwpf5i_5cInt1r3qbQhljdrE-XODBmXC72Jt8aPjPS2eG1ll8y7-_Os-H357Wb-fXL982oxn11PVF2zfoJosa55BcDrBqyUwBRSS2WjW9JyrVWrLYfWcmoVEgktmIYBVaRuGDaKnhWLA1cHuRG76LYy3okgndg_hLgScly2M6LWFWdU6iVHrBqNcslAc-QEuWJ8aTLr64G1G5Zbo1VeJcruGfR5xbu1WIVbwSpEDk0GfLoHxPBnMKkXW5eyW530JgxJIOFtzaCmkKUfX0g3YYg-f5VAbLHi2bgqqz48nehxlAcvs4AdBCqGlKKxQrlejg7kAV0nCIgxNGIfGjGGRuxDkxvhReMD-78t_wBZQMTo |
| CitedBy_id | crossref_primary_10_1016_j_jns_2020_117271 crossref_primary_10_1038_s41386_020_00886_3 crossref_primary_10_1016_j_neuron_2024_01_023 crossref_primary_10_1176_appi_ajp_21020162 crossref_primary_10_4306_jknpa_2023_62_1_1 crossref_primary_10_3389_fnbeh_2021_621751 crossref_primary_10_3390_ijms21124374 crossref_primary_10_1111_jnc_15771 crossref_primary_10_1038_s41380_023_02273_y crossref_primary_10_3390_ijms252010985 crossref_primary_10_1038_s41598_020_57566_x crossref_primary_10_1016_j_neulet_2020_135220 crossref_primary_10_1016_j_jsbmb_2025_106719 crossref_primary_10_1016_j_rpsmen_2022_06_008 crossref_primary_10_3390_biom10060947 crossref_primary_10_1186_s13041_024_01146_x crossref_primary_10_1038_s41386_022_01360_y crossref_primary_10_1038_s41380_023_02269_8 crossref_primary_10_1038_s41467_021_26968_4 crossref_primary_10_1016_j_neuroscience_2022_02_002 crossref_primary_10_3389_fimmu_2021_782831 crossref_primary_10_1016_j_lfs_2022_121056 crossref_primary_10_3390_ijms21207788 crossref_primary_10_1002_cne_25103 crossref_primary_10_3389_fpsyt_2022_913303 crossref_primary_10_1038_s41380_024_02528_2 crossref_primary_10_3389_fneur_2025_1634845 crossref_primary_10_1016_j_pnpbp_2021_110494 crossref_primary_10_1016_j_pneurobio_2025_102786 crossref_primary_10_1038_s42003_025_08026_7 crossref_primary_10_1186_s43141_021_00224_0 crossref_primary_10_1080_1028415X_2025_2531357 crossref_primary_10_1113_JP285210 crossref_primary_10_3390_molecules27185931 crossref_primary_10_1007_s11011_022_01053_x crossref_primary_10_1016_j_expneurol_2021_113805 crossref_primary_10_3389_fnsyn_2022_936911 crossref_primary_10_31083_j_jin2102061 crossref_primary_10_3390_pharmaceutics16091144 crossref_primary_10_1038_s41386_024_01947_7 crossref_primary_10_1186_s12920_021_00908_z crossref_primary_10_1038_s41398_020_01154_0 crossref_primary_10_3389_fendo_2024_1433026 crossref_primary_10_3389_fcell_2021_663854 crossref_primary_10_3389_fnsys_2022_727054 crossref_primary_10_1038_s41398_025_03378_4 crossref_primary_10_1016_j_euroneuro_2020_11_017 crossref_primary_10_1007_s12011_021_02678_2 crossref_primary_10_3389_fnbeh_2021_737960 crossref_primary_10_3390_brainsci15091020 crossref_primary_10_3389_fpsyt_2021_673159 crossref_primary_10_1038_s41467_025_59659_5 crossref_primary_10_1016_j_pneurobio_2022_102338 crossref_primary_10_1016_j_yfrne_2024_101171 crossref_primary_10_3389_fphar_2021_777607 crossref_primary_10_1038_s41598_020_80087_6 crossref_primary_10_1038_s41386_021_01242_9 crossref_primary_10_1038_s41746_023_00779_x crossref_primary_10_1016_j_jff_2025_106696 crossref_primary_10_1016_j_rpsm_2021_09_002 crossref_primary_10_1016_j_neulet_2022_136885 crossref_primary_10_1038_s41380_022_01806_1 crossref_primary_10_1016_j_bbi_2023_11_025 crossref_primary_10_1016_j_bbrc_2022_03_068 crossref_primary_10_3389_fpsyt_2021_665347 crossref_primary_10_1016_j_jad_2021_02_027 crossref_primary_10_1038_s41386_023_01583_7 crossref_primary_10_1016_j_neuro_2024_07_013 crossref_primary_10_1016_j_neuropharm_2020_108382 crossref_primary_10_1016_j_yhbeh_2024_105600 crossref_primary_10_1038_s41398_025_03334_2 crossref_primary_10_1007_s40263_023_01030_7 crossref_primary_10_3389_fnins_2020_00474 crossref_primary_10_1002_advs_202305659 crossref_primary_10_1155_2021_5013565 crossref_primary_10_1017_S0033291725101396 crossref_primary_10_3389_fnins_2022_893015 crossref_primary_10_3390_nu12010174 crossref_primary_10_1038_s41467_023_42686_5 crossref_primary_10_1016_j_neuron_2021_12_027 crossref_primary_10_3390_genes16091092 crossref_primary_10_1038_s41398_024_03069_6 crossref_primary_10_1093_cercor_bhad110 crossref_primary_10_1038_s41598_022_08806_9 crossref_primary_10_1016_j_jneumeth_2020_109064 crossref_primary_10_1096_fj_201901093RRR crossref_primary_10_1016_j_neuroscience_2021_12_006 crossref_primary_10_3390_brainsci12081081 crossref_primary_10_1016_j_neuropharm_2025_110321 crossref_primary_10_1038_s41467_025_57951_y crossref_primary_10_3389_fnbeh_2020_588400 crossref_primary_10_3389_fnins_2023_1332329 crossref_primary_10_1038_s42255_023_00909_5 crossref_primary_10_3390_molecules28145616 crossref_primary_10_1016_j_bcp_2024_116481 crossref_primary_10_1016_j_biopha_2023_115137 crossref_primary_10_1002_jnr_24997 crossref_primary_10_1007_s12204_022_2455_0 crossref_primary_10_2174_0929867328666211115124149 crossref_primary_10_3390_ijms25052866 crossref_primary_10_1016_j_brs_2021_12_008 crossref_primary_10_1016_j_neuroscience_2025_05_022 crossref_primary_10_1016_j_psychres_2021_114054 crossref_primary_10_3389_fpsyt_2020_00707 crossref_primary_10_1016_j_neuropharm_2022_109252 crossref_primary_10_1016_j_neuropharm_2023_109691 crossref_primary_10_1016_j_ijbiomac_2023_129067 crossref_primary_10_1016_j_lfs_2023_122356 crossref_primary_10_1016_j_biopsych_2021_04_004 crossref_primary_10_1016_j_scitotenv_2024_172445 crossref_primary_10_5812_gct_135661 crossref_primary_10_3390_ph13100322 crossref_primary_10_1007_s11064_023_03970_4 crossref_primary_10_1016_j_lmd_2025_100092 crossref_primary_10_1523_JNEUROSCI_2065_21_2022 crossref_primary_10_1016_j_microc_2021_106580 crossref_primary_10_1523_JNEUROSCI_1136_22_2022 crossref_primary_10_3390_ijms26115216 crossref_primary_10_1080_2314808X_2025_2556502 crossref_primary_10_1016_j_biopsych_2023_03_015 crossref_primary_10_1016_j_bbr_2019_112153 crossref_primary_10_1016_j_jad_2022_09_143 crossref_primary_10_1007_s00429_020_02087_6 crossref_primary_10_1016_j_brainresbull_2023_110691 crossref_primary_10_1016_j_ejphar_2020_173531 crossref_primary_10_1016_j_brainresbull_2023_110699 crossref_primary_10_1016_j_nicl_2024_103641 crossref_primary_10_1016_j_neubiorev_2021_01_025 crossref_primary_10_1186_s12974_024_03312_3 crossref_primary_10_3389_fpsyt_2024_1461290 crossref_primary_10_1007_s11011_021_00675_x crossref_primary_10_1016_j_neubiorev_2025_106120 crossref_primary_10_3390_ijms22169090 crossref_primary_10_1093_ijnp_pyab087 crossref_primary_10_3390_cells9041026 crossref_primary_10_1016_j_neuropharm_2020_108180 crossref_primary_10_1038_s41593_023_01504_3 crossref_primary_10_1073_pnas_2019409118 crossref_primary_10_1007_s00406_023_01571_4 crossref_primary_10_3389_fncel_2020_00169 crossref_primary_10_3389_fncel_2024_1414955 crossref_primary_10_3389_fnmol_2023_1052288 crossref_primary_10_1016_j_neuropharm_2021_108573 crossref_primary_10_1007_s40263_021_00816_x crossref_primary_10_1016_j_jpba_2020_113435 crossref_primary_10_1016_j_neubiorev_2019_07_024 crossref_primary_10_5498_wjp_v11_i2_21 crossref_primary_10_3389_fneur_2023_1108494 crossref_primary_10_1016_j_bbr_2021_113240 crossref_primary_10_1007_s44187_024_00120_9 crossref_primary_10_3390_brainsci13050815 crossref_primary_10_1002_brb3_70524 crossref_primary_10_1038_s41380_024_02835_8 crossref_primary_10_1016_j_physbeh_2021_113311 crossref_primary_10_1016_j_lfs_2024_122988 crossref_primary_10_1080_14786419_2025_2505610 crossref_primary_10_3390_ijms26114966 crossref_primary_10_1016_j_jad_2022_08_022 crossref_primary_10_1038_s41380_020_00916_y crossref_primary_10_3390_brainsci13121666 crossref_primary_10_3390_cells13040318 crossref_primary_10_1039_D2FO03408E crossref_primary_10_1016_j_yfrne_2022_101007 crossref_primary_10_1016_j_pscychresns_2020_111238 crossref_primary_10_1007_s11011_024_01399_4 crossref_primary_10_1016_j_heliyon_2023_e14932 crossref_primary_10_1007_s12035_025_05152_5 crossref_primary_10_1016_j_neubiorev_2021_10_031 crossref_primary_10_1016_j_neulet_2024_137828 crossref_primary_10_1016_j_pbb_2020_172856 crossref_primary_10_1016_j_dcn_2020_100879 crossref_primary_10_1080_15622975_2024_2436854 crossref_primary_10_3389_fnmol_2023_1120993 crossref_primary_10_3390_ph15040473 crossref_primary_10_1111_ejn_70184 crossref_primary_10_1038_s41398_023_02514_2 crossref_primary_10_3390_ijms232012196 crossref_primary_10_1038_s41386_024_02002_1 crossref_primary_10_1038_s41386_024_02040_9 crossref_primary_10_1016_j_bcp_2021_114711 crossref_primary_10_5498_wjp_v12_i3_379 crossref_primary_10_3389_fphar_2024_1272534 crossref_primary_10_1016_j_neubiorev_2022_104651 crossref_primary_10_3389_fncel_2023_1188574 crossref_primary_10_1007_s12010_022_03810_1 crossref_primary_10_1007_s11071_023_08229_9 crossref_primary_10_1007_s11684_023_0998_6 crossref_primary_10_1016_j_heliyon_2020_e04025 crossref_primary_10_1016_j_nbd_2024_106642 crossref_primary_10_1016_j_neuropharm_2020_108412 crossref_primary_10_1038_s41386_024_01913_3 crossref_primary_10_3390_ph14010065 crossref_primary_10_1007_s11011_022_00961_2 crossref_primary_10_3390_molecules28124771 crossref_primary_10_1186_s13293_021_00400_4 crossref_primary_10_1016_j_euroneuro_2021_10_633 crossref_primary_10_1016_j_jad_2022_03_068 crossref_primary_10_1016_j_bbr_2019_112220 crossref_primary_10_1038_s41380_021_01092_3 crossref_primary_10_1177_02698811241246854 crossref_primary_10_1007_s12035_023_03574_7 crossref_primary_10_1016_j_ejphar_2025_178084 crossref_primary_10_1080_01616412_2023_2252280 crossref_primary_10_3389_fpsyt_2022_1054726 crossref_primary_10_1111_cns_14690 crossref_primary_10_3390_ph14080721 crossref_primary_10_1038_s41380_024_02499_4 crossref_primary_10_1515_revneuro_2024_0147 crossref_primary_10_1093_brain_awae167 crossref_primary_10_3389_fpsyt_2022_874137 crossref_primary_10_3389_fnhum_2023_1215291 crossref_primary_10_3389_fnmol_2022_959224 crossref_primary_10_1016_j_neuropharm_2023_109729 crossref_primary_10_1111_gbb_12649 crossref_primary_10_1186_s12888_024_06167_3 crossref_primary_10_3390_biom10111575 crossref_primary_10_1111_ejn_14640 crossref_primary_10_1038_s41398_021_01255_4 crossref_primary_10_5498_wjp_v11_i2_35 crossref_primary_10_1016_j_neubiorev_2020_07_015 crossref_primary_10_1097_FBP_0000000000000729 crossref_primary_10_1016_j_neubiorev_2023_105378 crossref_primary_10_1002_hipo_23285 crossref_primary_10_1007_s12038_022_00308_0 crossref_primary_10_1113_JP285706 crossref_primary_10_3389_fpsyt_2021_637863 crossref_primary_10_1155_jnme_2275526 crossref_primary_10_1097_j_pain_0000000000003744 crossref_primary_10_1038_s41380_020_0685_9 crossref_primary_10_1038_s41380_021_01159_1 crossref_primary_10_1007_s11064_025_04483_y crossref_primary_10_1016_j_pnpbp_2024_110945 crossref_primary_10_14336_AD_2024_0239 crossref_primary_10_1097_MJT_0000000000001810 crossref_primary_10_3389_fphar_2024_1473213 crossref_primary_10_1515_dmpt_2020_0129 |
| Cites_doi | 10.1073/pnas.93.22.12599 10.1007/s00228-009-0650-7 10.1016/j.psyneuen.2007.09.002 10.1016/j.pnpbp.2015.06.017 10.1038/280331a0 10.1017/S1461145709990587 10.2174/156802611795371350 10.1177/0269881109354928 10.1016/j.eurpsy.2013.10.005 10.1177/2470547018768771 10.1016/j.coph.2008.12.006 10.1016/j.tips.2004.11.004 10.1038/sj.bjp.0705726 10.1093/cercor/bhr220 10.1177/0269881106064203 10.1046/j.1365-2826.2001.00676.x 10.1038/mp.2014.192 10.1016/j.bbr.2016.08.030 10.1038/mp.2017.220 10.1038/nrn3444 10.1523/JNEUROSCI.2670-14.2015 10.1016/S0014-2999(99)00567-1 10.1038/386239a0 10.1002/hipo.22650 10.1007/s00213-009-1605-5 10.1016/j.schres.2010.12.025 10.1016/S0165-0173(01)00129-1 10.1523/JNEUROSCI.1845-13.2013 10.2147/DDDT.S62912 10.1016/S1734-1140(09)70161-6 10.1016/S1734-1140(11)70718-6 10.3389/fnmol.2018.00424 10.1016/S0893-133X(01)00403-1 10.1038/tp.2016.181 10.1523/JNEUROSCI.5924-08.2009 10.1016/j.biopsych.2006.01.016 10.1016/S0031-9384(04)00349-X 10.1038/mp.2014.165 10.1523/JNEUROSCI.3606-03.2004 10.1016/j.pharep.2016.05.010 10.1016/0006-3223(95)00049-7 10.1093/ijnp/pyu033 10.1016/j.neubiorev.2009.01.004 10.1038/sj.npp.1300413 10.1016/j.neuroscience.2016.06.038 10.1016/j.neuroscience.2018.11.029 10.1001/archpsyc.60.8.804 10.1097/ALN.0000000000001483 10.1016/S0304-3940(99)00234-7 10.3389/fncel.2018.00148 10.1016/j.neuropharm.2016.09.011 10.1038/sj.npp.1301234 10.1007/s00213-015-4103-y 10.1124/jpet.300.1.2 10.1007/s00213-011-2248-x 10.1080/10253890701200997 10.1016/S0024-3205(02)02159-8 10.1016/j.biopsych.2016.02.009 10.1016/S0028-3908(99)00166-5 10.1002/14651858.CD007139.pub2 10.1016/j.pain.2004.04.042 10.1016/j.ejphar.2003.12.002 10.1016/j.neulet.2012.09.032 10.1016/j.neuropharm.2013.05.037 10.1016/j.pbb.2018.10.005 10.1038/nrd3502 10.1016/S0924-977X(98)00026-1 10.1186/1471-2202-6-30 10.1176/appi.ajp.2010.09070994 10.1017/S1461145705005158 10.1016/j.npep.2004.06.002 10.1038/nature17998 10.3389/fimmu.2018.02009 10.1038/sj.bjp.0704327 10.1523/JNEUROSCI.17-08-02921.1997 10.1016/0196-9781(93)90065-O 10.1111/j.1476-5381.2010.01166.x 10.1111/j.1476-5381.1988.tb10302.x 10.1097/00004850-199510030-00008 10.1016/j.neuroscience.2013.01.033 10.1038/mp.2011.113 10.1073/pnas.95.6.3239 10.1073/pnas.051628598 10.1590/S0100-879X2012007500029 10.1124/jpet.109.157636 10.1111/j.1476-5381.1996.tb15647.x 10.1097/00001756-200004070-00009 10.1073/pnas.1814709116 10.1007/s00213-005-0213-2 10.1093/cercor/bhh070 10.3389/fphar.2017.00269 10.1016/j.bbr.2010.10.009 10.1016/j.lfs.2018.09.058 10.1016/j.neuropharm.2011.07.026 10.1046/j.1460-9568.2000.00249.x 10.1016/j.biopsych.2016.03.2101 10.1159/000118893 10.1176/ajp.137.3.362 10.1038/sj.mp.4002110 10.1073/pnas.0507901102 10.1523/JNEUROSCI.13-09-03839.1993 10.1038/mp.2015.83 10.1038/mp.2016.188 10.1073/pnas.96.23.13512 10.1038/mp.2010.120 10.1016/j.biopsych.2010.04.024 10.1126/science.1190287 10.1001/archpsyc.64.2.193 10.1016/j.neuron.2016.06.033 10.1523/JNEUROSCI.0496-11.2011 10.1016/0014-2999(87)90191-9 10.1016/j.peptides.2012.02.020 10.1152/jn.00603.2006 10.1523/JNEUROSCI.21-24-09917.2001 10.1016/0165-0327(84)90018-1 10.1016/S0306-4522(03)00020-4 10.1176/ajp.138.8.1098 10.1001/archpsyc.56.11.1043 10.1038/npp.2016.281 10.1016/j.bbr.2017.05.063 10.1016/j.pscychresns.2010.10.009 10.1016/j.neuroscience.2008.09.037 10.1007/s11064-005-6978-1 10.1016/S0168-0102(03)00183-4 10.1016/S0006-3223(00)01084-2 10.1523/JNEUROSCI.0659-07.2008 10.1016/S0197-0186(99)00042-X 10.1016/j.coph.2017.07.009 10.1001/archpsyc.63.8.856 10.1046/j.1471-4159.2003.01557.x 10.1111/j.1476-5381.1987.tb11331.x 10.1038/nn.2274 10.1016/j.euroneuro.2017.10.032 10.1093/ijnp/pyx109 10.1007/s00213-014-3572-8 10.1016/j.euroneuro.2015.04.025 10.1016/S0091-3057(00)00300-2 10.1016/0165-1781(88)90066-2 10.1016/S2215-0366(17)30015-9 10.1038/283092a0 10.1016/j.neuroscience.2018.11.008 10.3389/fncir.2018.00037 10.1046/j.1471-4159.1995.65041646.x 10.1016/j.bcp.2004.07.030 10.3389/fnint.2013.00025 10.1016/j.pharmthera.2006.04.010 10.1016/S2215-0366(16)30263-2 10.1016/S0006-3223(98)00328-X 10.1016/j.euroneuro.2016.03.007 10.1176/appi.ajp.2012.12020248 10.1002/dneu.20853 10.1017/S1461145710001616 10.1124/jpet.102.044834 10.1016/S0140-6736(18)31551-4 10.1016/j.neuroscience.2012.08.010 10.1016/0165-6147(93)90056-P 10.1097/00008877-199504000-00001 10.1038/nrn.2016.53 10.1016/S0006-3223(03)00181-1 10.1038/nm.4050 10.1007/s00213-007-0945-2 10.1002/(SICI)1097-4547(19980201)51:3<391::AID-JNR12>3.0.CO;2-A 10.1523/JNEUROSCI.4945-06.2007 10.1016/j.pnpbp.2006.06.024 10.1038/sj.npp.1300237 10.1002/hipo.22382 10.1111/j.1460-9568.2005.03922.x 10.1016/j.drudis.2018.11.007 10.1017/S1461145712001502 10.1007/3-540-26573-2_11 10.1176/ajp.155.7.910 10.1016/j.pnpbp.2013.11.003 10.1016/j.biopsych.2017.05.024 10.1177/0269881111405359 10.1210/en.2018-00045 10.1503/jpn.150223 10.1016/j.ejphar.2003.08.006 10.1038/mp.2011.171 10.1001/archpsyc.62.6.617 10.1523/ENEURO.0285-16.2017 10.1016/S0091-6749(96)70095-7 10.1016/j.neuropharm.2018.03.001 10.1016/0014-2999(81)90386-1 10.1038/mp.2014.184 10.1016/S0022-3956(03)00101-8 10.1093/cercor/bhh097 10.1016/0167-0115(92)90514-U 10.1038/nrn1519 10.2174/1566524016666151222150024 10.1097/00004850-199100640-00001 10.4137/CMPath.S12530 10.1007/s11064-007-9357-2 10.1002/hup.960 10.3389/fphar.2016.00446 10.1016/S0006-3223(01)01243-4 10.1016/j.biopsych.2017.06.017 10.1016/S0006-3223(99)00230-9 10.1001/archgenpsychiatry.2011.131 10.1016/S0306-4530(02)00038-0 10.1038/npp.2015.112 10.1002/da.22549 10.1007/s00429-012-0479-1 10.1159/000118620 10.1007/s12035-018-1143-4 10.1007/s00213-018-4912-x 10.1111/j.1471-4159.1986.tb13090.x 10.1038/sj.mp.4001969 10.1016/S0140-6736(17)31264-3 10.1001/archpsyc.61.7.705 10.1073/pnas.220232997 10.1038/mp.2014.68 10.1007/s12035-017-0528-0 10.4088/JCP.09m05131gry 10.1016/0278-5846(85)90192-7 10.3389/fendo.2011.00073 10.1038/nature10130 10.1016/j.tips.2018.04.003 10.1016/0006-8993(89)90938-4 10.1016/j.cobeha.2016.09.012 10.1124/jpet.104.073536 10.1016/j.phrs.2017.02.022 10.1007/BF00441953 10.1038/sj.bjp.0706845 10.1016/S1734-1140(10)70383-2 10.1038/12207 10.1016/j.biopsych.2008.06.027 10.1016/0022-3956(88)90030-1 10.1016/S0006-3223(02)01343-4 10.1177/2470547017720459 10.1002/hup.2576 10.1176/appi.ajp.163.1.28 10.1016/j.biopsych.2018.02.006 10.1016/j.nbd.2011.01.014 10.1111/j.1471-4159.1992.tb08877.x 10.1176/appi.ajp.161.2.368 10.1038/npp.2014.76 10.4103/0253-7176.70510 10.1016/j.biopsych.2009.10.027 10.1016/j.jpsychires.2018.08.015 10.1523/JNEUROSCI.4734-03.2004 10.1016/S0006-3223(02)01360-4 10.1080/15622970701227829 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2019 Fogaça and Duman. 2019 Fogaça and Duman |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2019 Fogaça and Duman. 2019 Fogaça and Duman |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fncel.2019.00087 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database (ProQuest) Biological Science Database ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1662-5102 |
| ExternalDocumentID | oai_doaj_org_article_5d4963adb92247d2ab60d929129c69be PMC6422907 30914923 10_3389_fncel_2019_00087 |
| Genre | Journal Article Review |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IAO IEA IHR IHW IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c556t-22f25594009570faa06c23f3a7d8189ddc8df908f93fc21a080e7603c157627c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 282 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460944000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5102 |
| IngestDate | Fri Oct 03 12:30:16 EDT 2025 Tue Nov 04 01:56:49 EST 2025 Thu Oct 02 06:38:09 EDT 2025 Fri Jul 25 11:51:38 EDT 2025 Wed Feb 19 02:33:32 EST 2025 Tue Nov 18 21:24:13 EST 2025 Sat Nov 29 05:35:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | stress ketamine parvalbumin prefrontal cortex somatostatin GABA depression |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c556t-22f25594009570faa06c23f3a7d8189ddc8df908f93fc21a080e7603c157627c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Edited by: Boldizsar Czeh, University of Pécs, Hungary Reviewed by: Juan Nacher, University of Valencia, Spain; Grazyna Rajkowska, University of Mississippi Medical Center, United States |
| OpenAccessLink | https://www.proquest.com/docview/2282490064?pq-origsite=%requestingapplication% |
| PMID | 30914923 |
| PQID | 2282490064 |
| PQPubID | 4424410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5d4963adb92247d2ab60d929129c69be pubmedcentral_primary_oai_pubmedcentral_nih_gov_6422907 proquest_miscellaneous_2198560530 proquest_journals_2282490064 pubmed_primary_30914923 crossref_citationtrail_10_3389_fncel_2019_00087 crossref_primary_10_3389_fncel_2019_00087 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-12 |
| PublicationDateYYYYMMDD | 2019-03-12 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in cellular neuroscience |
| PublicationTitleAlternate | Front Cell Neurosci |
| PublicationYear | 2019 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Broqua (B26) 1995; 6 Cotter (B38) 2002; 51 Choudary (B37) 2005; 102 Pinna (B172) 2009; 9 Piantadosi (B169) 2016; 7 Griffin (B87) 1999; 96 Heilig (B98) 1989; 98 Lin (B129) 2015; 20 Rosa (B188) 2016; 68 Stampanoni Bassi (B214) 2018; 11 Nyitrai (B158) 2003; 478 Almeida (B5) 2019; 397 Li (B128) 2010; 329 Heese (B95) 2000; 39 Faron-Gorecka (B62) 2018; 235 Shen (B205) 2010; 68 Fukumoto (B76) 2019; 116 Khisti (B117) 2000; 67 Bittiger (B22) 1993; 14 Workman (B244) 2013; 73 Rudolph (B190) 2011; 10 Jovanovic (B108) 2004; 24 Klempan (B119) 2009; 14 Liu (B130) 2012; 223 Petty (B167) 1984; 6 Romeo (B187) 1998; 155 Pettit (B166) 1998; 51 Valentine (B230) 2011; 191 Hasler (B93) 2010; 167 Fuchs (B75) 2017; 22 Pehrson (B163) 2015; 9 Savitz (B199) 2009; 33 Banerjee (B14) 2013; 6 Ghosal (B79) 2018; 83 Duman (B56) 2016; 22 Karolewicz (B113) 2010; 13 Sanacora (B197) 1999; 56 Uzunova (B228) 1998; 95 Berman (B18) 2000; 47 Vithlani (B234) 2013; 33 Yeung (B247) 2011; 216 Hallschmid (B91) 2003; 28 Markram (B139) 2004; 5 Douillard-Guilloux (B53) 2017; 34 Larhammar (B125) 2004; 38 Dubin (B55) 2016; 41 Martin (B140) 1989; 22 Crowley (B42) 2014; 231 Song (B212) 2012; 29 Stone (B215) 2012; 17 Braestrup (B25) 1979; 280 Northoff (B155) 2014; 19 Mohler (B149) 2002; 300 Llado-Pelfort (B131) 2012; 22 Akana (B3) 2001; 13 Cryan (B43) 2005; 26 Karch (B111) 2009; 58 Filipovic (B68) 2013; 236 Serrats (B203) 2003; 84 Meltzer-Brody (B145) 2018; 392 Poleszak (B174) 2018; 213 Prescot (B176) 2018; 2 Sanacora (B196) 2004; 61 Zadrozna (B248) 2011; 63 Bowery (B24) 1980; 283 Beasley (B16) 2002; 52 Hofland (B104) 1992; 131 Fischell (B69) 2015; 40 Heilig (B96) 1992; 41 Ghosal (B80) 2017; 14 Shalaby (B204) 2009; 1 Shepard (B207) 2016; 332 McKlveen (B142) 2016; 80 Uzunov (B227) 1996; 93 Schiavon (B201) 2016; 64 Gabbay (B77) 2012; 69 Chandra (B36) 2005; 6 Cross (B41) 1988; 26 Trivedi (B225) 2006; 163 Santana (B198) 2004; 14 Caldji (B29) 2000; 48 Hasler (B94) 2007; 64 Puig (B178) 2004; 14 Bauer (B15) 2007; 8 Csabai (B44) 2017; 27 Gilabert-Juan (B81) 2013; 218 Varga (B232) 2017; 316 Campos (B32) 2013; 16 Engin (B59) 2008; 157 Tripp (B223) 2011; 42 Workman (B243) 2015; 20 Strohle (B216) 1999; 45 Heinzel (B100) 2008; 23 Wedzony (B238) 2009; 61 Gilabert-Juan (B82) 2012; 530 Redrobe (B183); 71 Zanos (B249) 2016; 533 Thase (B219) 2016; 26 Heilig (B99) 2004; 38 Lloyd (B132) 1985; 235 Brown (B27) 2015; 20 Hallschmid (B90) 2004; 83 Pinna (B171) 2006; 186 Sequeira (B202) 2007; 12 Radley (B179) 2009; 29 Frankowska (B72) 2007; 59 Nin (B154) 2011; 2 Czéh (B46) 2015; 25 Pawlikowski (B162) 2003; 24 Kessler (B116) 2005; 62 Bowery (B23) 1981; 71 Russo (B192) 2005; 30 Jonas (B107) 1993 Smith (B211) 2012; 62 Maciag (B135) 2010; 67 Sibille (B209) 2011; 14 Rodriguez-Landa (B186) 2007; 21 Gold (B84) 1980; 137 Mombereau (B150) 2004; 29 Zarate (B251) 2006; 63 Tripp (B224) 2012; 169 Crippa (B40) 2018; 9 Diorio (B51) 1993; 13 Rubinow (B189) 1985; 9 Milak (B147) 2016; 21 Post (B175) 1991; 6 Rudy (B191) 2011; 71 Soumier (B213) 2014; 39 Widdowson (B240) 1992; 59 MacQueen (B136) 2008; 64 Todorovic (B221) 2019; 396 Campos (B31) 2017; 8 Zou (B253) 2016; 16 Bhagwagar (B19) 2004; 161 Meis (B143) 2005; 21 Naert (B151) 2007; 32 Rajkowska (B180) 2007; 32 Karlsson (B112) 2008; 195 Wang (B237) 2003; 118 Atack (B9) 2011; 25 Fatemi (B63) 2011; 128 Heilig (B97) 1987; 137 Goren (B85) 2007; 32 Dong (B52) 2001; 98 Prevot (B177) 2017; 42 Birkenhager (B20) 1995; 10 Drugan (B54) 1989; 487 Nakagawa (B152) 1999; 381 Nowak (B156) 2010; 62 Autry (B11) 2011; 475 Banasr (B13) 2017 Lacroix (B123) 1996; 98 Nowak (B157) 2006; 149 Kanes (B109) 2017; 390 Xiong (B245) 2018; 175 Maguire (B138) 2007; 27 Gerner (B78) 1981; 138 Godfrey (B83) 2018; 105 Sajdyk (B194) 2008; 28 Vollenweider (B235) 2011; 217 Alexander (B4) 2017; 35 Viollet (B233) 2000; 12 Froestl (B73) 2004; 68 Tremblay (B222) 2016; 91 Sales (B195) 2018 Crestani (B39) 1999; 2 Harmer (B92) 2017; 4 Melas (B144) 2012; 35 Bisogno (B21) 2001; 134 Czéh (B45) 2018; 12 Gray (B86) 1987; 92 Atack (B8) 2011; 11 Celada (B35) 2001; 21 Fava (B65) 2011; 72 Kato (B114) 2018; 23 Lepack (B126) 2016; 111 Benham (B17) 2017; 332 Widerlov (B241) 1988; 22 Engin (B58) 2018; 39 Artigas (B7) 2018; 28 Hill (B103) 2011; 31 Faron-Gorecka (B61) 2016; 233 Fogaça (B70) 2018; 135 Uzunova (B229) 2004; 486 Pich (B170) 1993; 14 Lacroix (B124) 1996; 118 Robinson (B185) 2003; 304 Westrin (B239) 1999; 9 Merali (B146) 2004; 24 Wang (B236) 2017; 126 Shimizu (B208) 2003; 54 Nikisch (B153) 2005; 8 Kaupmann (B115) 1997; 386 Otero Losada (B161) 1988; 93 Diana (B50) 2004; 142 Ma (B134) 2016; 6 Slattery (B210) 2005; 312 Kuehner (B122) 2017; 4 Guilloux (B89) 2012; 17 Sayed (B200) 2018; 21 Pinter (B173) 2006; 112 Yang (B246) 2018; 159 Hill (B102) 2007; 97 Moghaddam (B148) 1997; 17 Nyitrai (B159) 1999; 34 Urban-Ciecko (B226) 2016; 17 Zhou (B252) 2014; 29 Engin (B60) 2009; 206 De Jong (B47) 1999; 43 Fogaça (B71) 2012; 45 Kanes (B110) 2017; 32 van Marwijk (B231) 2012; 7 Perrine (B165) 2014; 51 Shepard (B206) 2018; 55 Luscher (B133) 2011; 16 Bakas (B12) 2017; 119 Fava (B64) 2006; 59 Abdallah (B1) 2015; 25 Jacobson (B105) 2018; 83 Guidotti (B88) 2001; 37 DeFelipe (B49) 2013; 14 Redrobe (B182); 26 Krystal (B120) 2007; 3 Reddy (B181) 2010; 32 Caldji (B30) 2003; 28 De Petrocellis (B48) 2011; 163 Kim (B118) 2007; 31 Maggi (B137) 1986; 47 Ordway (B160) 1995; 65 Thorsell (B220) 2000; 97 Ferguson (B67) 2018; 12 Lepack (B127) 2014; 18 Szabo (B217) 2005; 168 Perova (B164) 2015; 35 Celada (B34) 2013; 7 Abellan (B2) 2000; 11 Fee (B66) 2017; 82 Zanos (B250) 2017; 4 Frye (B74) 2003; 53 Matsumoto (B141) 2007; 10 Jiang (B106) 2003; 47 Kucukibrahimoglu (B121) 2009; 65 Hewitt (B101) 2009; 12 Wilkinson (B242) 2018 Atack (B10) 2009; 331 Arranz (B6) 1992; 26 (B193) 2017 Carlton (B33) 2004; 110 Ren (B184) 2016; 80 Taylor (B218) 2012; 26 Caberlotto (B28) 1999; 265 Dwivedi (B57) 2003; 60 Petty (B168) 1995; 38 |
| References_xml | – volume: 93 start-page: 12599 year: 1996 ident: B227 article-title: Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.22.12599 – volume: 65 start-page: 571 year: 2009 ident: B121 article-title: The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression. publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/s00228-009-0650-7 – volume: 32 start-page: 1062 year: 2007 ident: B151 article-title: Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats. publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2007.09.002 – volume: 64 start-page: 27 year: 2016 ident: B201 article-title: Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2015.06.017 – volume: 280 start-page: 331 year: 1979 ident: B25 article-title: Partial agonists for brain GABA/benzodiazepine receptor complex. publication-title: Nature doi: 10.1038/280331a0 – volume: 13 start-page: 411 year: 2010 ident: B113 article-title: Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145709990587 – volume: 11 start-page: 1176 year: 2011 ident: B8 article-title: GABAA receptor subtype-selective modulators. I. alpha2/alpha3-selective agonists as non-sedating anxiolytics. publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802611795371350 – volume: 25 start-page: 329 year: 2011 ident: B9 article-title: Preclinical and clinical pharmacology of TPA023B, a GABAA receptor α2/α3 subtype-selective partial agonist. publication-title: J. Psychopharmacol. doi: 10.1177/0269881109354928 – volume: 235 start-page: 191 year: 1985 ident: B132 article-title: Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. publication-title: J. Pharmacol. Exp. Ther. – volume: 29 start-page: 419 year: 2014 ident: B252 article-title: Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. publication-title: Eur. Psychiatry doi: 10.1016/j.eurpsy.2013.10.005 – volume: 2 year: 2018 ident: B176 article-title: Altered cortical gamma-amino butyric acid in female veterans with suicidal behavior: sex differences and clinical correlates. publication-title: Chronic Stress doi: 10.1177/2470547018768771 – volume: 9 start-page: 24 year: 2009 ident: B172 article-title: SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2008.12.006 – volume: 26 start-page: 36 year: 2005 ident: B43 article-title: Don’t worry ’B’ happy!: a role for GABA(B) receptors in anxiety and depression. publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2004.11.004 – volume: 142 start-page: 9 year: 2004 ident: B50 article-title: Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0705726 – volume: 22 start-page: 1487 year: 2012 ident: B131 article-title: 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr220 – volume: 21 start-page: 76 year: 2007 ident: B186 article-title: Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat. publication-title: J. Psychopharmacol. doi: 10.1177/0269881106064203 – volume: 13 start-page: 625 year: 2001 ident: B3 article-title: Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. publication-title: J. Neuroendocrinol. doi: 10.1046/j.1365-2826.2001.00676.x – volume: 20 start-page: 1499 year: 2015 ident: B27 article-title: Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes. publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.192 – volume: 316 start-page: 104 year: 2017 ident: B232 article-title: Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2016.08.030 – volume: 23 start-page: 2007 year: 2018 ident: B114 article-title: BDNF release and signaling are required for the antidepressant actions of GLYX-13. publication-title: Mol. Psychiatry doi: 10.1038/mp.2017.220 – volume: 14 start-page: 202 year: 2013 ident: B49 article-title: New insights into the classification and nomenclature of cortical GABAergic interneurons. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3444 – volume: 35 start-page: 3201 year: 2015 ident: B164 article-title: Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2670-14.2015 – volume: 381 start-page: 1 year: 1999 ident: B152 article-title: The GABA(B) receptor antagonist CGP36742 improves learned helplessness in rats. publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(99)00567-1 – volume: 386 start-page: 239 year: 1997 ident: B115 article-title: Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. publication-title: Nature doi: 10.1038/386239a0 – volume: 27 start-page: 17 year: 2017 ident: B44 article-title: Electron microscopic analysis of hippocampal Axo-somatic synapses in a chronic stress model for depression. publication-title: Hippocampus doi: 10.1002/hipo.22650 – volume: 206 start-page: 281 year: 2009 ident: B60 article-title: Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. publication-title: Psychopharmacology doi: 10.1007/s00213-009-1605-5 – volume: 128 start-page: 37 year: 2011 ident: B63 article-title: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. publication-title: Schizophr. Res. doi: 10.1016/j.schres.2010.12.025 – volume: 37 start-page: 110 year: 2001 ident: B88 article-title: The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(01)00129-1 – volume: 33 start-page: 15567 year: 2013 ident: B234 article-title: The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor gamma2 subunit. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1845-13.2013 – volume: 9 start-page: 603 year: 2015 ident: B163 article-title: Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. publication-title: Drug Des. Devel. Ther. doi: 10.2147/DDDT.S62912 – volume: 61 start-page: 1000 year: 2009 ident: B238 article-title: Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons. publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(09)70161-6 – volume: 63 start-page: 1539 year: 2011 ident: B248 article-title: Different pattern of changes in calcium binding proteins immunoreactivity in the medial prefrontal cortex of rats exposed to stress models of depression. publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(11)70718-6 – volume: 11 year: 2018 ident: B214 article-title: Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic use against anxiety and depression. publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00424 – volume: 26 start-page: 615 ident: B182 article-title: The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(01)00403-1 – volume: 6 year: 2016 ident: B134 article-title: Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.181 – volume: 29 start-page: 7330 year: 2009 ident: B179 article-title: A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5924-08.2009 – volume: 59 start-page: 1052 year: 2006 ident: B64 article-title: Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2006.01.016 – volume: 83 start-page: 55 year: 2004 ident: B90 article-title: Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man. publication-title: Physiol. Behav. doi: 10.1016/S0031-9384(04)00349-X – volume: 20 start-page: 298 year: 2015 ident: B243 article-title: Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3eta. publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.165 – volume: 24 start-page: 522 year: 2004 ident: B108 article-title: Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3606-03.2004 – volume: 68 start-page: 996 year: 2016 ident: B188 article-title: Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2016.05.010 – volume: 38 start-page: 578 year: 1995 ident: B168 article-title: Benzodiazepines as antidepressants: does GABA play a role in depression? publication-title: Biol. Psychiatry doi: 10.1016/0006-3223(95)00049-7 – volume: 18 year: 2014 ident: B127 article-title: BDNF release is required for the behavioral actions of ketamine. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1093/ijnp/pyu033 – volume: 33 start-page: 699 year: 2009 ident: B199 article-title: Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2009.01.004 – volume: 29 start-page: 1050 year: 2004 ident: B150 article-title: Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300413 – volume: 332 start-page: 1 year: 2016 ident: B207 article-title: Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: relevance for sex differences in stress-related disorders. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.06.038 – volume: 397 start-page: 56 year: 2019 ident: B5 article-title: Hemisphere-dependent changes in mRNA expression of GABAA receptor subunits and BDNF after intra-prefrontal cortex allopregnanolone infusion in rats. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.11.029 – volume: 60 start-page: 804 year: 2003 ident: B57 article-title: Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.60.8.804 – volume: 126 start-page: 666 year: 2017 ident: B236 article-title: Ketamine increases the function of gamma-aminobutyric acid type A receptors in hippocampal and cortical neurons. publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001483 – volume: 265 start-page: 191 year: 1999 ident: B28 article-title: Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression. publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(99)00234-7 – volume: 12 year: 2018 ident: B45 article-title: Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats. publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2018.00148 – volume: 111 start-page: 242 year: 2016 ident: B126 article-title: Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2016.09.011 – volume: 59 start-page: 645 year: 2007 ident: B72 article-title: Effects of GABAB receptor ligands in animal tests of depression and anxiety. publication-title: Pharmacol. Rep. – volume: 32 start-page: 471 year: 2007 ident: B180 article-title: GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301234 – volume: 233 start-page: 255 year: 2016 ident: B61 article-title: Chronic mild stress alters the somatostatin receptors in the rat brain. publication-title: Psychopharmacology doi: 10.1007/s00213-015-4103-y – volume: 300 start-page: 2 year: 2002 ident: B149 article-title: A new benzodiazepine pharmacology. publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.300.1.2 – volume: 216 start-page: 557 year: 2011 ident: B247 article-title: Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions. publication-title: Psychopharmacology doi: 10.1007/s00213-011-2248-x – volume: 10 start-page: 3 year: 2007 ident: B141 article-title: GABA(A) receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. publication-title: Stress doi: 10.1080/10253890701200997 – volume: 71 start-page: 2921 ident: B183 article-title: Neuropeptide Y (NPY) and depression: from animal studies to the human condition. publication-title: Life Sci. doi: 10.1016/S0024-3205(02)02159-8 – volume: 80 start-page: 457 year: 2016 ident: B184 article-title: Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2016.02.009 – volume: 39 start-page: 449 year: 2000 ident: B95 article-title: GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats. publication-title: Neuropharmacology doi: 10.1016/S0028-3908(99)00166-5 – volume: 7 year: 2012 ident: B231 article-title: Alprazolam for depression. publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD007139.pub2 – volume: 110 start-page: 616 year: 2004 ident: B33 article-title: Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel. publication-title: Pain doi: 10.1016/j.pain.2004.04.042 – volume: 486 start-page: 31 year: 2004 ident: B229 article-title: Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat. publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2003.12.002 – volume: 530 start-page: 97 year: 2012 ident: B82 article-title: Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.09.032 – volume: 73 start-page: 192 year: 2013 ident: B244 article-title: mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.05.037 – volume: 24 start-page: 21 year: 2003 ident: B162 article-title: Perspectives of new potential therapeutic applications of somatostatin analogs. publication-title: Neuro Endocrinol. Lett. – volume: 175 start-page: 139 year: 2018 ident: B245 article-title: Comparison of rapid and long-lasting antidepressant effects of negative modulators of alpha5-containing GABAA receptors and (R)ketamine in a chronic social defeat stress model. publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2018.10.005 – volume: 10 start-page: 685 year: 2011 ident: B190 article-title: Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3502 – volume: 9 start-page: 205 year: 1999 ident: B239 article-title: Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt. publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/S0924-977X(98)00026-1 – volume: 6 year: 2005 ident: B36 article-title: GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. publication-title: BMC Neurosci. doi: 10.1186/1471-2202-6-30 – volume: 167 start-page: 1226 year: 2010 ident: B93 article-title: Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2010.09070994 – volume: 8 start-page: 403 year: 2005 ident: B153 article-title: Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145705005158 – volume: 38 start-page: 141 year: 2004 ident: B125 article-title: Molecular evolution of NPY receptor subtypes. publication-title: Neuropeptides doi: 10.1016/j.npep.2004.06.002 – volume: 533 start-page: 481 year: 2016 ident: B249 article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites. publication-title: Nature doi: 10.1038/nature17998 – volume: 9 year: 2018 ident: B40 article-title: Translational investigation of the therapeutic potential of cannabidiol (CBD): toward a new age. publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02009 – volume: 134 start-page: 845 year: 2001 ident: B21 article-title: Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0704327 – volume: 17 start-page: 2921 year: 1997 ident: B148 article-title: Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-08-02921.1997 – volume: 14 start-page: 909 year: 1993 ident: B170 article-title: Neuropeptide Y produces anxiolytic effects in spontaneously hypertensive rats. publication-title: Peptides doi: 10.1016/0196-9781(93)90065-O – volume: 163 start-page: 1479 year: 2011 ident: B48 article-title: Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.01166.x – volume: 93 start-page: 483 year: 1988 ident: B161 article-title: Changes in central GABAergic function following acute and repeated stress. publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1988.tb10302.x – volume: 1 start-page: 154 year: 2009 ident: B204 article-title: Effect of Escitalopram on GABA level and anti-oxidant markers in prefrontal cortex and nucleus accumbens of chronic mild stress-exposed albino rats. publication-title: Int. J. Physiol. Pathophysiol. Pharmacol. – volume: 10 start-page: 181 year: 1995 ident: B20 article-title: Benzodiazepines for depression? A review of the literature. publication-title: Int. Clin. Psychopharmacol. doi: 10.1097/00004850-199510030-00008 – volume: 236 start-page: 47 year: 2013 ident: B68 article-title: The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.01.033 – volume: 17 start-page: 1130 year: 2012 ident: B89 article-title: Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. publication-title: Mol. Psychiatry doi: 10.1038/mp.2011.113 – volume: 95 start-page: 3239 year: 1998 ident: B228 article-title: Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.95.6.3239 – volume: 98 start-page: 2849 year: 2001 ident: B52 article-title: Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.051628598 – volume: 45 start-page: 357 year: 2012 ident: B71 article-title: Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. publication-title: Braz. J. Med. Biol. Res. doi: 10.1590/S0100-879X2012007500029 – volume: 331 start-page: 470 year: 2009 ident: B10 article-title: In vitro and in vivo properties of 3-tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)- pyrazolo[1,5-d]-[1,2,4]triazine (MRK-016), a GABAA receptor alpha5 subtype-selective inverse agonist. publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.109.157636 – volume: 118 start-page: 2079 year: 1996 ident: B124 article-title: Intranasal administration of neuropeptide Y in man: systemic absorption and functional effects. publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1996.tb15647.x – volume: 11 start-page: 941 year: 2000 ident: B2 article-title: GABAB-RI receptors in serotonergic neurons: effects of baclofen on 5-HT output in rat brain. publication-title: Neuroreport doi: 10.1097/00001756-200004070-00009 – volume: 116 start-page: 297 year: 2019 ident: B76 article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1814709116 – volume: 186 start-page: 362 year: 2006 ident: B171 article-title: Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. publication-title: Psychopharmacology doi: 10.1007/s00213-005-0213-2 – volume: 14 start-page: 1100 year: 2004 ident: B198 article-title: Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh070 – volume: 8 year: 2017 ident: B31 article-title: Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders. publication-title: Front. Pharmacol. doi: 10.3389/fphar.2017.00269 – volume: 217 start-page: 77 year: 2011 ident: B235 article-title: Antidepressant-like properties of alpha2-containing GABA(A) receptors. publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2010.10.009 – volume: 213 start-page: 18 year: 2018 ident: B174 article-title: Cannabinoids in depressive disorders. publication-title: Life Sci. doi: 10.1016/j.lfs.2018.09.058 – volume: 62 start-page: 54 year: 2012 ident: B211 article-title: Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.07.026 – volume: 12 start-page: 3761 year: 2000 ident: B233 article-title: Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice. publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2000.00249.x – volume: 80 start-page: 754 year: 2016 ident: B142 article-title: Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2016.03.2101 – volume: 26 start-page: 33 year: 1992 ident: B6 article-title: Gamma-aminobutyric acid-B (GABAB) binding sites in postmortem suicide brains. publication-title: Neuropsychobiology doi: 10.1159/000118893 – volume: 137 start-page: 362 year: 1980 ident: B84 article-title: GABA levels in CSF of patients with psychiatric disorders. publication-title: Am. J. Psychiatry doi: 10.1176/ajp.137.3.362 – volume: 14 start-page: 175 year: 2009 ident: B119 article-title: Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4002110 – volume: 102 start-page: 15653 year: 2005 ident: B37 article-title: Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0507901102 – volume: 58 start-page: 1 year: 2009 ident: B111 article-title: Surveillance for violent deaths–national violent death reporting system, 16 States, 2006. publication-title: MMWR Surveill. Summ. – volume: 13 start-page: 3839 year: 1993 ident: B51 article-title: The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.13-09-03839.1993 – volume: 21 start-page: 320 year: 2016 ident: B147 article-title: A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.83 – volume: 22 start-page: 920 year: 2017 ident: B75 article-title: Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.188 – volume: 96 start-page: 13512 year: 1999 ident: B87 article-title: Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.23.13512 – volume: 16 start-page: 383 year: 2011 ident: B133 article-title: The GABAergic deficit hypothesis of major depressive disorder. publication-title: Mol. Psychiatry doi: 10.1038/mp.2010.120 – volume: 68 start-page: 512 year: 2010 ident: B205 article-title: gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2010.04.024 – volume: 329 start-page: 959 year: 2010 ident: B128 article-title: mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. publication-title: Science doi: 10.1126/science.1190287 – volume: 64 start-page: 193 year: 2007 ident: B94 article-title: Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.64.2.193 – volume: 91 start-page: 260 year: 2016 ident: B222 article-title: GABAergic interneurons in the neocortex: from cellular properties to circuits. publication-title: Neuron doi: 10.1016/j.neuron.2016.06.033 – volume: 31 start-page: 10506 year: 2011 ident: B103 article-title: Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0496-11.2011 – volume: 137 start-page: 127 year: 1987 ident: B97 article-title: Intracerebroventricular neuropeptide Y protects against stress-induced gastric erosion in the rat. publication-title: Eur. J. Pharmacol. doi: 10.1016/0014-2999(87)90191-9 – volume: 35 start-page: 49 year: 2012 ident: B144 article-title: Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model. publication-title: Peptides doi: 10.1016/j.peptides.2012.02.020 – volume: 97 start-page: 2580 year: 2007 ident: B102 article-title: Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. publication-title: J. Neurophysiol. doi: 10.1152/jn.00603.2006 – volume: 21 start-page: 9917 year: 2001 ident: B35 article-title: Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-24-09917.2001 – volume: 6 start-page: 131 year: 1984 ident: B167 article-title: Plasma GABA levels in psychiatric illness. publication-title: J. Affect. Disord. doi: 10.1016/0165-0327(84)90018-1 – volume: 118 start-page: 681 year: 2003 ident: B237 article-title: Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00020-4 – volume: 138 start-page: 1098 year: 1981 ident: B78 article-title: CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. publication-title: Am. J. Psychiatry doi: 10.1176/ajp.138.8.1098 – volume: 56 start-page: 1043 year: 1999 ident: B197 article-title: Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.56.11.1043 – volume: 42 start-page: 1647 year: 2017 ident: B177 article-title: Roles of hippocampal somatostatin receptor subtypes in stress response and emotionality. publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.281 – volume: 332 start-page: 172 year: 2017 ident: B17 article-title: Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking alpha2-containing GABAA receptors. publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2017.05.063 – volume: 191 start-page: 122 year: 2011 ident: B230 article-title: The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2010.10.009 – volume: 157 start-page: 666 year: 2008 ident: B59 article-title: Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.09.037 – volume: 30 start-page: 1037 year: 2005 ident: B192 article-title: Agonistic properties of cannabidiol at 5-HT1a receptors. publication-title: Neurochem. Res. doi: 10.1007/s11064-005-6978-1 – volume: 47 start-page: 97 year: 2003 ident: B106 article-title: Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro. publication-title: Neurosci. Res. doi: 10.1016/S0168-0102(03)00183-4 – volume: 48 start-page: 1164 year: 2000 ident: B29 article-title: Variations in maternal care in infancy regulate the development of stress reactivity. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(00)01084-2 – volume: 28 start-page: 893 year: 2008 ident: B194 article-title: Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0659-07.2008 – volume: 34 start-page: 391 year: 1999 ident: B159 article-title: Effect of CGP 36742 on the extracellular level of neurotransmitter amino acids in the thalamus. publication-title: Neurochem. Int. doi: 10.1016/S0197-0186(99)00042-X – volume: 35 start-page: 101 year: 2017 ident: B4 article-title: The potential efficacy of GABAB antagonists in depression. publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2017.07.009 – volume: 63 start-page: 856 year: 2006 ident: B251 article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.63.8.856 – volume: 84 start-page: 743 year: 2003 ident: B203 article-title: GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2003.01557.x – volume: 92 start-page: 357 year: 1987 ident: B86 article-title: Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1987.tb11331.x – volume: 12 start-page: 438 year: 2009 ident: B101 article-title: Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. publication-title: Nat. Neurosci. doi: 10.1038/nn.2274 – volume: 28 start-page: 445 year: 2018 ident: B7 article-title: Can we increase speed and efficacy of antidepressant treatments? Part I: general aspects and monoamine-based strategies. publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2017.10.032 – volume: 21 start-page: 3 year: 2018 ident: B200 article-title: A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1093/ijnp/pyx109 – volume: 231 start-page: 3619 year: 2014 ident: B42 article-title: Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? publication-title: Psychopharmacology doi: 10.1007/s00213-014-3572-8 – volume: 25 start-page: 1082 year: 2015 ident: B1 article-title: Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder. publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2015.04.025 – volume: 67 start-page: 137 year: 2000 ident: B117 article-title: Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test. publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/S0091-3057(00)00300-2 – volume: 26 start-page: 119 year: 1988 ident: B41 article-title: Brain GABAB binding sites in depressed suicide victims. publication-title: Psychiatry Res. doi: 10.1016/0165-1781(88)90066-2 – volume: 4 start-page: 409 year: 2017 ident: B92 article-title: How do antidepressants work? New perspectives for refining future treatment approaches. publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(17)30015-9 – volume: 283 start-page: 92 year: 1980 ident: B24 article-title: (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. publication-title: Nature doi: 10.1038/283092a0 – volume: 396 start-page: 24 year: 2019 ident: B221 article-title: Subregion-specific protective effects of fluoxetine and clozapine on parvalbumin expression in medial prefrontal cortex of chronically isolated rats. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.11.008 – year: 2017 ident: B193 publication-title: Sage Therapeutics Reports Positive Top-Line Results from Phase 2 Placebo-Controlled Trial of SAGE-217 in Major Depressive Disorder [Press Release]. – volume: 12 year: 2018 ident: B67 article-title: PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. publication-title: Front. Neural Circuits doi: 10.3389/fncir.2018.00037 – volume: 65 start-page: 1646 year: 1995 ident: B160 article-title: Neuropeptide Y in frontal cortex is not altered in major depression. publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.65041646.x – volume: 68 start-page: 1479 year: 2004 ident: B73 article-title: SGS742: the first GABAB receptor antagonist in clinical trials. publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2004.07.030 – volume: 7 year: 2013 ident: B34 article-title: Serotonin modulation of cortical neurons and networks. publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2013.00025 – volume: 112 start-page: 440 year: 2006 ident: B173 article-title: Inhibitory effect of somatostatin on inflammation and nociception. publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2006.04.010 – volume: 4 start-page: 146 year: 2017 ident: B122 article-title: Why is depression more common among women than among men? publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(16)30263-2 – volume: 45 start-page: 274 year: 1999 ident: B216 article-title: Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(98)00328-X – volume: 26 start-page: 979 year: 2016 ident: B219 article-title: A meta-analysis of randomized, placebo-controlled trials of vortioxetine for the treatment of major depressive disorder in adults. publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2016.03.007 – volume: 169 start-page: 1194 year: 2012 ident: B224 article-title: Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2012.12020248 – volume: 71 start-page: 45 year: 2011 ident: B191 article-title: Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. publication-title: Dev. Neurobiol. doi: 10.1002/dneu.20853 – volume: 14 start-page: 721 year: 2011 ident: B209 article-title: GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145710001616 – volume: 304 start-page: 978 year: 2003 ident: B185 article-title: Fluoxetine increases GABA(A) receptor activity through a novel modulatory site. publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.102.044834 – volume: 392 start-page: 1058 year: 2018 ident: B145 article-title: Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. publication-title: Lancet doi: 10.1016/S0140-6736(18)31551-4 – start-page: 46 year: 1993 ident: B107 article-title: A comparison of the safety and efficacy of alprazolam versus other agents in the treatment of anxiety, panic, and depression: a review of the literature. publication-title: J. Clin. Psychiatry – volume: 223 start-page: 219 year: 2012 ident: B130 article-title: Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: role of brain-derived neurotrophic factor. publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.08.010 – volume: 14 start-page: 391 year: 1993 ident: B22 article-title: GABAB receptor antagonists: from synthesis to therapeutic applications. publication-title: Trends Pharmacol. Sci. doi: 10.1016/0165-6147(93)90056-P – volume: 6 start-page: 215 year: 1995 ident: B26 article-title: Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. publication-title: Behav. Pharmacol. doi: 10.1097/00008877-199504000-00001 – volume: 17 start-page: 401 year: 2016 ident: B226 article-title: Somatostatin-expressing neurons in cortical networks. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.53 – volume: 54 start-page: 70 year: 2003 ident: B208 article-title: Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(03)00181-1 – volume: 22 start-page: 238 year: 2016 ident: B56 article-title: Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. publication-title: Nat. Med. doi: 10.1038/nm.4050 – volume: 195 start-page: 547 year: 2008 ident: B112 article-title: The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice. publication-title: Psychopharmacology doi: 10.1007/s00213-007-0945-2 – volume: 51 start-page: 391 year: 1998 ident: B166 article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain. publication-title: J. Neurosci. Res. doi: 10.1002/(SICI)1097-4547(19980201)51:3<391::AID-JNR12>3.0.CO;2-A – volume: 27 start-page: 2155 year: 2007 ident: B138 article-title: Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4945-06.2007 – volume: 31 start-page: 78 year: 2007 ident: B118 article-title: Low plasma BDNF is associated with suicidal behavior in major depression. publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2006.06.024 – volume: 28 start-page: 1950 year: 2003 ident: B30 article-title: Variations in maternal care alter GABA(A) receptor subunit expression in brain regions associated with fear. publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300237 – volume: 25 start-page: 393 year: 2015 ident: B46 article-title: Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. publication-title: Hippocampus doi: 10.1002/hipo.22382 – volume: 21 start-page: 755 year: 2005 ident: B143 article-title: Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.03922.x – year: 2018 ident: B242 article-title: A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.11.007 – volume: 16 start-page: 1407 year: 2013 ident: B32 article-title: The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712001502 – volume: 168 start-page: 327 year: 2005 ident: B217 article-title: Effects of cannabinoids on neurotransmission. publication-title: Handb. Exp. Pharmacol. doi: 10.1007/3-540-26573-2_11 – volume: 155 start-page: 910 year: 1998 ident: B187 article-title: Effects of antidepressant treatment on neuroactive steroids in major depression. publication-title: Am. J. Psychiatry doi: 10.1176/ajp.155.7.910 – volume: 131 start-page: 571 year: 1992 ident: B104 article-title: Dissociation of antiproliferative and antihormonal effects of the somatostatin analog octreotide on 7315b pituitary tumor cells. publication-title: Endocrinology – volume: 51 start-page: 9 year: 2014 ident: B165 article-title: Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: an 11.7 T 1H-MRS study in rats. publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2013.11.003 – volume: 82 start-page: 549 year: 2017 ident: B66 article-title: Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.05.024 – volume: 26 start-page: 733 year: 2012 ident: B218 article-title: Lack of effect of ketamine on cortical glutamate and glutamine in healthy volunteers: a proton magnetic resonance spectroscopy study. publication-title: J. Psychopharmacol. doi: 10.1177/0269881111405359 – volume: 159 start-page: 1525 year: 2018 ident: B246 article-title: Central neuropeptide Y plays an important role in mediating the adaptation mechanism against chronic stress in male rats. publication-title: Endocrinology doi: 10.1210/en.2018-00045 – volume: 41 start-page: E37 year: 2016 ident: B55 article-title: Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. publication-title: J. Psychiatry Neurosci. doi: 10.1503/jpn.150223 – volume: 478 start-page: 111 year: 2003 ident: B158 article-title: GABA(B) receptor antagonist CGP-36742 enhances somatostatin release in the rat hippocampus in vivo and in vitro. publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2003.08.006 – volume: 17 start-page: 664 year: 2012 ident: B215 article-title: Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. publication-title: Mol. Psychiatry doi: 10.1038/mp.2011.171 – volume: 62 start-page: 617 year: 2005 ident: B116 article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.6.617 – volume: 4 year: 2017 ident: B250 article-title: A negative allosteric modulator for alpha5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. publication-title: eNeuro doi: 10.1523/ENEURO.0285-16.2017 – volume: 98 start-page: 611 year: 1996 ident: B123 article-title: Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients. publication-title: J. Allergy Clin. Immunol. doi: 10.1016/S0091-6749(96)70095-7 – volume: 43 start-page: 356 year: 1999 ident: B47 article-title: Therapy of neuroendocrine tumors with radiolabeled somatostatin-analogues. publication-title: Q. J. Nucl. Med. – volume: 135 start-page: 22 year: 2018 ident: B70 article-title: The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.03.001 – volume: 29 start-page: 233 year: 2012 ident: B212 article-title: [Decreased occipital GABA concentrations in patients with first-episode major depressive disorder: a magnetic resonance spectroscopy study]. publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi – volume: 71 start-page: 53 year: 1981 ident: B23 article-title: Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. publication-title: Eur. J. Pharmacol. doi: 10.1016/0014-2999(81)90386-1 – volume: 20 start-page: 377 year: 2015 ident: B129 article-title: Somatostatin, neuronal vulnerability and behavioral emotionality. publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.184 – volume: 38 start-page: 113 year: 2004 ident: B99 article-title: Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism. publication-title: J. Psychiatr. Res. doi: 10.1016/S0022-3956(03)00101-8 – volume: 14 start-page: 1365 year: 2004 ident: B178 article-title: In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh097 – volume: 41 start-page: 61 year: 1992 ident: B96 article-title: Anxiolytic-like effect of neuropeptide Y (NPY), but not other peptides in an operant conflict test. publication-title: Regul. Pept. doi: 10.1016/0167-0115(92)90514-U – volume: 5 start-page: 793 year: 2004 ident: B139 article-title: Interneurons of the neocortical inhibitory system. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1519 – volume: 16 start-page: 91 year: 2016 ident: B253 article-title: DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction. publication-title: Curr. Mol. Med. doi: 10.2174/1566524016666151222150024 – volume: 6 start-page: 197 year: 1991 ident: B175 article-title: Lack of beneficial effects of l-baclofen in affective disorder. publication-title: Int. Clin. Psychopharmacol. doi: 10.1097/00004850-199100640-00001 – volume: 6 start-page: 1 year: 2013 ident: B14 article-title: Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. publication-title: Clin. Med. Insights Pathol. doi: 10.4137/CMPath.S12530 – volume: 32 start-page: 1559 year: 2007 ident: B85 article-title: Fluoxetine partly exerts its actions through GABA: a neurochemical evidence. publication-title: Neurochem. Res. doi: 10.1007/s11064-007-9357-2 – volume: 23 start-page: 549 year: 2008 ident: B100 article-title: S-ketamine and GABA-A-receptor interaction in humans: an exploratory study with I-123-iomazenil SPECT. publication-title: Hum. Psychopharmacol. doi: 10.1002/hup.960 – volume: 7 year: 2016 ident: B169 article-title: Sex-dependent anti-stress effect of an alpha5 subunit containing GABAA receptor positive allosteric modulator. publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00446 – volume: 51 start-page: 377 year: 2002 ident: B38 article-title: The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(01)01243-4 – volume: 83 start-page: 29 year: 2018 ident: B79 article-title: Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.06.017 – volume: 47 start-page: 351 year: 2000 ident: B18 article-title: Antidepressant effects of ketamine in depressed patients. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(99)00230-9 – volume: 69 start-page: 139 year: 2012 ident: B77 article-title: Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: relationship to anhedonia. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2011.131 – volume: 28 start-page: 529 year: 2003 ident: B91 article-title: NPY attenuates positive cortical DC-potential shift upon food intake in man. publication-title: Psychoneuroendocrinology doi: 10.1016/S0306-4530(02)00038-0 – volume: 40 start-page: 2499 year: 2015 ident: B69 article-title: Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors. publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.112 – volume: 34 start-page: 68 year: 2017 ident: B53 article-title: Decrease in somatostatin-positive cell density in the amygdala of females with major depression. publication-title: Depress. Anxiety doi: 10.1002/da.22549 – volume: 218 start-page: 1591 year: 2013 ident: B81 article-title: Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. publication-title: Brain Struct. Funct. doi: 10.1007/s00429-012-0479-1 – volume: 22 start-page: 220 year: 1989 ident: B140 article-title: Decreased GABA B receptors in helpless rats: reversal by tricyclic antidepressants. publication-title: Neuropsychobiology doi: 10.1159/000118620 – year: 2018 ident: B195 article-title: Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-1143-4 – volume: 235 start-page: 2137 year: 2018 ident: B62 article-title: Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. publication-title: Psychopharmacology doi: 10.1007/s00213-018-4912-x – volume: 47 start-page: 1793 year: 1986 ident: B137 article-title: Estrogen-induced up-regulation of gamma-aminobutyric acid receptors in the CNS of rodents. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1986.tb13090.x – volume: 12 start-page: 640 year: 2007 ident: B202 article-title: Patterns of gene expression in the limbic system of suicides with and without major depression. publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4001969 – volume: 390 start-page: 480 year: 2017 ident: B109 article-title: Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. publication-title: Lancet doi: 10.1016/S0140-6736(17)31264-3 – volume: 61 start-page: 705 year: 2004 ident: B196 article-title: Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.61.7.705 – volume: 97 start-page: 12852 year: 2000 ident: B220 article-title: Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.220232997 – volume: 19 start-page: 966 year: 2014 ident: B155 article-title: Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. publication-title: Mol. Psychiatry doi: 10.1038/mp.2014.68 – volume: 55 start-page: 2591 year: 2018 ident: B206 article-title: Changes in the prefrontal glutamatergic and parvalbumin systems of mice exposed to unpredictable chronic stress. publication-title: Mol. Neurobiol. doi: 10.1007/s12035-017-0528-0 – volume: 72 start-page: 473 year: 2011 ident: B65 article-title: A post hoc analysis of the effect of nightly administration of eszopiclone and a selective serotonin reuptake inhibitor in patients with insomnia and anxious depression. publication-title: J. Clin. Psychiatry doi: 10.4088/JCP.09m05131gry – volume: 9 start-page: 393 year: 1985 ident: B189 article-title: CSF somatostatin in affective illness and normal volunteers. publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/0278-5846(85)90192-7 – volume: 2 year: 2011 ident: B154 article-title: Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. publication-title: Front. Endocrinol. doi: 10.3389/fendo.2011.00073 – volume: 475 start-page: 91 year: 2011 ident: B11 article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. publication-title: Nature doi: 10.1038/nature10130 – volume: 39 start-page: 710 year: 2018 ident: B58 article-title: An emerging circuit pharmacology of GABAA receptors. publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2018.04.003 – volume: 487 start-page: 45 year: 1989 ident: B54 article-title: Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. publication-title: Brain Res. doi: 10.1016/0006-8993(89)90938-4 – volume: 14 start-page: 1 year: 2017 ident: B80 article-title: Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2016.09.012 – volume: 3 start-page: 48 year: 2007 ident: B120 article-title: Evaluation of eszopiclone discontinuation after cotherapy with fluoxetine for insomnia with coexisting depression. publication-title: J. Clin. Sleep Med. – volume: 312 start-page: 290 year: 2005 ident: B210 article-title: GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.104.073536 – volume: 119 start-page: 358 year: 2017 ident: B12 article-title: The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2017.02.022 – volume: 98 start-page: 524 year: 1989 ident: B98 article-title: Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. publication-title: Psychopharmacology doi: 10.1007/BF00441953 – volume: 149 start-page: 581 year: 2006 ident: B157 article-title: Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706845 – volume: 62 start-page: 1204 year: 2010 ident: B156 article-title: Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment. publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(10)70383-2 – volume: 2 start-page: 833 year: 1999 ident: B39 article-title: Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. publication-title: Nat. Neurosci. doi: 10.1038/12207 – volume: 64 start-page: 880 year: 2008 ident: B136 article-title: Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.06.027 – volume: 22 start-page: 69 year: 1988 ident: B241 article-title: Neuropeptide Y and peptide YY as possible cerebrospinal fluid markers for major depression and schizophrenia, respectively. publication-title: J. Psychiatr. Res. doi: 10.1016/0022-3956(88)90030-1 – volume: 53 start-page: 180 year: 2003 ident: B74 article-title: Low CSF somatostatin associated with response to nimodipine in patents with affective illness. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(02)01343-4 – year: 2017 ident: B13 article-title: Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. publication-title: Chronic Stress doi: 10.1177/2470547017720459 – volume: 32 year: 2017 ident: B110 article-title: Open-label, proof-of-concept study of brexanolone in the treatment of severe postpartum depression. publication-title: Hum. Psychopharmacol. doi: 10.1002/hup.2576 – volume: 163 start-page: 28 year: 2006 ident: B225 article-title: Evaluation of outcomes with citalopram for depression using measurement-based care in STAR∗D: implications for clinical practice. publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.163.1.28 – volume: 83 start-page: 963 year: 2018 ident: B105 article-title: The gamma-aminobutyric acid b receptor in depression and reward. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2018.02.006 – volume: 42 start-page: 116 year: 2011 ident: B223 article-title: Reduced somatostatin in subgenual anterior cingulate cortex in major depression. publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2011.01.014 – volume: 59 start-page: 73 year: 1992 ident: B240 article-title: Reduced neuropeptide Y concentrations in suicide brain. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1992.tb08877.x – volume: 161 start-page: 368 year: 2004 ident: B19 article-title: Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.161.2.368 – volume: 39 start-page: 2252 year: 2014 ident: B213 article-title: Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. publication-title: Neuropsychopharmacology doi: 10.1038/npp.2014.76 – volume: 32 start-page: 1 year: 2010 ident: B181 article-title: Depression: the disorder and the burden. publication-title: Indian J. Psychol. Med. doi: 10.4103/0253-7176.70510 – volume: 67 start-page: 465 year: 2010 ident: B135 article-title: Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2009.10.027 – volume: 105 start-page: 33 year: 2018 ident: B83 article-title: Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis. publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2018.08.015 – volume: 24 start-page: 1478 year: 2004 ident: B146 article-title: Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4734-03.2004 – volume: 52 start-page: 708 year: 2002 ident: B16 article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(02)01360-4 – volume: 8 start-page: 67 year: 2007 ident: B15 article-title: World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders in primary care. publication-title: World J. Biol. Psychiatry doi: 10.1080/15622970701227829 |
| SSID | ssj0062648 |
| Score | 2.6153345 |
| SecondaryResourceType | review_article |
| Snippet | Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 87 |
| SubjectTerms | Antidepressants Brain architecture Clonal deletion depression Drug development Drugs Functional anatomy GABA Glutamatergic transmission Hypotheses Interneurons Mental depression Neuropeptides Neuroscience Neurosciences Neurotransmission Parvalbumin Prefrontal cortex Proteins Psychiatry Receptor mechanisms Somatostatin Stress Synaptic transmission Therapeutic applications γ-Aminobutyric acid A receptors γ-Aminobutyric acid B receptors γ-Aminobutyric acid receptors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFL3IIuKL-G11lQi--FAmTZum8W1219UFXQRX2beQ5gMHJCPTWcF_771pZ5wR0Rdf2xTSk5vcc5rbE4AXznIvOu5KWbW2bFQjy85LX7ooApcBZXM-i-DzO3V-3l1e6g87R31RTdhoDzwCN5O-wRixvteYbJQXtm-5x5yOecq1ug-0-nKlN2JqXINbqtsaNyVRgulZRABpn6Eic0pO5XM7SSh79f-JYP5eJ7mTeE5vw62JMbL52NM7cC2ku3Dj_bQnfg_c8XKVP0izN_OjeVjhUsZOfgyUsAh0tkjsY_4hhNnk2cmm8jW9YrjAsbM0kDwfGJJXdvHrZyx2tlMMOdyHT6evL47fltPRCaWTsl2XQkTSCg0xKMWjtbx1oo61VR4ztPbedT5q3kVdRycqi7wxqJbXrkL9IZSrH8BBWqbwCFhU0faurVwnyNkl9BIZViN5LXsZbfAFzDZYGjf5itPxFl8N6gtC32T0DaFvMvoFvNw-8W301PhL2yManm07csPOFzBGzBQj5l8xUsDhZnDNNEUHI1BsNpooWQHPt7dxctGOiU1heYVtKt0hJZQ1L-DhGAvbntTItMjdrgC1FyV7Xd2_kxZfsoE3aj6huXr8P97tCdwktKgsrhKHcLBeXYWncN19Xy-G1bM8K34CEPASeA priority: 102 providerName: Directory of Open Access Journals |
| Title | Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30914923 https://www.proquest.com/docview/2282490064 https://www.proquest.com/docview/2198560530 https://pubmed.ncbi.nlm.nih.gov/PMC6422907 https://doaj.org/article/5d4963adb92247d2ab60d929129c69be |
| Volume | 13 |
| WOSCitedRecordID | wos000460944000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M7P dateStart: 20071230 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: BENPR dateStart: 20071230 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: PIMPY dateStart: 20071230 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1662-5102 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062648 issn: 1662-5102 databaseCode: M2P dateStart: 20071230 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYhhCX8XMQGJWRuHCI6jhxnHBB7dZBJVpFMFA5RY5_QCWUbE2HxIW_nffctGsR2oVLDrUrWfns977n9_I9Ql5pxQzPmA5FlKowkYkIMyNMqB23TFgIm30vgi8f5HSazWZ50V24tV1Z5domekNtGo135H0OsUGSowd9e3EZYtcozK52LTT2yAGqJHBfulesLXGK1Vur1CQEYnnfwWvEbEOEEpUMi-i2XJFX7P8Xzfy7WnLL_Zzd-9-F3yeHHfGkg9VOeUBu2fohuTPpUuuPiD5pFv5em74bDAd2ARaRnv5q0e8hdnRe00_-uxKqakNP1wW09RsKdpKO6xaj_JYCB6bn19900fFWTWX7mHw-G52fvA-7DgyhFiJdhpw7DDkSJGKSOaVYqnnsYiUNOPrcGJ0Zl7PM5bHTPFJAP61MWawjCGO41PER2a-b2j4l1EmnKp1GOuMoEGMrAUQtESwWlXDKmoD012CUupMnxy4ZP0oIUxC-0sNXInylhy8grzf_uFhJc9wwd4j4buahqLb_oVl8K7szWgqTgDlSpsqB10jDVZUyA_QRKJFO88oG5HiNcNmd9La8hjcgLzfDcEYx8aJq21zBnCjPgFmKmAXkyWozbVYSA2FDkbyAyJ1ttrPU3ZF6_t3rgEPoyHMmn928rOfkLr4HrJuL-DHZXy6u7AtyW_9czttFj-zJWdYjB8PRtPjY8zcS8JzwouePEj5_j2C8GE-Kr38AfYgn-w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74ehwCLBgYOV9drrBxJCaUNp1DSqRKh6M-t9QCTklDgF9U_xG5nxI00Q6q0HrvbaWu9-nvlm99sZgFdacSNSrn0ZxMqPkkj6qZHG105YLi2GzXUtgqNRMh6nx8fZ4Qb87s7CkKyys4m1oTYzTWvkPYGxQZSRB31_8sOnqlG0u9qV0GhgsW_PfmHIVr0bDnB-Xwux-2Gys-e3VQV8LWW88IVwRKMjIhcJd0rxWIvQhSox6LwyY3RqXMZTl4VOi0AhpbJJzEMdIDUXiQ7xvVfgKtIIwWup4GFn-WNSizVboRj4ZT2H00a7GwGlxOQk2ltxfXWFgH_R2r_VmSvubvf2_zZQd-BWS6xZv_kT7sKGLe_B9YNWOnAf9M5sXq_bs4_97b6do8Vng7OK_Dphk01L9qk-N8NUadigEwiXbxn6ATYsK1rFqBhyfDY5P7PGhiua0eoBfL6UT3wIm-WstI-BucSpQseBTgUlwLGFRCIaSR7KQjpljQe9bvJz3aZfpyog33MMwwgueQ2XnOCS13Dx4M3yiZMm9cgFbbcJT8t2lDS8vjCbf81bG5RLE6G5VabIkLclRqgi5gbpMVI-HWeF9WCrQ1TeWrIqP4eTBy-Xt9EG0caSKu3sFNsEWYrMWYbcg0cNeJc9CZGQUhJAD5I1WK91df1OOf1W5znH0FhkPHlycbdewI29ycEoHw3H-0_hJo0JaQQDsQWbi_mpfQbX9M_FtJo_r39WBl8uG_R_AIOEeyI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkaCA4doHSfOAwmhbZfCqmW1EgX1ljp-wEooWzZbUP8av44Zb7LdRai3HrjGTuQkn2e-sT_PALzQihuRcx3KKFVhkiUyzI00oXbCcmkxbPa1CL4cZKNRfnRUjDfgd3cWhmSVnU30htpMNa2R9wTGBklBHrTnWlnEeLD39uRHSBWkaKe1K6exgMi-PfuF4VvzZjjAf_1SiL13h7sfwrbCQKilTOehEI4odUJEI-NOKZ5qEbtYZQYdWWGMzo0reO6K2GkRKaRXNkt5rCOk6SLTMT73ClzNkpQLLxscd14gJeXYYlsUg8Ci5_AX0k5HROkxOQn4VtygrxbwL4r7t1JzxfXt3fyfP9otuNESbtZfzJDbsGHrO7D1sZUU3AW9O5359Xz2vr_TtzP0BGxw1pC_J8yySc0--fM0TNWGDTrhcP2aoX9gw7qh1Y2GIfdnh-dn2dhwRUva3IPPl_KK92Gzntb2ITCXOVXpNNK5oMQ4tpJIUBPJY1lJp6wJoNcBodRtWnaqDvK9xPCMoFN66JQEndJDJ4BXyztOFilJLui7Q9ha9qNk4v7CdPa1bG1TKU2CZliZqkA-lxmhqpQbpM1IBXVaVDaA7Q5dZWvhmvIcWgE8XzajbaINJ1Xb6Sn2iYocGbWMeQAPFkBejiRGokrJAQPI1iC-NtT1lnryzec_x5BZFDx7dPGwnsEWYr08GI72H8N1-iQkHYzENmzOZ6f2CVzTP-eTZvbUz1sGx5eN-T_R24Po |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+GABAergic+Dysfunction+in+Stress+and+Depression%3A+New+Insights+for+Therapeutic+Interventions&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Foga%C3%A7a%2C+Manoela+V&rft.au=Duman%2C+Ronald+S&rft.date=2019-03-12&rft.issn=1662-5102&rft.eissn=1662-5102&rft.volume=13&rft.spage=87&rft_id=info:doi/10.3389%2Ffncel.2019.00087&rft_id=info%3Apmid%2F30914923&rft.externalDocID=30914923 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon |