Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions

Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in cellular neuroscience Ročník 13; s. 87
Hlavní autoři: Fogaça, Manoela V., Duman, Ronald S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 12.03.2019
Frontiers Media S.A
Témata:
ISSN:1662-5102, 1662-5102
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABA and GABA receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
AbstractList Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation-inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABA and GABA receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the prefrontal cortex (PFC), that can be precipitated by exposure to chronic stress. For decades, the monoaminergic deficit hypothesis of depression provided the conceptual framework to understand the pathophysiology of MDD. However, accumulating evidence suggests that MDD and chronic stress are associated with an imbalance of excitation–inhibition (E:I) within the PFC, generated by a deficit of inhibitory synaptic transmission onto principal glutamatergic neurons. MDD patients and chronically stressed animals show a reduction in GABA and GAD67 levels in the brain, decreased expression of GABAergic interneuron markers, and alterations in GABAA and GABAB receptor levels. Moreover, genetically modified animals with deletion of specific GABA receptors subunits or interneuron function show depressive-like behaviors. Here, we provide further evidence supporting the role of cortical GABAergic interneurons, mainly somatostatin- and parvalbumin-expressing cells, required for the optimal E:I balance in the PFC and discuss how the malfunction of these cells can result in depression-related behaviors. Finally, considering the relatively low efficacy of current available medications, we review new fast-acting pharmacological approaches that target the GABAergic system to treat MDD. We conclude that deficits in cortical inhibitory neurotransmission and interneuron function resulting from chronic stress exposure can compromise the integrity of neurocircuits and result in the development of MDD and other stress-related disorders. Drugs that can establish a new E:I balance in the PFC by targeting the glutamatergic and GABAergic systems show promising as fast-acting antidepressants and represent breakthrough strategies for the treatment of depression.
Author Duman, Ronald S.
Fogaça, Manoela V.
AuthorAffiliation Department of Psychiatry, Yale University School of Medicine , New Haven, CT , United States
AuthorAffiliation_xml – name: Department of Psychiatry, Yale University School of Medicine , New Haven, CT , United States
Author_xml – sequence: 1
  givenname: Manoela V.
  surname: Fogaça
  fullname: Fogaça, Manoela V.
– sequence: 2
  givenname: Ronald S.
  surname: Duman
  fullname: Duman, Ronald S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30914923$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1vEzEQxVeoiH7AnRNaiQuXhPF417vmgJSmtESq4EA5W44_EkcbO9i7Rf3v8SZt1VbiZMvz5qcZv3daHPngTVG8JzCltOWfrVemmyIQPgWAtnlVnBDGcFITwKMn9-PiNKUNAENWtW-KYwqcVBzpSaHmIfZOya68mp3PTFw5VV7cJTt41bvgS-fLX300KZXS6_LC7MZ7Lnwpf5i_5cInt1r3qbQhljdrE-XODBmXC72Jt8aPjPS2eG1ll8y7-_Os-H357Wb-fXL982oxn11PVF2zfoJosa55BcDrBqyUwBRSS2WjW9JyrVWrLYfWcmoVEgktmIYBVaRuGDaKnhWLA1cHuRG76LYy3okgndg_hLgScly2M6LWFWdU6iVHrBqNcslAc-QEuWJ8aTLr64G1G5Zbo1VeJcruGfR5xbu1WIVbwSpEDk0GfLoHxPBnMKkXW5eyW530JgxJIOFtzaCmkKUfX0g3YYg-f5VAbLHi2bgqqz48nehxlAcvs4AdBCqGlKKxQrlejg7kAV0nCIgxNGIfGjGGRuxDkxvhReMD-78t_wBZQMTo
CitedBy_id crossref_primary_10_1016_j_jns_2020_117271
crossref_primary_10_1038_s41386_020_00886_3
crossref_primary_10_1016_j_neuron_2024_01_023
crossref_primary_10_1176_appi_ajp_21020162
crossref_primary_10_4306_jknpa_2023_62_1_1
crossref_primary_10_3389_fnbeh_2021_621751
crossref_primary_10_3390_ijms21124374
crossref_primary_10_1111_jnc_15771
crossref_primary_10_1038_s41380_023_02273_y
crossref_primary_10_3390_ijms252010985
crossref_primary_10_1038_s41598_020_57566_x
crossref_primary_10_1016_j_neulet_2020_135220
crossref_primary_10_1016_j_jsbmb_2025_106719
crossref_primary_10_1016_j_rpsmen_2022_06_008
crossref_primary_10_3390_biom10060947
crossref_primary_10_1186_s13041_024_01146_x
crossref_primary_10_1038_s41386_022_01360_y
crossref_primary_10_1038_s41380_023_02269_8
crossref_primary_10_1038_s41467_021_26968_4
crossref_primary_10_1016_j_neuroscience_2022_02_002
crossref_primary_10_3389_fimmu_2021_782831
crossref_primary_10_1016_j_lfs_2022_121056
crossref_primary_10_3390_ijms21207788
crossref_primary_10_1002_cne_25103
crossref_primary_10_3389_fpsyt_2022_913303
crossref_primary_10_1038_s41380_024_02528_2
crossref_primary_10_3389_fneur_2025_1634845
crossref_primary_10_1016_j_pnpbp_2021_110494
crossref_primary_10_1016_j_pneurobio_2025_102786
crossref_primary_10_1038_s42003_025_08026_7
crossref_primary_10_1186_s43141_021_00224_0
crossref_primary_10_1080_1028415X_2025_2531357
crossref_primary_10_1113_JP285210
crossref_primary_10_3390_molecules27185931
crossref_primary_10_1007_s11011_022_01053_x
crossref_primary_10_1016_j_expneurol_2021_113805
crossref_primary_10_3389_fnsyn_2022_936911
crossref_primary_10_31083_j_jin2102061
crossref_primary_10_3390_pharmaceutics16091144
crossref_primary_10_1038_s41386_024_01947_7
crossref_primary_10_1186_s12920_021_00908_z
crossref_primary_10_1038_s41398_020_01154_0
crossref_primary_10_3389_fendo_2024_1433026
crossref_primary_10_3389_fcell_2021_663854
crossref_primary_10_3389_fnsys_2022_727054
crossref_primary_10_1038_s41398_025_03378_4
crossref_primary_10_1016_j_euroneuro_2020_11_017
crossref_primary_10_1007_s12011_021_02678_2
crossref_primary_10_3389_fnbeh_2021_737960
crossref_primary_10_3390_brainsci15091020
crossref_primary_10_3389_fpsyt_2021_673159
crossref_primary_10_1038_s41467_025_59659_5
crossref_primary_10_1016_j_pneurobio_2022_102338
crossref_primary_10_1016_j_yfrne_2024_101171
crossref_primary_10_3389_fphar_2021_777607
crossref_primary_10_1038_s41598_020_80087_6
crossref_primary_10_1038_s41386_021_01242_9
crossref_primary_10_1038_s41746_023_00779_x
crossref_primary_10_1016_j_jff_2025_106696
crossref_primary_10_1016_j_rpsm_2021_09_002
crossref_primary_10_1016_j_neulet_2022_136885
crossref_primary_10_1038_s41380_022_01806_1
crossref_primary_10_1016_j_bbi_2023_11_025
crossref_primary_10_1016_j_bbrc_2022_03_068
crossref_primary_10_3389_fpsyt_2021_665347
crossref_primary_10_1016_j_jad_2021_02_027
crossref_primary_10_1038_s41386_023_01583_7
crossref_primary_10_1016_j_neuro_2024_07_013
crossref_primary_10_1016_j_neuropharm_2020_108382
crossref_primary_10_1016_j_yhbeh_2024_105600
crossref_primary_10_1038_s41398_025_03334_2
crossref_primary_10_1007_s40263_023_01030_7
crossref_primary_10_3389_fnins_2020_00474
crossref_primary_10_1002_advs_202305659
crossref_primary_10_1155_2021_5013565
crossref_primary_10_1017_S0033291725101396
crossref_primary_10_3389_fnins_2022_893015
crossref_primary_10_3390_nu12010174
crossref_primary_10_1038_s41467_023_42686_5
crossref_primary_10_1016_j_neuron_2021_12_027
crossref_primary_10_3390_genes16091092
crossref_primary_10_1038_s41398_024_03069_6
crossref_primary_10_1093_cercor_bhad110
crossref_primary_10_1038_s41598_022_08806_9
crossref_primary_10_1016_j_jneumeth_2020_109064
crossref_primary_10_1096_fj_201901093RRR
crossref_primary_10_1016_j_neuroscience_2021_12_006
crossref_primary_10_3390_brainsci12081081
crossref_primary_10_1016_j_neuropharm_2025_110321
crossref_primary_10_1038_s41467_025_57951_y
crossref_primary_10_3389_fnbeh_2020_588400
crossref_primary_10_3389_fnins_2023_1332329
crossref_primary_10_1038_s42255_023_00909_5
crossref_primary_10_3390_molecules28145616
crossref_primary_10_1016_j_bcp_2024_116481
crossref_primary_10_1016_j_biopha_2023_115137
crossref_primary_10_1002_jnr_24997
crossref_primary_10_1007_s12204_022_2455_0
crossref_primary_10_2174_0929867328666211115124149
crossref_primary_10_3390_ijms25052866
crossref_primary_10_1016_j_brs_2021_12_008
crossref_primary_10_1016_j_neuroscience_2025_05_022
crossref_primary_10_1016_j_psychres_2021_114054
crossref_primary_10_3389_fpsyt_2020_00707
crossref_primary_10_1016_j_neuropharm_2022_109252
crossref_primary_10_1016_j_neuropharm_2023_109691
crossref_primary_10_1016_j_ijbiomac_2023_129067
crossref_primary_10_1016_j_lfs_2023_122356
crossref_primary_10_1016_j_biopsych_2021_04_004
crossref_primary_10_1016_j_scitotenv_2024_172445
crossref_primary_10_5812_gct_135661
crossref_primary_10_3390_ph13100322
crossref_primary_10_1007_s11064_023_03970_4
crossref_primary_10_1016_j_lmd_2025_100092
crossref_primary_10_1523_JNEUROSCI_2065_21_2022
crossref_primary_10_1016_j_microc_2021_106580
crossref_primary_10_1523_JNEUROSCI_1136_22_2022
crossref_primary_10_3390_ijms26115216
crossref_primary_10_1080_2314808X_2025_2556502
crossref_primary_10_1016_j_biopsych_2023_03_015
crossref_primary_10_1016_j_bbr_2019_112153
crossref_primary_10_1016_j_jad_2022_09_143
crossref_primary_10_1007_s00429_020_02087_6
crossref_primary_10_1016_j_brainresbull_2023_110691
crossref_primary_10_1016_j_ejphar_2020_173531
crossref_primary_10_1016_j_brainresbull_2023_110699
crossref_primary_10_1016_j_nicl_2024_103641
crossref_primary_10_1016_j_neubiorev_2021_01_025
crossref_primary_10_1186_s12974_024_03312_3
crossref_primary_10_3389_fpsyt_2024_1461290
crossref_primary_10_1007_s11011_021_00675_x
crossref_primary_10_1016_j_neubiorev_2025_106120
crossref_primary_10_3390_ijms22169090
crossref_primary_10_1093_ijnp_pyab087
crossref_primary_10_3390_cells9041026
crossref_primary_10_1016_j_neuropharm_2020_108180
crossref_primary_10_1038_s41593_023_01504_3
crossref_primary_10_1073_pnas_2019409118
crossref_primary_10_1007_s00406_023_01571_4
crossref_primary_10_3389_fncel_2020_00169
crossref_primary_10_3389_fncel_2024_1414955
crossref_primary_10_3389_fnmol_2023_1052288
crossref_primary_10_1016_j_neuropharm_2021_108573
crossref_primary_10_1007_s40263_021_00816_x
crossref_primary_10_1016_j_jpba_2020_113435
crossref_primary_10_1016_j_neubiorev_2019_07_024
crossref_primary_10_5498_wjp_v11_i2_21
crossref_primary_10_3389_fneur_2023_1108494
crossref_primary_10_1016_j_bbr_2021_113240
crossref_primary_10_1007_s44187_024_00120_9
crossref_primary_10_3390_brainsci13050815
crossref_primary_10_1002_brb3_70524
crossref_primary_10_1038_s41380_024_02835_8
crossref_primary_10_1016_j_physbeh_2021_113311
crossref_primary_10_1016_j_lfs_2024_122988
crossref_primary_10_1080_14786419_2025_2505610
crossref_primary_10_3390_ijms26114966
crossref_primary_10_1016_j_jad_2022_08_022
crossref_primary_10_1038_s41380_020_00916_y
crossref_primary_10_3390_brainsci13121666
crossref_primary_10_3390_cells13040318
crossref_primary_10_1039_D2FO03408E
crossref_primary_10_1016_j_yfrne_2022_101007
crossref_primary_10_1016_j_pscychresns_2020_111238
crossref_primary_10_1007_s11011_024_01399_4
crossref_primary_10_1016_j_heliyon_2023_e14932
crossref_primary_10_1007_s12035_025_05152_5
crossref_primary_10_1016_j_neubiorev_2021_10_031
crossref_primary_10_1016_j_neulet_2024_137828
crossref_primary_10_1016_j_pbb_2020_172856
crossref_primary_10_1016_j_dcn_2020_100879
crossref_primary_10_1080_15622975_2024_2436854
crossref_primary_10_3389_fnmol_2023_1120993
crossref_primary_10_3390_ph15040473
crossref_primary_10_1111_ejn_70184
crossref_primary_10_1038_s41398_023_02514_2
crossref_primary_10_3390_ijms232012196
crossref_primary_10_1038_s41386_024_02002_1
crossref_primary_10_1038_s41386_024_02040_9
crossref_primary_10_1016_j_bcp_2021_114711
crossref_primary_10_5498_wjp_v12_i3_379
crossref_primary_10_3389_fphar_2024_1272534
crossref_primary_10_1016_j_neubiorev_2022_104651
crossref_primary_10_3389_fncel_2023_1188574
crossref_primary_10_1007_s12010_022_03810_1
crossref_primary_10_1007_s11071_023_08229_9
crossref_primary_10_1007_s11684_023_0998_6
crossref_primary_10_1016_j_heliyon_2020_e04025
crossref_primary_10_1016_j_nbd_2024_106642
crossref_primary_10_1016_j_neuropharm_2020_108412
crossref_primary_10_1038_s41386_024_01913_3
crossref_primary_10_3390_ph14010065
crossref_primary_10_1007_s11011_022_00961_2
crossref_primary_10_3390_molecules28124771
crossref_primary_10_1186_s13293_021_00400_4
crossref_primary_10_1016_j_euroneuro_2021_10_633
crossref_primary_10_1016_j_jad_2022_03_068
crossref_primary_10_1016_j_bbr_2019_112220
crossref_primary_10_1038_s41380_021_01092_3
crossref_primary_10_1177_02698811241246854
crossref_primary_10_1007_s12035_023_03574_7
crossref_primary_10_1016_j_ejphar_2025_178084
crossref_primary_10_1080_01616412_2023_2252280
crossref_primary_10_3389_fpsyt_2022_1054726
crossref_primary_10_1111_cns_14690
crossref_primary_10_3390_ph14080721
crossref_primary_10_1038_s41380_024_02499_4
crossref_primary_10_1515_revneuro_2024_0147
crossref_primary_10_1093_brain_awae167
crossref_primary_10_3389_fpsyt_2022_874137
crossref_primary_10_3389_fnhum_2023_1215291
crossref_primary_10_3389_fnmol_2022_959224
crossref_primary_10_1016_j_neuropharm_2023_109729
crossref_primary_10_1111_gbb_12649
crossref_primary_10_1186_s12888_024_06167_3
crossref_primary_10_3390_biom10111575
crossref_primary_10_1111_ejn_14640
crossref_primary_10_1038_s41398_021_01255_4
crossref_primary_10_5498_wjp_v11_i2_35
crossref_primary_10_1016_j_neubiorev_2020_07_015
crossref_primary_10_1097_FBP_0000000000000729
crossref_primary_10_1016_j_neubiorev_2023_105378
crossref_primary_10_1002_hipo_23285
crossref_primary_10_1007_s12038_022_00308_0
crossref_primary_10_1113_JP285706
crossref_primary_10_3389_fpsyt_2021_637863
crossref_primary_10_1155_jnme_2275526
crossref_primary_10_1097_j_pain_0000000000003744
crossref_primary_10_1038_s41380_020_0685_9
crossref_primary_10_1038_s41380_021_01159_1
crossref_primary_10_1007_s11064_025_04483_y
crossref_primary_10_1016_j_pnpbp_2024_110945
crossref_primary_10_14336_AD_2024_0239
crossref_primary_10_1097_MJT_0000000000001810
crossref_primary_10_3389_fphar_2024_1473213
crossref_primary_10_1515_dmpt_2020_0129
Cites_doi 10.1073/pnas.93.22.12599
10.1007/s00228-009-0650-7
10.1016/j.psyneuen.2007.09.002
10.1016/j.pnpbp.2015.06.017
10.1038/280331a0
10.1017/S1461145709990587
10.2174/156802611795371350
10.1177/0269881109354928
10.1016/j.eurpsy.2013.10.005
10.1177/2470547018768771
10.1016/j.coph.2008.12.006
10.1016/j.tips.2004.11.004
10.1038/sj.bjp.0705726
10.1093/cercor/bhr220
10.1177/0269881106064203
10.1046/j.1365-2826.2001.00676.x
10.1038/mp.2014.192
10.1016/j.bbr.2016.08.030
10.1038/mp.2017.220
10.1038/nrn3444
10.1523/JNEUROSCI.2670-14.2015
10.1016/S0014-2999(99)00567-1
10.1038/386239a0
10.1002/hipo.22650
10.1007/s00213-009-1605-5
10.1016/j.schres.2010.12.025
10.1016/S0165-0173(01)00129-1
10.1523/JNEUROSCI.1845-13.2013
10.2147/DDDT.S62912
10.1016/S1734-1140(09)70161-6
10.1016/S1734-1140(11)70718-6
10.3389/fnmol.2018.00424
10.1016/S0893-133X(01)00403-1
10.1038/tp.2016.181
10.1523/JNEUROSCI.5924-08.2009
10.1016/j.biopsych.2006.01.016
10.1016/S0031-9384(04)00349-X
10.1038/mp.2014.165
10.1523/JNEUROSCI.3606-03.2004
10.1016/j.pharep.2016.05.010
10.1016/0006-3223(95)00049-7
10.1093/ijnp/pyu033
10.1016/j.neubiorev.2009.01.004
10.1038/sj.npp.1300413
10.1016/j.neuroscience.2016.06.038
10.1016/j.neuroscience.2018.11.029
10.1001/archpsyc.60.8.804
10.1097/ALN.0000000000001483
10.1016/S0304-3940(99)00234-7
10.3389/fncel.2018.00148
10.1016/j.neuropharm.2016.09.011
10.1038/sj.npp.1301234
10.1007/s00213-015-4103-y
10.1124/jpet.300.1.2
10.1007/s00213-011-2248-x
10.1080/10253890701200997
10.1016/S0024-3205(02)02159-8
10.1016/j.biopsych.2016.02.009
10.1016/S0028-3908(99)00166-5
10.1002/14651858.CD007139.pub2
10.1016/j.pain.2004.04.042
10.1016/j.ejphar.2003.12.002
10.1016/j.neulet.2012.09.032
10.1016/j.neuropharm.2013.05.037
10.1016/j.pbb.2018.10.005
10.1038/nrd3502
10.1016/S0924-977X(98)00026-1
10.1186/1471-2202-6-30
10.1176/appi.ajp.2010.09070994
10.1017/S1461145705005158
10.1016/j.npep.2004.06.002
10.1038/nature17998
10.3389/fimmu.2018.02009
10.1038/sj.bjp.0704327
10.1523/JNEUROSCI.17-08-02921.1997
10.1016/0196-9781(93)90065-O
10.1111/j.1476-5381.2010.01166.x
10.1111/j.1476-5381.1988.tb10302.x
10.1097/00004850-199510030-00008
10.1016/j.neuroscience.2013.01.033
10.1038/mp.2011.113
10.1073/pnas.95.6.3239
10.1073/pnas.051628598
10.1590/S0100-879X2012007500029
10.1124/jpet.109.157636
10.1111/j.1476-5381.1996.tb15647.x
10.1097/00001756-200004070-00009
10.1073/pnas.1814709116
10.1007/s00213-005-0213-2
10.1093/cercor/bhh070
10.3389/fphar.2017.00269
10.1016/j.bbr.2010.10.009
10.1016/j.lfs.2018.09.058
10.1016/j.neuropharm.2011.07.026
10.1046/j.1460-9568.2000.00249.x
10.1016/j.biopsych.2016.03.2101
10.1159/000118893
10.1176/ajp.137.3.362
10.1038/sj.mp.4002110
10.1073/pnas.0507901102
10.1523/JNEUROSCI.13-09-03839.1993
10.1038/mp.2015.83
10.1038/mp.2016.188
10.1073/pnas.96.23.13512
10.1038/mp.2010.120
10.1016/j.biopsych.2010.04.024
10.1126/science.1190287
10.1001/archpsyc.64.2.193
10.1016/j.neuron.2016.06.033
10.1523/JNEUROSCI.0496-11.2011
10.1016/0014-2999(87)90191-9
10.1016/j.peptides.2012.02.020
10.1152/jn.00603.2006
10.1523/JNEUROSCI.21-24-09917.2001
10.1016/0165-0327(84)90018-1
10.1016/S0306-4522(03)00020-4
10.1176/ajp.138.8.1098
10.1001/archpsyc.56.11.1043
10.1038/npp.2016.281
10.1016/j.bbr.2017.05.063
10.1016/j.pscychresns.2010.10.009
10.1016/j.neuroscience.2008.09.037
10.1007/s11064-005-6978-1
10.1016/S0168-0102(03)00183-4
10.1016/S0006-3223(00)01084-2
10.1523/JNEUROSCI.0659-07.2008
10.1016/S0197-0186(99)00042-X
10.1016/j.coph.2017.07.009
10.1001/archpsyc.63.8.856
10.1046/j.1471-4159.2003.01557.x
10.1111/j.1476-5381.1987.tb11331.x
10.1038/nn.2274
10.1016/j.euroneuro.2017.10.032
10.1093/ijnp/pyx109
10.1007/s00213-014-3572-8
10.1016/j.euroneuro.2015.04.025
10.1016/S0091-3057(00)00300-2
10.1016/0165-1781(88)90066-2
10.1016/S2215-0366(17)30015-9
10.1038/283092a0
10.1016/j.neuroscience.2018.11.008
10.3389/fncir.2018.00037
10.1046/j.1471-4159.1995.65041646.x
10.1016/j.bcp.2004.07.030
10.3389/fnint.2013.00025
10.1016/j.pharmthera.2006.04.010
10.1016/S2215-0366(16)30263-2
10.1016/S0006-3223(98)00328-X
10.1016/j.euroneuro.2016.03.007
10.1176/appi.ajp.2012.12020248
10.1002/dneu.20853
10.1017/S1461145710001616
10.1124/jpet.102.044834
10.1016/S0140-6736(18)31551-4
10.1016/j.neuroscience.2012.08.010
10.1016/0165-6147(93)90056-P
10.1097/00008877-199504000-00001
10.1038/nrn.2016.53
10.1016/S0006-3223(03)00181-1
10.1038/nm.4050
10.1007/s00213-007-0945-2
10.1002/(SICI)1097-4547(19980201)51:3<391::AID-JNR12>3.0.CO;2-A
10.1523/JNEUROSCI.4945-06.2007
10.1016/j.pnpbp.2006.06.024
10.1038/sj.npp.1300237
10.1002/hipo.22382
10.1111/j.1460-9568.2005.03922.x
10.1016/j.drudis.2018.11.007
10.1017/S1461145712001502
10.1007/3-540-26573-2_11
10.1176/ajp.155.7.910
10.1016/j.pnpbp.2013.11.003
10.1016/j.biopsych.2017.05.024
10.1177/0269881111405359
10.1210/en.2018-00045
10.1503/jpn.150223
10.1016/j.ejphar.2003.08.006
10.1038/mp.2011.171
10.1001/archpsyc.62.6.617
10.1523/ENEURO.0285-16.2017
10.1016/S0091-6749(96)70095-7
10.1016/j.neuropharm.2018.03.001
10.1016/0014-2999(81)90386-1
10.1038/mp.2014.184
10.1016/S0022-3956(03)00101-8
10.1093/cercor/bhh097
10.1016/0167-0115(92)90514-U
10.1038/nrn1519
10.2174/1566524016666151222150024
10.1097/00004850-199100640-00001
10.4137/CMPath.S12530
10.1007/s11064-007-9357-2
10.1002/hup.960
10.3389/fphar.2016.00446
10.1016/S0006-3223(01)01243-4
10.1016/j.biopsych.2017.06.017
10.1016/S0006-3223(99)00230-9
10.1001/archgenpsychiatry.2011.131
10.1016/S0306-4530(02)00038-0
10.1038/npp.2015.112
10.1002/da.22549
10.1007/s00429-012-0479-1
10.1159/000118620
10.1007/s12035-018-1143-4
10.1007/s00213-018-4912-x
10.1111/j.1471-4159.1986.tb13090.x
10.1038/sj.mp.4001969
10.1016/S0140-6736(17)31264-3
10.1001/archpsyc.61.7.705
10.1073/pnas.220232997
10.1038/mp.2014.68
10.1007/s12035-017-0528-0
10.4088/JCP.09m05131gry
10.1016/0278-5846(85)90192-7
10.3389/fendo.2011.00073
10.1038/nature10130
10.1016/j.tips.2018.04.003
10.1016/0006-8993(89)90938-4
10.1016/j.cobeha.2016.09.012
10.1124/jpet.104.073536
10.1016/j.phrs.2017.02.022
10.1007/BF00441953
10.1038/sj.bjp.0706845
10.1016/S1734-1140(10)70383-2
10.1038/12207
10.1016/j.biopsych.2008.06.027
10.1016/0022-3956(88)90030-1
10.1016/S0006-3223(02)01343-4
10.1177/2470547017720459
10.1002/hup.2576
10.1176/appi.ajp.163.1.28
10.1016/j.biopsych.2018.02.006
10.1016/j.nbd.2011.01.014
10.1111/j.1471-4159.1992.tb08877.x
10.1176/appi.ajp.161.2.368
10.1038/npp.2014.76
10.4103/0253-7176.70510
10.1016/j.biopsych.2009.10.027
10.1016/j.jpsychires.2018.08.015
10.1523/JNEUROSCI.4734-03.2004
10.1016/S0006-3223(02)01360-4
10.1080/15622970701227829
ContentType Journal Article
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2019 Fogaça and Duman. 2019 Fogaça and Duman
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2019 Fogaça and Duman. 2019 Fogaça and Duman
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncel.2019.00087
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database (ProQuest)
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1662-5102
ExternalDocumentID oai_doaj_org_article_5d4963adb92247d2ab60d929129c69be
PMC6422907
30914923
10_3389_fncel_2019_00087
Genre Journal Article
Review
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IHW
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c556t-22f25594009570faa06c23f3a7d8189ddc8df908f93fc21a080e7603c157627c3
IEDL.DBID M7P
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460944000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5102
IngestDate Fri Oct 03 12:30:16 EDT 2025
Tue Nov 04 01:56:49 EST 2025
Thu Oct 02 06:38:09 EDT 2025
Fri Jul 25 11:51:38 EDT 2025
Wed Feb 19 02:33:32 EST 2025
Tue Nov 18 21:24:13 EST 2025
Sat Nov 29 05:35:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stress
ketamine
parvalbumin
prefrontal cortex
somatostatin
GABA
depression
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c556t-22f25594009570faa06c23f3a7d8189ddc8df908f93fc21a080e7603c157627c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Edited by: Boldizsar Czeh, University of Pécs, Hungary
Reviewed by: Juan Nacher, University of Valencia, Spain; Grazyna Rajkowska, University of Mississippi Medical Center, United States
OpenAccessLink https://www.proquest.com/docview/2282490064?pq-origsite=%requestingapplication%
PMID 30914923
PQID 2282490064
PQPubID 4424410
ParticipantIDs doaj_primary_oai_doaj_org_article_5d4963adb92247d2ab60d929129c69be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6422907
proquest_miscellaneous_2198560530
proquest_journals_2282490064
pubmed_primary_30914923
crossref_citationtrail_10_3389_fncel_2019_00087
crossref_primary_10_3389_fncel_2019_00087
PublicationCentury 2000
PublicationDate 2019-03-12
PublicationDateYYYYMMDD 2019-03-12
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in cellular neuroscience
PublicationTitleAlternate Front Cell Neurosci
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Broqua (B26) 1995; 6
Cotter (B38) 2002; 51
Choudary (B37) 2005; 102
Pinna (B172) 2009; 9
Piantadosi (B169) 2016; 7
Griffin (B87) 1999; 96
Heilig (B98) 1989; 98
Lin (B129) 2015; 20
Rosa (B188) 2016; 68
Stampanoni Bassi (B214) 2018; 11
Nyitrai (B158) 2003; 478
Almeida (B5) 2019; 397
Li (B128) 2010; 329
Heese (B95) 2000; 39
Faron-Gorecka (B62) 2018; 235
Shen (B205) 2010; 68
Fukumoto (B76) 2019; 116
Khisti (B117) 2000; 67
Bittiger (B22) 1993; 14
Workman (B244) 2013; 73
Rudolph (B190) 2011; 10
Jovanovic (B108) 2004; 24
Klempan (B119) 2009; 14
Liu (B130) 2012; 223
Petty (B167) 1984; 6
Romeo (B187) 1998; 155
Pettit (B166) 1998; 51
Valentine (B230) 2011; 191
Hasler (B93) 2010; 167
Fuchs (B75) 2017; 22
Pehrson (B163) 2015; 9
Savitz (B199) 2009; 33
Banerjee (B14) 2013; 6
Ghosal (B79) 2018; 83
Duman (B56) 2016; 22
Karolewicz (B113) 2010; 13
Sanacora (B197) 1999; 56
Uzunova (B228) 1998; 95
Berman (B18) 2000; 47
Vithlani (B234) 2013; 33
Yeung (B247) 2011; 216
Hallschmid (B91) 2003; 28
Markram (B139) 2004; 5
Douillard-Guilloux (B53) 2017; 34
Larhammar (B125) 2004; 38
Dubin (B55) 2016; 41
Martin (B140) 1989; 22
Crowley (B42) 2014; 231
Song (B212) 2012; 29
Stone (B215) 2012; 17
Braestrup (B25) 1979; 280
Northoff (B155) 2014; 19
Mohler (B149) 2002; 300
Llado-Pelfort (B131) 2012; 22
Akana (B3) 2001; 13
Cryan (B43) 2005; 26
Karch (B111) 2009; 58
Filipovic (B68) 2013; 236
Serrats (B203) 2003; 84
Meltzer-Brody (B145) 2018; 392
Poleszak (B174) 2018; 213
Prescot (B176) 2018; 2
Sanacora (B196) 2004; 61
Zadrozna (B248) 2011; 63
Bowery (B24) 1980; 283
Beasley (B16) 2002; 52
Hofland (B104) 1992; 131
Fischell (B69) 2015; 40
Heilig (B96) 1992; 41
Ghosal (B80) 2017; 14
Shalaby (B204) 2009; 1
Shepard (B207) 2016; 332
McKlveen (B142) 2016; 80
Uzunov (B227) 1996; 93
Schiavon (B201) 2016; 64
Gabbay (B77) 2012; 69
Chandra (B36) 2005; 6
Cross (B41) 1988; 26
Trivedi (B225) 2006; 163
Santana (B198) 2004; 14
Caldji (B29) 2000; 48
Hasler (B94) 2007; 64
Puig (B178) 2004; 14
Bauer (B15) 2007; 8
Csabai (B44) 2017; 27
Gilabert-Juan (B81) 2013; 218
Varga (B232) 2017; 316
Campos (B32) 2013; 16
Engin (B59) 2008; 157
Tripp (B223) 2011; 42
Workman (B243) 2015; 20
Strohle (B216) 1999; 45
Heinzel (B100) 2008; 23
Wedzony (B238) 2009; 61
Gilabert-Juan (B82) 2012; 530
Redrobe (B183); 71
Zanos (B249) 2016; 533
Thase (B219) 2016; 26
Heilig (B99) 2004; 38
Lloyd (B132) 1985; 235
Brown (B27) 2015; 20
Hallschmid (B90) 2004; 83
Pinna (B171) 2006; 186
Sequeira (B202) 2007; 12
Radley (B179) 2009; 29
Frankowska (B72) 2007; 59
Nin (B154) 2011; 2
Czéh (B46) 2015; 25
Pawlikowski (B162) 2003; 24
Kessler (B116) 2005; 62
Bowery (B23) 1981; 71
Russo (B192) 2005; 30
Jonas (B107) 1993
Smith (B211) 2012; 62
Maciag (B135) 2010; 67
Sibille (B209) 2011; 14
Rodriguez-Landa (B186) 2007; 21
Gold (B84) 1980; 137
Mombereau (B150) 2004; 29
Zarate (B251) 2006; 63
Tripp (B224) 2012; 169
Crippa (B40) 2018; 9
Diorio (B51) 1993; 13
Rubinow (B189) 1985; 9
Milak (B147) 2016; 21
Post (B175) 1991; 6
Rudy (B191) 2011; 71
Soumier (B213) 2014; 39
Widdowson (B240) 1992; 59
MacQueen (B136) 2008; 64
Todorovic (B221) 2019; 396
Campos (B31) 2017; 8
Zou (B253) 2016; 16
Bhagwagar (B19) 2004; 161
Meis (B143) 2005; 21
Naert (B151) 2007; 32
Rajkowska (B180) 2007; 32
Karlsson (B112) 2008; 195
Wang (B237) 2003; 118
Atack (B9) 2011; 25
Fatemi (B63) 2011; 128
Heilig (B97) 1987; 137
Goren (B85) 2007; 32
Dong (B52) 2001; 98
Prevot (B177) 2017; 42
Birkenhager (B20) 1995; 10
Drugan (B54) 1989; 487
Nakagawa (B152) 1999; 381
Nowak (B156) 2010; 62
Autry (B11) 2011; 475
Banasr (B13) 2017
Lacroix (B123) 1996; 98
Nowak (B157) 2006; 149
Kanes (B109) 2017; 390
Xiong (B245) 2018; 175
Maguire (B138) 2007; 27
Gerner (B78) 1981; 138
Godfrey (B83) 2018; 105
Sajdyk (B194) 2008; 28
Vollenweider (B235) 2011; 217
Alexander (B4) 2017; 35
Viollet (B233) 2000; 12
Froestl (B73) 2004; 68
Tremblay (B222) 2016; 91
Sales (B195) 2018
Crestani (B39) 1999; 2
Harmer (B92) 2017; 4
Melas (B144) 2012; 35
Bisogno (B21) 2001; 134
Czéh (B45) 2018; 12
Gray (B86) 1987; 92
Atack (B8) 2011; 11
Celada (B35) 2001; 21
Fava (B65) 2011; 72
Kato (B114) 2018; 23
Lepack (B126) 2016; 111
Benham (B17) 2017; 332
Widerlov (B241) 1988; 22
Engin (B58) 2018; 39
Artigas (B7) 2018; 28
Hill (B103) 2011; 31
Faron-Gorecka (B61) 2016; 233
Fogaça (B70) 2018; 135
Uzunova (B229) 2004; 486
Pich (B170) 1993; 14
Lacroix (B124) 1996; 118
Robinson (B185) 2003; 304
Westrin (B239) 1999; 9
Merali (B146) 2004; 24
Wang (B236) 2017; 126
Shimizu (B208) 2003; 54
Nikisch (B153) 2005; 8
Kaupmann (B115) 1997; 386
Otero Losada (B161) 1988; 93
Diana (B50) 2004; 142
Ma (B134) 2016; 6
Slattery (B210) 2005; 312
Kuehner (B122) 2017; 4
Guilloux (B89) 2012; 17
Sayed (B200) 2018; 21
Pinter (B173) 2006; 112
Yang (B246) 2018; 159
Hill (B102) 2007; 97
Moghaddam (B148) 1997; 17
Nyitrai (B159) 1999; 34
Urban-Ciecko (B226) 2016; 17
Zhou (B252) 2014; 29
Engin (B60) 2009; 206
De Jong (B47) 1999; 43
Fogaça (B71) 2012; 45
Kanes (B110) 2017; 32
van Marwijk (B231) 2012; 7
Perrine (B165) 2014; 51
Shepard (B206) 2018; 55
Luscher (B133) 2011; 16
Bakas (B12) 2017; 119
Fava (B64) 2006; 59
Abdallah (B1) 2015; 25
Jacobson (B105) 2018; 83
Guidotti (B88) 2001; 37
DeFelipe (B49) 2013; 14
Redrobe (B182); 26
Krystal (B120) 2007; 3
Reddy (B181) 2010; 32
Caldji (B30) 2003; 28
De Petrocellis (B48) 2011; 163
Kim (B118) 2007; 31
Maggi (B137) 1986; 47
Ordway (B160) 1995; 65
Thorsell (B220) 2000; 97
Ferguson (B67) 2018; 12
Lepack (B127) 2014; 18
Szabo (B217) 2005; 168
Perova (B164) 2015; 35
Celada (B34) 2013; 7
Abellan (B2) 2000; 11
Fee (B66) 2017; 82
Zanos (B250) 2017; 4
Frye (B74) 2003; 53
Matsumoto (B141) 2007; 10
Jiang (B106) 2003; 47
Kucukibrahimoglu (B121) 2009; 65
Hewitt (B101) 2009; 12
Wilkinson (B242) 2018
Atack (B10) 2009; 331
Arranz (B6) 1992; 26
(B193) 2017
Carlton (B33) 2004; 110
Ren (B184) 2016; 80
Taylor (B218) 2012; 26
Caberlotto (B28) 1999; 265
Dwivedi (B57) 2003; 60
Petty (B168) 1995; 38
References_xml – volume: 93
  start-page: 12599
  year: 1996
  ident: B227
  article-title: Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.22.12599
– volume: 65
  start-page: 571
  year: 2009
  ident: B121
  article-title: The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression.
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/s00228-009-0650-7
– volume: 32
  start-page: 1062
  year: 2007
  ident: B151
  article-title: Neuroactive steroids modulate HPA axis activity and cerebral brain-derived neurotrophic factor (BDNF) protein levels in adult male rats.
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2007.09.002
– volume: 64
  start-page: 27
  year: 2016
  ident: B201
  article-title: Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice.
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2015.06.017
– volume: 280
  start-page: 331
  year: 1979
  ident: B25
  article-title: Partial agonists for brain GABA/benzodiazepine receptor complex.
  publication-title: Nature
  doi: 10.1038/280331a0
– volume: 13
  start-page: 411
  year: 2010
  ident: B113
  article-title: Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145709990587
– volume: 11
  start-page: 1176
  year: 2011
  ident: B8
  article-title: GABAA receptor subtype-selective modulators. I. alpha2/alpha3-selective agonists as non-sedating anxiolytics.
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802611795371350
– volume: 25
  start-page: 329
  year: 2011
  ident: B9
  article-title: Preclinical and clinical pharmacology of TPA023B, a GABAA receptor α2/α3 subtype-selective partial agonist.
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881109354928
– volume: 235
  start-page: 191
  year: 1985
  ident: B132
  article-title: Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock.
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 29
  start-page: 419
  year: 2014
  ident: B252
  article-title: Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
  publication-title: Eur. Psychiatry
  doi: 10.1016/j.eurpsy.2013.10.005
– volume: 2
  year: 2018
  ident: B176
  article-title: Altered cortical gamma-amino butyric acid in female veterans with suicidal behavior: sex differences and clinical correlates.
  publication-title: Chronic Stress
  doi: 10.1177/2470547018768771
– volume: 9
  start-page: 24
  year: 2009
  ident: B172
  article-title: SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake.
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2008.12.006
– volume: 26
  start-page: 36
  year: 2005
  ident: B43
  article-title: Don’t worry ’B’ happy!: a role for GABA(B) receptors in anxiety and depression.
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2004.11.004
– volume: 142
  start-page: 9
  year: 2004
  ident: B50
  article-title: Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE).
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0705726
– volume: 22
  start-page: 1487
  year: 2012
  ident: B131
  article-title: 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr220
– volume: 21
  start-page: 76
  year: 2007
  ident: B186
  article-title: Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat.
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881106064203
– volume: 13
  start-page: 625
  year: 2001
  ident: B3
  article-title: Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots.
  publication-title: J. Neuroendocrinol.
  doi: 10.1046/j.1365-2826.2001.00676.x
– volume: 20
  start-page: 1499
  year: 2015
  ident: B27
  article-title: Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2014.192
– volume: 316
  start-page: 104
  year: 2017
  ident: B232
  article-title: Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats.
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2016.08.030
– volume: 23
  start-page: 2007
  year: 2018
  ident: B114
  article-title: BDNF release and signaling are required for the antidepressant actions of GLYX-13.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2017.220
– volume: 14
  start-page: 202
  year: 2013
  ident: B49
  article-title: New insights into the classification and nomenclature of cortical GABAergic interneurons.
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3444
– volume: 35
  start-page: 3201
  year: 2015
  ident: B164
  article-title: Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2670-14.2015
– volume: 381
  start-page: 1
  year: 1999
  ident: B152
  article-title: The GABA(B) receptor antagonist CGP36742 improves learned helplessness in rats.
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(99)00567-1
– volume: 386
  start-page: 239
  year: 1997
  ident: B115
  article-title: Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors.
  publication-title: Nature
  doi: 10.1038/386239a0
– volume: 27
  start-page: 17
  year: 2017
  ident: B44
  article-title: Electron microscopic analysis of hippocampal Axo-somatic synapses in a chronic stress model for depression.
  publication-title: Hippocampus
  doi: 10.1002/hipo.22650
– volume: 206
  start-page: 281
  year: 2009
  ident: B60
  article-title: Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-009-1605-5
– volume: 128
  start-page: 37
  year: 2011
  ident: B63
  article-title: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study.
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2010.12.025
– volume: 37
  start-page: 110
  year: 2001
  ident: B88
  article-title: The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders.
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(01)00129-1
– volume: 33
  start-page: 15567
  year: 2013
  ident: B234
  article-title: The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor gamma2 subunit.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1845-13.2013
– volume: 9
  start-page: 603
  year: 2015
  ident: B163
  article-title: Altered gamma-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants.
  publication-title: Drug Des. Devel. Ther.
  doi: 10.2147/DDDT.S62912
– volume: 61
  start-page: 1000
  year: 2009
  ident: B238
  article-title: Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons.
  publication-title: Pharmacol. Rep.
  doi: 10.1016/S1734-1140(09)70161-6
– volume: 63
  start-page: 1539
  year: 2011
  ident: B248
  article-title: Different pattern of changes in calcium binding proteins immunoreactivity in the medial prefrontal cortex of rats exposed to stress models of depression.
  publication-title: Pharmacol. Rep.
  doi: 10.1016/S1734-1140(11)70718-6
– volume: 11
  year: 2018
  ident: B214
  article-title: Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic use against anxiety and depression.
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2018.00424
– volume: 26
  start-page: 615
  ident: B182
  article-title: The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test.
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(01)00403-1
– volume: 6
  year: 2016
  ident: B134
  article-title: Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress.
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.181
– volume: 29
  start-page: 7330
  year: 2009
  ident: B179
  article-title: A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5924-08.2009
– volume: 59
  start-page: 1052
  year: 2006
  ident: B64
  article-title: Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2006.01.016
– volume: 83
  start-page: 55
  year: 2004
  ident: B90
  article-title: Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man.
  publication-title: Physiol. Behav.
  doi: 10.1016/S0031-9384(04)00349-X
– volume: 20
  start-page: 298
  year: 2015
  ident: B243
  article-title: Rapid antidepressants stimulate the decoupling of GABA(B) receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3eta.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2014.165
– volume: 24
  start-page: 522
  year: 2004
  ident: B108
  article-title: Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3606-03.2004
– volume: 68
  start-page: 996
  year: 2016
  ident: B188
  article-title: Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors.
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2016.05.010
– volume: 38
  start-page: 578
  year: 1995
  ident: B168
  article-title: Benzodiazepines as antidepressants: does GABA play a role in depression?
  publication-title: Biol. Psychiatry
  doi: 10.1016/0006-3223(95)00049-7
– volume: 18
  year: 2014
  ident: B127
  article-title: BDNF release is required for the behavioral actions of ketamine.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1093/ijnp/pyu033
– volume: 33
  start-page: 699
  year: 2009
  ident: B199
  article-title: Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2009.01.004
– volume: 29
  start-page: 1050
  year: 2004
  ident: B150
  article-title: Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300413
– volume: 332
  start-page: 1
  year: 2016
  ident: B207
  article-title: Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: relevance for sex differences in stress-related disorders.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.06.038
– volume: 397
  start-page: 56
  year: 2019
  ident: B5
  article-title: Hemisphere-dependent changes in mRNA expression of GABAA receptor subunits and BDNF after intra-prefrontal cortex allopregnanolone infusion in rats.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.11.029
– volume: 60
  start-page: 804
  year: 2003
  ident: B57
  article-title: Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.60.8.804
– volume: 126
  start-page: 666
  year: 2017
  ident: B236
  article-title: Ketamine increases the function of gamma-aminobutyric acid type A receptors in hippocampal and cortical neurons.
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001483
– volume: 265
  start-page: 191
  year: 1999
  ident: B28
  article-title: Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression.
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(99)00234-7
– volume: 12
  year: 2018
  ident: B45
  article-title: Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats.
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2018.00148
– volume: 111
  start-page: 242
  year: 2016
  ident: B126
  article-title: Fast-acting antidepressants rapidly stimulate ERK signaling and BDNF release in primary neuronal cultures.
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2016.09.011
– volume: 59
  start-page: 645
  year: 2007
  ident: B72
  article-title: Effects of GABAB receptor ligands in animal tests of depression and anxiety.
  publication-title: Pharmacol. Rep.
– volume: 32
  start-page: 471
  year: 2007
  ident: B180
  article-title: GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301234
– volume: 233
  start-page: 255
  year: 2016
  ident: B61
  article-title: Chronic mild stress alters the somatostatin receptors in the rat brain.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-015-4103-y
– volume: 300
  start-page: 2
  year: 2002
  ident: B149
  article-title: A new benzodiazepine pharmacology.
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.300.1.2
– volume: 216
  start-page: 557
  year: 2011
  ident: B247
  article-title: Anxiolytic-like effects of somatostatin isoforms SST 14 and SST 28 in two animal models (Rattus norvegicus) after intra-amygdalar and intra-septal microinfusions.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-011-2248-x
– volume: 10
  start-page: 3
  year: 2007
  ident: B141
  article-title: GABA(A) receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders.
  publication-title: Stress
  doi: 10.1080/10253890701200997
– volume: 71
  start-page: 2921
  ident: B183
  article-title: Neuropeptide Y (NPY) and depression: from animal studies to the human condition.
  publication-title: Life Sci.
  doi: 10.1016/S0024-3205(02)02159-8
– volume: 80
  start-page: 457
  year: 2016
  ident: B184
  article-title: Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2016.02.009
– volume: 39
  start-page: 449
  year: 2000
  ident: B95
  article-title: GABA(B) receptor antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of rats.
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(99)00166-5
– volume: 7
  year: 2012
  ident: B231
  article-title: Alprazolam for depression.
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD007139.pub2
– volume: 110
  start-page: 616
  year: 2004
  ident: B33
  article-title: Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel.
  publication-title: Pain
  doi: 10.1016/j.pain.2004.04.042
– volume: 486
  start-page: 31
  year: 2004
  ident: B229
  article-title: Chronic antidepressants reverse cerebrocortical allopregnanolone decline in the olfactory-bulbectomized rat.
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2003.12.002
– volume: 530
  start-page: 97
  year: 2012
  ident: B82
  article-title: Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients.
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.09.032
– volume: 73
  start-page: 192
  year: 2013
  ident: B244
  article-title: mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling.
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.05.037
– volume: 24
  start-page: 21
  year: 2003
  ident: B162
  article-title: Perspectives of new potential therapeutic applications of somatostatin analogs.
  publication-title: Neuro Endocrinol. Lett.
– volume: 175
  start-page: 139
  year: 2018
  ident: B245
  article-title: Comparison of rapid and long-lasting antidepressant effects of negative modulators of alpha5-containing GABAA receptors and (R)ketamine in a chronic social defeat stress model.
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2018.10.005
– volume: 10
  start-page: 685
  year: 2011
  ident: B190
  article-title: Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes.
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3502
– volume: 9
  start-page: 205
  year: 1999
  ident: B239
  article-title: Alterations of corticotropin releasing hormone (CRH) and neuropeptide Y (NPY) plasma levels in mood disorder patients with a recent suicide attempt.
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/S0924-977X(98)00026-1
– volume: 6
  year: 2005
  ident: B36
  article-title: GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines.
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-6-30
– volume: 167
  start-page: 1226
  year: 2010
  ident: B93
  article-title: Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2010.09070994
– volume: 8
  start-page: 403
  year: 2005
  ident: B153
  article-title: Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145705005158
– volume: 38
  start-page: 141
  year: 2004
  ident: B125
  article-title: Molecular evolution of NPY receptor subtypes.
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2004.06.002
– volume: 533
  start-page: 481
  year: 2016
  ident: B249
  article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
  publication-title: Nature
  doi: 10.1038/nature17998
– volume: 9
  year: 2018
  ident: B40
  article-title: Translational investigation of the therapeutic potential of cannabidiol (CBD): toward a new age.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02009
– volume: 134
  start-page: 845
  year: 2001
  ident: B21
  article-title: Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0704327
– volume: 17
  start-page: 2921
  year: 1997
  ident: B148
  article-title: Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-08-02921.1997
– volume: 14
  start-page: 909
  year: 1993
  ident: B170
  article-title: Neuropeptide Y produces anxiolytic effects in spontaneously hypertensive rats.
  publication-title: Peptides
  doi: 10.1016/0196-9781(93)90065-O
– volume: 163
  start-page: 1479
  year: 2011
  ident: B48
  article-title: Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.01166.x
– volume: 93
  start-page: 483
  year: 1988
  ident: B161
  article-title: Changes in central GABAergic function following acute and repeated stress.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1988.tb10302.x
– volume: 1
  start-page: 154
  year: 2009
  ident: B204
  article-title: Effect of Escitalopram on GABA level and anti-oxidant markers in prefrontal cortex and nucleus accumbens of chronic mild stress-exposed albino rats.
  publication-title: Int. J. Physiol. Pathophysiol. Pharmacol.
– volume: 10
  start-page: 181
  year: 1995
  ident: B20
  article-title: Benzodiazepines for depression? A review of the literature.
  publication-title: Int. Clin. Psychopharmacol.
  doi: 10.1097/00004850-199510030-00008
– volume: 236
  start-page: 47
  year: 2013
  ident: B68
  article-title: The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.01.033
– volume: 17
  start-page: 1130
  year: 2012
  ident: B89
  article-title: Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2011.113
– volume: 95
  start-page: 3239
  year: 1998
  ident: B228
  article-title: Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.95.6.3239
– volume: 98
  start-page: 2849
  year: 2001
  ident: B52
  article-title: Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.051628598
– volume: 45
  start-page: 357
  year: 2012
  ident: B71
  article-title: Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters.
  publication-title: Braz. J. Med. Biol. Res.
  doi: 10.1590/S0100-879X2012007500029
– volume: 331
  start-page: 470
  year: 2009
  ident: B10
  article-title: In vitro and in vivo properties of 3-tert-butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)- pyrazolo[1,5-d]-[1,2,4]triazine (MRK-016), a GABAA receptor alpha5 subtype-selective inverse agonist.
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.109.157636
– volume: 118
  start-page: 2079
  year: 1996
  ident: B124
  article-title: Intranasal administration of neuropeptide Y in man: systemic absorption and functional effects.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1996.tb15647.x
– volume: 11
  start-page: 941
  year: 2000
  ident: B2
  article-title: GABAB-RI receptors in serotonergic neurons: effects of baclofen on 5-HT output in rat brain.
  publication-title: Neuroreport
  doi: 10.1097/00001756-200004070-00009
– volume: 116
  start-page: 297
  year: 2019
  ident: B76
  article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1814709116
– volume: 186
  start-page: 362
  year: 2006
  ident: B171
  article-title: Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-005-0213-2
– volume: 14
  start-page: 1100
  year: 2004
  ident: B198
  article-title: Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh070
– volume: 8
  year: 2017
  ident: B31
  article-title: Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders.
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2017.00269
– volume: 217
  start-page: 77
  year: 2011
  ident: B235
  article-title: Antidepressant-like properties of alpha2-containing GABA(A) receptors.
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2010.10.009
– volume: 213
  start-page: 18
  year: 2018
  ident: B174
  article-title: Cannabinoids in depressive disorders.
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2018.09.058
– volume: 62
  start-page: 54
  year: 2012
  ident: B211
  article-title: Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes.
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2011.07.026
– volume: 12
  start-page: 3761
  year: 2000
  ident: B233
  article-title: Involvement of sst2 somatostatin receptor in locomotor, exploratory activity and emotional reactivity in mice.
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2000.00249.x
– volume: 80
  start-page: 754
  year: 2016
  ident: B142
  article-title: Chronic stress increases prefrontal inhibition: a mechanism for stress-induced prefrontal dysfunction.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2016.03.2101
– volume: 26
  start-page: 33
  year: 1992
  ident: B6
  article-title: Gamma-aminobutyric acid-B (GABAB) binding sites in postmortem suicide brains.
  publication-title: Neuropsychobiology
  doi: 10.1159/000118893
– volume: 137
  start-page: 362
  year: 1980
  ident: B84
  article-title: GABA levels in CSF of patients with psychiatric disorders.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.137.3.362
– volume: 14
  start-page: 175
  year: 2009
  ident: B119
  article-title: Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression.
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4002110
– volume: 102
  start-page: 15653
  year: 2005
  ident: B37
  article-title: Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0507901102
– volume: 58
  start-page: 1
  year: 2009
  ident: B111
  article-title: Surveillance for violent deaths–national violent death reporting system, 16 States, 2006.
  publication-title: MMWR Surveill. Summ.
– volume: 13
  start-page: 3839
  year: 1993
  ident: B51
  article-title: The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.13-09-03839.1993
– volume: 21
  start-page: 320
  year: 2016
  ident: B147
  article-title: A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2015.83
– volume: 22
  start-page: 920
  year: 2017
  ident: B75
  article-title: Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.188
– volume: 96
  start-page: 13512
  year: 1999
  ident: B87
  article-title: Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.23.13512
– volume: 16
  start-page: 383
  year: 2011
  ident: B133
  article-title: The GABAergic deficit hypothesis of major depressive disorder.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2010.120
– volume: 68
  start-page: 512
  year: 2010
  ident: B205
  article-title: gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.04.024
– volume: 329
  start-page: 959
  year: 2010
  ident: B128
  article-title: mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
  publication-title: Science
  doi: 10.1126/science.1190287
– volume: 64
  start-page: 193
  year: 2007
  ident: B94
  article-title: Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.64.2.193
– volume: 91
  start-page: 260
  year: 2016
  ident: B222
  article-title: GABAergic interneurons in the neocortex: from cellular properties to circuits.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.06.033
– volume: 31
  start-page: 10506
  year: 2011
  ident: B103
  article-title: Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0496-11.2011
– volume: 137
  start-page: 127
  year: 1987
  ident: B97
  article-title: Intracerebroventricular neuropeptide Y protects against stress-induced gastric erosion in the rat.
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/0014-2999(87)90191-9
– volume: 35
  start-page: 49
  year: 2012
  ident: B144
  article-title: Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model.
  publication-title: Peptides
  doi: 10.1016/j.peptides.2012.02.020
– volume: 97
  start-page: 2580
  year: 2007
  ident: B102
  article-title: Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00603.2006
– volume: 21
  start-page: 9917
  year: 2001
  ident: B35
  article-title: Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-24-09917.2001
– volume: 6
  start-page: 131
  year: 1984
  ident: B167
  article-title: Plasma GABA levels in psychiatric illness.
  publication-title: J. Affect. Disord.
  doi: 10.1016/0165-0327(84)90018-1
– volume: 118
  start-page: 681
  year: 2003
  ident: B237
  article-title: Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain.
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00020-4
– volume: 138
  start-page: 1098
  year: 1981
  ident: B78
  article-title: CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.138.8.1098
– volume: 56
  start-page: 1043
  year: 1999
  ident: B197
  article-title: Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.56.11.1043
– volume: 42
  start-page: 1647
  year: 2017
  ident: B177
  article-title: Roles of hippocampal somatostatin receptor subtypes in stress response and emotionality.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.281
– volume: 332
  start-page: 172
  year: 2017
  ident: B17
  article-title: Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking alpha2-containing GABAA receptors.
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2017.05.063
– volume: 191
  start-page: 122
  year: 2011
  ident: B230
  article-title: The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS.
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2010.10.009
– volume: 157
  start-page: 666
  year: 2008
  ident: B59
  article-title: Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.09.037
– volume: 30
  start-page: 1037
  year: 2005
  ident: B192
  article-title: Agonistic properties of cannabidiol at 5-HT1a receptors.
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-005-6978-1
– volume: 47
  start-page: 97
  year: 2003
  ident: B106
  article-title: Somatostatin directly inhibits substantia gelatinosa neurons in adult rat spinal dorsal horn in vitro.
  publication-title: Neurosci. Res.
  doi: 10.1016/S0168-0102(03)00183-4
– volume: 48
  start-page: 1164
  year: 2000
  ident: B29
  article-title: Variations in maternal care in infancy regulate the development of stress reactivity.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(00)01084-2
– volume: 28
  start-page: 893
  year: 2008
  ident: B194
  article-title: Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic-adrenal-pituitary axis activity or hyperthermia.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0659-07.2008
– volume: 34
  start-page: 391
  year: 1999
  ident: B159
  article-title: Effect of CGP 36742 on the extracellular level of neurotransmitter amino acids in the thalamus.
  publication-title: Neurochem. Int.
  doi: 10.1016/S0197-0186(99)00042-X
– volume: 35
  start-page: 101
  year: 2017
  ident: B4
  article-title: The potential efficacy of GABAB antagonists in depression.
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2017.07.009
– volume: 63
  start-page: 856
  year: 2006
  ident: B251
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 84
  start-page: 743
  year: 2003
  ident: B203
  article-title: GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase.
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2003.01557.x
– volume: 92
  start-page: 357
  year: 1987
  ident: B86
  article-title: Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks.
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1987.tb11331.x
– volume: 12
  start-page: 438
  year: 2009
  ident: B101
  article-title: Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2274
– volume: 28
  start-page: 445
  year: 2018
  ident: B7
  article-title: Can we increase speed and efficacy of antidepressant treatments? Part I: general aspects and monoamine-based strategies.
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2017.10.032
– volume: 21
  start-page: 3
  year: 2018
  ident: B200
  article-title: A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1093/ijnp/pyx109
– volume: 231
  start-page: 3619
  year: 2014
  ident: B42
  article-title: Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans?
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-014-3572-8
– volume: 25
  start-page: 1082
  year: 2015
  ident: B1
  article-title: Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume in major depressive disorder.
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2015.04.025
– volume: 67
  start-page: 137
  year: 2000
  ident: B117
  article-title: Antidepressant-like effect of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in mice forced swim test.
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/S0091-3057(00)00300-2
– volume: 26
  start-page: 119
  year: 1988
  ident: B41
  article-title: Brain GABAB binding sites in depressed suicide victims.
  publication-title: Psychiatry Res.
  doi: 10.1016/0165-1781(88)90066-2
– volume: 4
  start-page: 409
  year: 2017
  ident: B92
  article-title: How do antidepressants work? New perspectives for refining future treatment approaches.
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(17)30015-9
– volume: 283
  start-page: 92
  year: 1980
  ident: B24
  article-title: (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor.
  publication-title: Nature
  doi: 10.1038/283092a0
– volume: 396
  start-page: 24
  year: 2019
  ident: B221
  article-title: Subregion-specific protective effects of fluoxetine and clozapine on parvalbumin expression in medial prefrontal cortex of chronically isolated rats.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.11.008
– year: 2017
  ident: B193
  publication-title: Sage Therapeutics Reports Positive Top-Line Results from Phase 2 Placebo-Controlled Trial of SAGE-217 in Major Depressive Disorder [Press Release].
– volume: 12
  year: 2018
  ident: B67
  article-title: PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders.
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2018.00037
– volume: 65
  start-page: 1646
  year: 1995
  ident: B160
  article-title: Neuropeptide Y in frontal cortex is not altered in major depression.
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1995.65041646.x
– volume: 68
  start-page: 1479
  year: 2004
  ident: B73
  article-title: SGS742: the first GABAB receptor antagonist in clinical trials.
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2004.07.030
– volume: 7
  year: 2013
  ident: B34
  article-title: Serotonin modulation of cortical neurons and networks.
  publication-title: Front. Integr. Neurosci.
  doi: 10.3389/fnint.2013.00025
– volume: 112
  start-page: 440
  year: 2006
  ident: B173
  article-title: Inhibitory effect of somatostatin on inflammation and nociception.
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2006.04.010
– volume: 4
  start-page: 146
  year: 2017
  ident: B122
  article-title: Why is depression more common among women than among men?
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(16)30263-2
– volume: 45
  start-page: 274
  year: 1999
  ident: B216
  article-title: Concentrations of 3 alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(98)00328-X
– volume: 26
  start-page: 979
  year: 2016
  ident: B219
  article-title: A meta-analysis of randomized, placebo-controlled trials of vortioxetine for the treatment of major depressive disorder in adults.
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2016.03.007
– volume: 169
  start-page: 1194
  year: 2012
  ident: B224
  article-title: Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2012.12020248
– volume: 71
  start-page: 45
  year: 2011
  ident: B191
  article-title: Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons.
  publication-title: Dev. Neurobiol.
  doi: 10.1002/dneu.20853
– volume: 14
  start-page: 721
  year: 2011
  ident: B209
  article-title: GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145710001616
– volume: 304
  start-page: 978
  year: 2003
  ident: B185
  article-title: Fluoxetine increases GABA(A) receptor activity through a novel modulatory site.
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.102.044834
– volume: 392
  start-page: 1058
  year: 2018
  ident: B145
  article-title: Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31551-4
– start-page: 46
  year: 1993
  ident: B107
  article-title: A comparison of the safety and efficacy of alprazolam versus other agents in the treatment of anxiety, panic, and depression: a review of the literature.
  publication-title: J. Clin. Psychiatry
– volume: 223
  start-page: 219
  year: 2012
  ident: B130
  article-title: Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine produces antidepressant effects in rats: role of brain-derived neurotrophic factor.
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2012.08.010
– volume: 14
  start-page: 391
  year: 1993
  ident: B22
  article-title: GABAB receptor antagonists: from synthesis to therapeutic applications.
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/0165-6147(93)90056-P
– volume: 6
  start-page: 215
  year: 1995
  ident: B26
  article-title: Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures.
  publication-title: Behav. Pharmacol.
  doi: 10.1097/00008877-199504000-00001
– volume: 17
  start-page: 401
  year: 2016
  ident: B226
  article-title: Somatostatin-expressing neurons in cortical networks.
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2016.53
– volume: 54
  start-page: 70
  year: 2003
  ident: B208
  article-title: Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(03)00181-1
– volume: 22
  start-page: 238
  year: 2016
  ident: B56
  article-title: Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.
  publication-title: Nat. Med.
  doi: 10.1038/nm.4050
– volume: 195
  start-page: 547
  year: 2008
  ident: B112
  article-title: The neuropeptide Y Y1 receptor subtype is necessary for the anxiolytic-like effects of neuropeptide Y, but not the antidepressant-like effects of fluoxetine, in mice.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-007-0945-2
– volume: 51
  start-page: 391
  year: 1998
  ident: B166
  article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain.
  publication-title: J. Neurosci. Res.
  doi: 10.1002/(SICI)1097-4547(19980201)51:3<391::AID-JNR12>3.0.CO;2-A
– volume: 27
  start-page: 2155
  year: 2007
  ident: B138
  article-title: Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4945-06.2007
– volume: 31
  start-page: 78
  year: 2007
  ident: B118
  article-title: Low plasma BDNF is associated with suicidal behavior in major depression.
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2006.06.024
– volume: 28
  start-page: 1950
  year: 2003
  ident: B30
  article-title: Variations in maternal care alter GABA(A) receptor subunit expression in brain regions associated with fear.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300237
– volume: 25
  start-page: 393
  year: 2015
  ident: B46
  article-title: Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences.
  publication-title: Hippocampus
  doi: 10.1002/hipo.22382
– volume: 21
  start-page: 755
  year: 2005
  ident: B143
  article-title: Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala.
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.03922.x
– year: 2018
  ident: B242
  article-title: A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems.
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.11.007
– volume: 16
  start-page: 1407
  year: 2013
  ident: B32
  article-title: The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system.
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712001502
– volume: 168
  start-page: 327
  year: 2005
  ident: B217
  article-title: Effects of cannabinoids on neurotransmission.
  publication-title: Handb. Exp. Pharmacol.
  doi: 10.1007/3-540-26573-2_11
– volume: 155
  start-page: 910
  year: 1998
  ident: B187
  article-title: Effects of antidepressant treatment on neuroactive steroids in major depression.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.155.7.910
– volume: 131
  start-page: 571
  year: 1992
  ident: B104
  article-title: Dissociation of antiproliferative and antihormonal effects of the somatostatin analog octreotide on 7315b pituitary tumor cells.
  publication-title: Endocrinology
– volume: 51
  start-page: 9
  year: 2014
  ident: B165
  article-title: Ketamine reverses stress-induced depression-like behavior and increased GABA levels in the anterior cingulate: an 11.7 T 1H-MRS study in rats.
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2013.11.003
– volume: 82
  start-page: 549
  year: 2017
  ident: B66
  article-title: Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2017.05.024
– volume: 26
  start-page: 733
  year: 2012
  ident: B218
  article-title: Lack of effect of ketamine on cortical glutamate and glutamine in healthy volunteers: a proton magnetic resonance spectroscopy study.
  publication-title: J. Psychopharmacol.
  doi: 10.1177/0269881111405359
– volume: 159
  start-page: 1525
  year: 2018
  ident: B246
  article-title: Central neuropeptide Y plays an important role in mediating the adaptation mechanism against chronic stress in male rats.
  publication-title: Endocrinology
  doi: 10.1210/en.2018-00045
– volume: 41
  start-page: E37
  year: 2016
  ident: B55
  article-title: Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy.
  publication-title: J. Psychiatry Neurosci.
  doi: 10.1503/jpn.150223
– volume: 478
  start-page: 111
  year: 2003
  ident: B158
  article-title: GABA(B) receptor antagonist CGP-36742 enhances somatostatin release in the rat hippocampus in vivo and in vitro.
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2003.08.006
– volume: 17
  start-page: 664
  year: 2012
  ident: B215
  article-title: Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2011.171
– volume: 62
  start-page: 617
  year: 2005
  ident: B116
  article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.62.6.617
– volume: 4
  year: 2017
  ident: B250
  article-title: A negative allosteric modulator for alpha5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice.
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0285-16.2017
– volume: 98
  start-page: 611
  year: 1996
  ident: B123
  article-title: Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous neuropeptide Y in atopic patients.
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/S0091-6749(96)70095-7
– volume: 43
  start-page: 356
  year: 1999
  ident: B47
  article-title: Therapy of neuroendocrine tumors with radiolabeled somatostatin-analogues.
  publication-title: Q. J. Nucl. Med.
– volume: 135
  start-page: 22
  year: 2018
  ident: B70
  article-title: The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling.
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.03.001
– volume: 29
  start-page: 233
  year: 2012
  ident: B212
  article-title: [Decreased occipital GABA concentrations in patients with first-episode major depressive disorder: a magnetic resonance spectroscopy study].
  publication-title: Sheng Wu Yi Xue Gong Cheng Xue Za Zhi
– volume: 71
  start-page: 53
  year: 1981
  ident: B23
  article-title: Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals.
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/0014-2999(81)90386-1
– volume: 20
  start-page: 377
  year: 2015
  ident: B129
  article-title: Somatostatin, neuronal vulnerability and behavioral emotionality.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2014.184
– volume: 38
  start-page: 113
  year: 2004
  ident: B99
  article-title: Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: preliminary evidence for association with preproNPY gene polymorphism.
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/S0022-3956(03)00101-8
– volume: 14
  start-page: 1365
  year: 2004
  ident: B178
  article-title: In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh097
– volume: 41
  start-page: 61
  year: 1992
  ident: B96
  article-title: Anxiolytic-like effect of neuropeptide Y (NPY), but not other peptides in an operant conflict test.
  publication-title: Regul. Pept.
  doi: 10.1016/0167-0115(92)90514-U
– volume: 5
  start-page: 793
  year: 2004
  ident: B139
  article-title: Interneurons of the neocortical inhibitory system.
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1519
– volume: 16
  start-page: 91
  year: 2016
  ident: B253
  article-title: DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction.
  publication-title: Curr. Mol. Med.
  doi: 10.2174/1566524016666151222150024
– volume: 6
  start-page: 197
  year: 1991
  ident: B175
  article-title: Lack of beneficial effects of l-baclofen in affective disorder.
  publication-title: Int. Clin. Psychopharmacol.
  doi: 10.1097/00004850-199100640-00001
– volume: 6
  start-page: 1
  year: 2013
  ident: B14
  article-title: Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain.
  publication-title: Clin. Med. Insights Pathol.
  doi: 10.4137/CMPath.S12530
– volume: 32
  start-page: 1559
  year: 2007
  ident: B85
  article-title: Fluoxetine partly exerts its actions through GABA: a neurochemical evidence.
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-007-9357-2
– volume: 23
  start-page: 549
  year: 2008
  ident: B100
  article-title: S-ketamine and GABA-A-receptor interaction in humans: an exploratory study with I-123-iomazenil SPECT.
  publication-title: Hum. Psychopharmacol.
  doi: 10.1002/hup.960
– volume: 7
  year: 2016
  ident: B169
  article-title: Sex-dependent anti-stress effect of an alpha5 subunit containing GABAA receptor positive allosteric modulator.
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00446
– volume: 51
  start-page: 377
  year: 2002
  ident: B38
  article-title: The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(01)01243-4
– volume: 83
  start-page: 29
  year: 2018
  ident: B79
  article-title: Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2017.06.017
– volume: 47
  start-page: 351
  year: 2000
  ident: B18
  article-title: Antidepressant effects of ketamine in depressed patients.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(99)00230-9
– volume: 69
  start-page: 139
  year: 2012
  ident: B77
  article-title: Anterior cingulate cortex gamma-aminobutyric acid in depressed adolescents: relationship to anhedonia.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2011.131
– volume: 28
  start-page: 529
  year: 2003
  ident: B91
  article-title: NPY attenuates positive cortical DC-potential shift upon food intake in man.
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/S0306-4530(02)00038-0
– volume: 40
  start-page: 2499
  year: 2015
  ident: B69
  article-title: Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.112
– volume: 34
  start-page: 68
  year: 2017
  ident: B53
  article-title: Decrease in somatostatin-positive cell density in the amygdala of females with major depression.
  publication-title: Depress. Anxiety
  doi: 10.1002/da.22549
– volume: 218
  start-page: 1591
  year: 2013
  ident: B81
  article-title: Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice.
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-012-0479-1
– volume: 22
  start-page: 220
  year: 1989
  ident: B140
  article-title: Decreased GABA B receptors in helpless rats: reversal by tricyclic antidepressants.
  publication-title: Neuropsychobiology
  doi: 10.1159/000118620
– year: 2018
  ident: B195
  article-title: Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex.
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-018-1143-4
– volume: 235
  start-page: 2137
  year: 2018
  ident: B62
  article-title: Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat.
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-018-4912-x
– volume: 47
  start-page: 1793
  year: 1986
  ident: B137
  article-title: Estrogen-induced up-regulation of gamma-aminobutyric acid receptors in the CNS of rodents.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1986.tb13090.x
– volume: 12
  start-page: 640
  year: 2007
  ident: B202
  article-title: Patterns of gene expression in the limbic system of suicides with and without major depression.
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4001969
– volume: 390
  start-page: 480
  year: 2017
  ident: B109
  article-title: Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31264-3
– volume: 61
  start-page: 705
  year: 2004
  ident: B196
  article-title: Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression.
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.61.7.705
– volume: 97
  start-page: 12852
  year: 2000
  ident: B220
  article-title: Behavioral insensitivity to restraint stress, absent fear suppression of behavior and impaired spatial learning in transgenic rats with hippocampal neuropeptide Y overexpression.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.220232997
– volume: 19
  start-page: 966
  year: 2014
  ident: B155
  article-title: Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings.
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2014.68
– volume: 55
  start-page: 2591
  year: 2018
  ident: B206
  article-title: Changes in the prefrontal glutamatergic and parvalbumin systems of mice exposed to unpredictable chronic stress.
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-017-0528-0
– volume: 72
  start-page: 473
  year: 2011
  ident: B65
  article-title: A post hoc analysis of the effect of nightly administration of eszopiclone and a selective serotonin reuptake inhibitor in patients with insomnia and anxious depression.
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.09m05131gry
– volume: 9
  start-page: 393
  year: 1985
  ident: B189
  article-title: CSF somatostatin in affective illness and normal volunteers.
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/0278-5846(85)90192-7
– volume: 2
  year: 2011
  ident: B154
  article-title: Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression.
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2011.00073
– volume: 475
  start-page: 91
  year: 2011
  ident: B11
  article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses.
  publication-title: Nature
  doi: 10.1038/nature10130
– volume: 39
  start-page: 710
  year: 2018
  ident: B58
  article-title: An emerging circuit pharmacology of GABAA receptors.
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2018.04.003
– volume: 487
  start-page: 45
  year: 1989
  ident: B54
  article-title: Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy.
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(89)90938-4
– volume: 14
  start-page: 1
  year: 2017
  ident: B80
  article-title: Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression.
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2016.09.012
– volume: 3
  start-page: 48
  year: 2007
  ident: B120
  article-title: Evaluation of eszopiclone discontinuation after cotherapy with fluoxetine for insomnia with coexisting depression.
  publication-title: J. Clin. Sleep Med.
– volume: 312
  start-page: 290
  year: 2005
  ident: B210
  article-title: GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent.
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.104.073536
– volume: 119
  start-page: 358
  year: 2017
  ident: B12
  article-title: The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors.
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2017.02.022
– volume: 98
  start-page: 524
  year: 1989
  ident: B98
  article-title: Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models.
  publication-title: Psychopharmacology
  doi: 10.1007/BF00441953
– volume: 149
  start-page: 581
  year: 2006
  ident: B157
  article-title: Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents.
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0706845
– volume: 62
  start-page: 1204
  year: 2010
  ident: B156
  article-title: Alterations in hippocampal calcium-binding neurons induced by stress models of depression: a preliminary assessment.
  publication-title: Pharmacol. Rep.
  doi: 10.1016/S1734-1140(10)70383-2
– volume: 2
  start-page: 833
  year: 1999
  ident: B39
  article-title: Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues.
  publication-title: Nat. Neurosci.
  doi: 10.1038/12207
– volume: 64
  start-page: 880
  year: 2008
  ident: B136
  article-title: Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.06.027
– volume: 22
  start-page: 69
  year: 1988
  ident: B241
  article-title: Neuropeptide Y and peptide YY as possible cerebrospinal fluid markers for major depression and schizophrenia, respectively.
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/0022-3956(88)90030-1
– volume: 53
  start-page: 180
  year: 2003
  ident: B74
  article-title: Low CSF somatostatin associated with response to nimodipine in patents with affective illness.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(02)01343-4
– year: 2017
  ident: B13
  article-title: Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression.
  publication-title: Chronic Stress
  doi: 10.1177/2470547017720459
– volume: 32
  year: 2017
  ident: B110
  article-title: Open-label, proof-of-concept study of brexanolone in the treatment of severe postpartum depression.
  publication-title: Hum. Psychopharmacol.
  doi: 10.1002/hup.2576
– volume: 163
  start-page: 28
  year: 2006
  ident: B225
  article-title: Evaluation of outcomes with citalopram for depression using measurement-based care in STAR∗D: implications for clinical practice.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.163.1.28
– volume: 83
  start-page: 963
  year: 2018
  ident: B105
  article-title: The gamma-aminobutyric acid b receptor in depression and reward.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2018.02.006
– volume: 42
  start-page: 116
  year: 2011
  ident: B223
  article-title: Reduced somatostatin in subgenual anterior cingulate cortex in major depression.
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.01.014
– volume: 59
  start-page: 73
  year: 1992
  ident: B240
  article-title: Reduced neuropeptide Y concentrations in suicide brain.
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.1992.tb08877.x
– volume: 161
  start-page: 368
  year: 2004
  ident: B19
  article-title: Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor.
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.161.2.368
– volume: 39
  start-page: 2252
  year: 2014
  ident: B213
  article-title: Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2014.76
– volume: 32
  start-page: 1
  year: 2010
  ident: B181
  article-title: Depression: the disorder and the burden.
  publication-title: Indian J. Psychol. Med.
  doi: 10.4103/0253-7176.70510
– volume: 67
  start-page: 465
  year: 2010
  ident: B135
  article-title: Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2009.10.027
– volume: 105
  start-page: 33
  year: 2018
  ident: B83
  article-title: Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis.
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2018.08.015
– volume: 24
  start-page: 1478
  year: 2004
  ident: B146
  article-title: Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4734-03.2004
– volume: 52
  start-page: 708
  year: 2002
  ident: B16
  article-title: Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins.
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(02)01360-4
– volume: 8
  start-page: 67
  year: 2007
  ident: B15
  article-title: World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders in primary care.
  publication-title: World J. Biol. Psychiatry
  doi: 10.1080/15622970701227829
SSID ssj0062648
Score 2.6153345
SecondaryResourceType review_article
Snippet Major depressive disorder (MDD) is a debilitating illness characterized by neuroanatomical and functional alterations in limbic structures, notably the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 87
SubjectTerms Antidepressants
Brain architecture
Clonal deletion
depression
Drug development
Drugs
Functional anatomy
GABA
Glutamatergic transmission
Hypotheses
Interneurons
Mental depression
Neuropeptides
Neuroscience
Neurosciences
Neurotransmission
Parvalbumin
Prefrontal cortex
Proteins
Psychiatry
Receptor mechanisms
Somatostatin
Stress
Synaptic transmission
Therapeutic applications
γ-Aminobutyric acid A receptors
γ-Aminobutyric acid B receptors
γ-Aminobutyric acid receptors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFL3IIuKL-G11lQi--FAmTZum8W1219UFXQRX2beQ5gMHJCPTWcF_771pZ5wR0Rdf2xTSk5vcc5rbE4AXznIvOu5KWbW2bFQjy85LX7ooApcBZXM-i-DzO3V-3l1e6g87R31RTdhoDzwCN5O-wRixvteYbJQXtm-5x5yOecq1ug-0-nKlN2JqXINbqtsaNyVRgulZRABpn6Eic0pO5XM7SSh79f-JYP5eJ7mTeE5vw62JMbL52NM7cC2ku3Dj_bQnfg_c8XKVP0izN_OjeVjhUsZOfgyUsAh0tkjsY_4hhNnk2cmm8jW9YrjAsbM0kDwfGJJXdvHrZyx2tlMMOdyHT6evL47fltPRCaWTsl2XQkTSCg0xKMWjtbx1oo61VR4ztPbedT5q3kVdRycqi7wxqJbXrkL9IZSrH8BBWqbwCFhU0faurVwnyNkl9BIZViN5LXsZbfAFzDZYGjf5itPxFl8N6gtC32T0DaFvMvoFvNw-8W301PhL2yManm07csPOFzBGzBQj5l8xUsDhZnDNNEUHI1BsNpooWQHPt7dxctGOiU1heYVtKt0hJZQ1L-DhGAvbntTItMjdrgC1FyV7Xd2_kxZfsoE3aj6huXr8P97tCdwktKgsrhKHcLBeXYWncN19Xy-G1bM8K34CEPASeA
  priority: 102
  providerName: Directory of Open Access Journals
Title Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions
URI https://www.ncbi.nlm.nih.gov/pubmed/30914923
https://www.proquest.com/docview/2282490064
https://www.proquest.com/docview/2198560530
https://pubmed.ncbi.nlm.nih.gov/PMC6422907
https://doaj.org/article/5d4963adb92247d2ab60d929129c69be
Volume 13
WOSCitedRecordID wos000460944000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: M7P
  dateStart: 20071230
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: BENPR
  dateStart: 20071230
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: PIMPY
  dateStart: 20071230
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1662-5102
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062648
  issn: 1662-5102
  databaseCode: M2P
  dateStart: 20071230
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbYhhCX8XMQGJWRuHCI6jhxnHBB7dZBJVpFMFA5RY5_QCWUbE2HxIW_nffctGsR2oVLDrUrWfns977n9_I9Ql5pxQzPmA5FlKowkYkIMyNMqB23TFgIm30vgi8f5HSazWZ50V24tV1Z5domekNtGo135H0OsUGSowd9e3EZYtcozK52LTT2yAGqJHBfulesLXGK1Vur1CQEYnnfwWvEbEOEEpUMi-i2XJFX7P8Xzfy7WnLL_Zzd-9-F3yeHHfGkg9VOeUBu2fohuTPpUuuPiD5pFv5em74bDAd2ARaRnv5q0e8hdnRe00_-uxKqakNP1wW09RsKdpKO6xaj_JYCB6bn19900fFWTWX7mHw-G52fvA-7DgyhFiJdhpw7DDkSJGKSOaVYqnnsYiUNOPrcGJ0Zl7PM5bHTPFJAP61MWawjCGO41PER2a-b2j4l1EmnKp1GOuMoEGMrAUQtESwWlXDKmoD012CUupMnxy4ZP0oIUxC-0sNXInylhy8grzf_uFhJc9wwd4j4buahqLb_oVl8K7szWgqTgDlSpsqB10jDVZUyA_QRKJFO88oG5HiNcNmd9La8hjcgLzfDcEYx8aJq21zBnCjPgFmKmAXkyWozbVYSA2FDkbyAyJ1ttrPU3ZF6_t3rgEPoyHMmn928rOfkLr4HrJuL-DHZXy6u7AtyW_9czttFj-zJWdYjB8PRtPjY8zcS8JzwouePEj5_j2C8GE-Kr38AfYgn-w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoAL74ehwCLBgYOV9drrBxJCaUNp1DSqRKh6M-t9QCTklDgF9U_xG5nxI00Q6q0HrvbaWu9-nvlm99sZgFdacSNSrn0ZxMqPkkj6qZHG105YLi2GzXUtgqNRMh6nx8fZ4Qb87s7CkKyys4m1oTYzTWvkPYGxQZSRB31_8sOnqlG0u9qV0GhgsW_PfmHIVr0bDnB-Xwux-2Gys-e3VQV8LWW88IVwRKMjIhcJd0rxWIvQhSox6LwyY3RqXMZTl4VOi0AhpbJJzEMdIDUXiQ7xvVfgKtIIwWup4GFn-WNSizVboRj4ZT2H00a7GwGlxOQk2ltxfXWFgH_R2r_VmSvubvf2_zZQd-BWS6xZv_kT7sKGLe_B9YNWOnAf9M5sXq_bs4_97b6do8Vng7OK_Dphk01L9qk-N8NUadigEwiXbxn6ATYsK1rFqBhyfDY5P7PGhiua0eoBfL6UT3wIm-WstI-BucSpQseBTgUlwLGFRCIaSR7KQjpljQe9bvJz3aZfpyog33MMwwgueQ2XnOCS13Dx4M3yiZMm9cgFbbcJT8t2lDS8vjCbf81bG5RLE6G5VabIkLclRqgi5gbpMVI-HWeF9WCrQ1TeWrIqP4eTBy-Xt9EG0caSKu3sFNsEWYrMWYbcg0cNeJc9CZGQUhJAD5I1WK91df1OOf1W5znH0FhkPHlycbdewI29ycEoHw3H-0_hJo0JaQQDsQWbi_mpfQbX9M_FtJo_r39WBl8uG_R_AIOEeyI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB-BAkaCA4doHSfOAwmhbZfCqmW1EgX1ljp-wEooWzZbUP8av44Zb7LdRai3HrjGTuQkn2e-sT_PALzQihuRcx3KKFVhkiUyzI00oXbCcmkxbPa1CL4cZKNRfnRUjDfgd3cWhmSVnU30htpMNa2R9wTGBklBHrTnWlnEeLD39uRHSBWkaKe1K6exgMi-PfuF4VvzZjjAf_1SiL13h7sfwrbCQKilTOehEI4odUJEI-NOKZ5qEbtYZQYdWWGMzo0reO6K2GkRKaRXNkt5rCOk6SLTMT73ClzNkpQLLxscd14gJeXYYlsUg8Ci5_AX0k5HROkxOQn4VtygrxbwL4r7t1JzxfXt3fyfP9otuNESbtZfzJDbsGHrO7D1sZUU3AW9O5359Xz2vr_TtzP0BGxw1pC_J8yySc0--fM0TNWGDTrhcP2aoX9gw7qh1Y2GIfdnh-dn2dhwRUva3IPPl_KK92Gzntb2ITCXOVXpNNK5oMQ4tpJIUBPJY1lJp6wJoNcBodRtWnaqDvK9xPCMoFN66JQEndJDJ4BXyztOFilJLui7Q9ha9qNk4v7CdPa1bG1TKU2CZliZqkA-lxmhqpQbpM1IBXVaVDaA7Q5dZWvhmvIcWgE8XzajbaINJ1Xb6Sn2iYocGbWMeQAPFkBejiRGokrJAQPI1iC-NtT1lnryzec_x5BZFDx7dPGwnsEWYr08GI72H8N1-iQkHYzENmzOZ6f2CVzTP-eTZvbUz1sGx5eN-T_R24Po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+GABAergic+Dysfunction+in+Stress+and+Depression%3A+New+Insights+for+Therapeutic+Interventions&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Foga%C3%A7a%2C+Manoela+V&rft.au=Duman%2C+Ronald+S&rft.date=2019-03-12&rft.issn=1662-5102&rft.eissn=1662-5102&rft.volume=13&rft.spage=87&rft_id=info:doi/10.3389%2Ffncel.2019.00087&rft_id=info%3Apmid%2F30914923&rft.externalDocID=30914923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon