Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene mater...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 26; H. 6; S. 849 - 864 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Blackwell Publishing Ltd
01.02.2014
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed.
This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed. |
|---|---|
| AbstractList | Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed. Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed. This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed. Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed. This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed. Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed.Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed. |
| Author | Wu, Dongqing Han, Sheng Feng, Xinliang Zhang, Fan Li, Shuang |
| Author_xml | – sequence: 1 givenname: Sheng surname: Han fullname: Han, Sheng organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China – sequence: 2 givenname: Dongqing surname: Wu fullname: Wu, Dongqing organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China – sequence: 3 givenname: Shuang surname: Li fullname: Li, Shuang organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China – sequence: 4 givenname: Fan surname: Zhang fullname: Zhang, Fan email: fan-zhang@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China – sequence: 5 givenname: Xinliang surname: Feng fullname: Feng, Xinliang email: fan-zhang@sjtu.edu.cn organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24347321$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1vEzEURS1URNPCliXyks0Ef3u8DGlIEWlBKogNkuXxvGkNM-NgTwL5950qJUJIKCtvznnv-d4zdNLHHhB6ScmUEsLeuLpzU0YoJ5xS-QRNqGS0EMTIEzQhhsvCKFGeorOcvxNCjCLqGTplggvNGZ2gb59iipuMl8mt76AHfOUGSMG1GTcx4Vm9db2HGi9a8EOK_g664F2LFz2k2x2-GWJyt4BdX-N57LeQcog9voBt8JCfo6fNOAlePL7n6Mu7xef5ZbH6uHw_n60KL6WSBWiuTamYY0JTzzmvfdnUXDMmy6p0xnHglaAwHg-iKYlpWEWqUmuoSmh4zc_R6_3cdYo_N5AH24XsoW1dD-PnLNWSS8qY0sdRSbkwlChxHBXGUKaYkCP66hHdVB3Udp1C59LO_sl5BKZ7wKeYc4LmgFBiH4q0D0XaQ5GjIP4RfBjcMIY7JBfa_2tmr_0KLeyOLLGzi6vZ326xd0Me4PfBdemHHYPT0n69Xtq3Nyv1YW6ureL3GIK_xQ |
| CitedBy_id | crossref_primary_10_1016_j_microc_2021_106710 crossref_primary_10_1016_j_seppur_2024_128708 crossref_primary_10_1016_j_jelechem_2016_05_036 crossref_primary_10_1016_j_ijhydene_2024_05_030 crossref_primary_10_1016_j_jallcom_2019_01_295 crossref_primary_10_1016_j_cej_2025_159671 crossref_primary_10_1016_j_diamond_2021_108816 crossref_primary_10_1039_C9NR07255A crossref_primary_10_1002_adma_201701677 crossref_primary_10_1002_adma_201503390 crossref_primary_10_1016_j_jelechem_2020_114703 crossref_primary_10_1016_j_cej_2015_01_072 crossref_primary_10_1002_admi_201500842 crossref_primary_10_1016_j_electacta_2014_12_169 crossref_primary_10_1016_j_ijhydene_2022_09_065 crossref_primary_10_1016_j_jallcom_2019_02_090 crossref_primary_10_1002_aenm_201402115 crossref_primary_10_1016_j_nantod_2022_101379 crossref_primary_10_1038_srep07171 crossref_primary_10_1080_22243682_2018_1555677 crossref_primary_10_3390_polym10121339 crossref_primary_10_1002_aenm_201803215 crossref_primary_10_1002_adma_201805864 crossref_primary_10_1016_j_carbon_2019_05_017 crossref_primary_10_1016_j_carbon_2024_119547 crossref_primary_10_1007_s41918_019_00033_7 crossref_primary_10_1039_D4NR00588K crossref_primary_10_1016_j_jallcom_2015_09_185 crossref_primary_10_1016_j_matchemphys_2020_123769 crossref_primary_10_1016_j_diamond_2018_03_033 crossref_primary_10_1007_s10853_021_05899_x crossref_primary_10_1002_adma_201805658 crossref_primary_10_1016_j_carbon_2016_02_086 crossref_primary_10_1155_2018_6026437 crossref_primary_10_1002_celc_201700801 crossref_primary_10_1016_j_apsusc_2017_09_145 crossref_primary_10_1039_D5NJ00891C crossref_primary_10_1002_ppsc_201600262 crossref_primary_10_1051_mfreview_2023011 crossref_primary_10_1016_j_rser_2023_114030 crossref_primary_10_1002_cctc_201403026 crossref_primary_10_1002_smll_201600282 crossref_primary_10_1016_j_micromeso_2017_10_026 crossref_primary_10_1016_j_apsusc_2017_10_231 crossref_primary_10_1016_j_jpowsour_2024_234988 crossref_primary_10_1016_j_ceramint_2021_05_048 crossref_primary_10_1016_j_est_2020_101575 crossref_primary_10_1002_smll_201800752 crossref_primary_10_1007_s10118_020_2411_0 crossref_primary_10_1016_j_commatsci_2017_04_024 crossref_primary_10_1016_j_ces_2018_04_004 crossref_primary_10_1016_j_est_2022_105666 crossref_primary_10_1007_s42452_020_03401_x crossref_primary_10_3390_gels8100622 crossref_primary_10_1016_j_carbon_2019_07_040 crossref_primary_10_1016_j_molliq_2024_124523 crossref_primary_10_1016_j_sna_2016_04_061 crossref_primary_10_1002_adom_201800606 crossref_primary_10_3390_ma17246195 crossref_primary_10_1063_5_0128899 crossref_primary_10_1002_celc_201600059 crossref_primary_10_1016_j_jece_2024_114708 crossref_primary_10_1093_nsr_nwz140 crossref_primary_10_1002_admt_201700223 crossref_primary_10_1002_aenm_201502159 crossref_primary_10_3390_nano9010101 crossref_primary_10_1007_s12274_020_3030_3 crossref_primary_10_1016_j_electacta_2017_02_083 crossref_primary_10_1088_2632_2153_ad0937 crossref_primary_10_1002_adfm_201602459 crossref_primary_10_1016_j_bioelechem_2020_107461 crossref_primary_10_1007_s12649_025_03121_6 crossref_primary_10_1016_j_nanoen_2014_10_005 crossref_primary_10_1016_j_carbon_2022_06_010 crossref_primary_10_1002_adma_202302199 crossref_primary_10_1002_adfm_202103632 crossref_primary_10_1016_j_apsusc_2020_146728 crossref_primary_10_1016_j_matdes_2023_112529 crossref_primary_10_1016_j_mtchem_2024_102200 crossref_primary_10_1016_j_jsamd_2025_100937 crossref_primary_10_1007_s11664_025_12294_8 crossref_primary_10_3390_s22228661 crossref_primary_10_1002_admi_202100783 crossref_primary_10_1088_1361_6528_ab432d crossref_primary_10_1016_j_carbon_2016_10_085 crossref_primary_10_1016_j_jcis_2017_10_022 crossref_primary_10_1007_s11664_025_11825_7 crossref_primary_10_1002_adfm_201909265 crossref_primary_10_1002_aenm_202000099 crossref_primary_10_1016_j_apmt_2019_100507 crossref_primary_10_1002_cphc_202400601 crossref_primary_10_1016_j_jcis_2025_138025 crossref_primary_10_1002_adfm_201403273 crossref_primary_10_1016_j_ceramint_2017_11_181 crossref_primary_10_1002_adfm_201805026 crossref_primary_10_1002_adfm_201501733 crossref_primary_10_1002_adma_201405904 crossref_primary_10_1016_j_jpowsour_2015_06_062 crossref_primary_10_1016_j_snb_2015_11_091 crossref_primary_10_1002_adfm_202000842 crossref_primary_10_1002_adfm_201909035 crossref_primary_10_1016_j_rser_2023_113594 crossref_primary_10_1016_j_surfcoat_2016_11_110 crossref_primary_10_1038_s42004_024_01222_2 crossref_primary_10_1016_j_isci_2025_112271 crossref_primary_10_1007_s11814_016_0113_7 crossref_primary_10_1016_j_apenergy_2016_03_066 crossref_primary_10_1007_s12274_017_1731_z crossref_primary_10_1016_S1872_2067_14_60100_5 crossref_primary_10_1039_C7CS00871F crossref_primary_10_1016_j_jclepro_2018_11_020 crossref_primary_10_1007_s10800_019_01366_3 crossref_primary_10_1016_j_nantod_2016_07_005 crossref_primary_10_1002_adma_202307209 crossref_primary_10_1002_adma_201600586 crossref_primary_10_1002_smll_202202901 crossref_primary_10_1016_j_electacta_2018_05_017 crossref_primary_10_1016_j_electacta_2018_05_018 crossref_primary_10_1016_j_apcatb_2017_02_011 crossref_primary_10_1016_j_electacta_2015_12_143 crossref_primary_10_1002_adfm_202010867 crossref_primary_10_1016_j_jpowsour_2016_03_089 crossref_primary_10_1002_adfm_202007458 crossref_primary_10_3389_fmats_2025_1586574 crossref_primary_10_1016_j_electacta_2015_09_099 crossref_primary_10_1007_s10854_018_8760_6 crossref_primary_10_1038_srep27081 crossref_primary_10_1002_adma_201800696 crossref_primary_10_1016_j_jallcom_2018_12_006 crossref_primary_10_1016_j_bios_2016_05_002 crossref_primary_10_1063_1_4993585 crossref_primary_10_1155_2019_2710712 crossref_primary_10_1088_2053_1591_3_7_075020 crossref_primary_10_1016_j_jpowsour_2014_10_010 crossref_primary_10_1038_s42004_017_0005_8 crossref_primary_10_1007_s10800_017_1085_y crossref_primary_10_3390_polym11040726 crossref_primary_10_1016_j_electacta_2018_10_177 crossref_primary_10_1016_j_jpowsour_2016_03_091 crossref_primary_10_1002_cctc_201601607 crossref_primary_10_1007_s10450_019_00067_9 crossref_primary_10_1016_j_sna_2021_113118 crossref_primary_10_1063_5_0203665 crossref_primary_10_1007_s12274_017_1448_z crossref_primary_10_1002_smll_201803858 crossref_primary_10_1016_j_est_2021_103149 crossref_primary_10_1177_0040517516671120 crossref_primary_10_1002_admi_201801838 crossref_primary_10_1007_s10008_016_3189_4 crossref_primary_10_1039_C9NR01719D crossref_primary_10_3390_nano15130992 crossref_primary_10_1016_j_elecom_2015_01_014 crossref_primary_10_1038_srep14510 crossref_primary_10_3390_catal7080234 crossref_primary_10_3390_nano11040827 crossref_primary_10_1038_s41598_018_24265_7 crossref_primary_10_1016_j_jechem_2020_05_069 crossref_primary_10_1016_j_est_2019_100960 crossref_primary_10_1002_adfm_202505329 crossref_primary_10_1007_s10854_016_6240_4 crossref_primary_10_1016_j_surfcoat_2020_126075 crossref_primary_10_1039_C9QM00425D crossref_primary_10_1002_aelm_202300334 crossref_primary_10_1016_j_est_2025_117654 crossref_primary_10_3390_nano12111828 crossref_primary_10_1016_j_tsf_2015_06_060 crossref_primary_10_1007_s10934_017_0504_0 crossref_primary_10_1016_S1872_5805_17_60140_9 crossref_primary_10_1016_j_carbon_2019_04_110 crossref_primary_10_1007_s00604_018_2846_y crossref_primary_10_1002_ange_201501788 crossref_primary_10_1016_j_carbon_2019_10_106 crossref_primary_10_1039_D2AN01161A crossref_primary_10_1007_s11581_016_1807_x crossref_primary_10_1016_j_rser_2016_11_220 crossref_primary_10_1016_j_cej_2023_143436 crossref_primary_10_1016_j_carbon_2015_06_007 crossref_primary_10_1063_1_5016326 crossref_primary_10_1016_j_jcis_2021_08_042 crossref_primary_10_1038_srep43116 crossref_primary_10_1016_j_ijhydene_2017_12_147 crossref_primary_10_1016_j_surfin_2021_101258 crossref_primary_10_1002_slct_202304491 crossref_primary_10_1016_j_nanoen_2019_03_074 crossref_primary_10_1007_s11164_016_2514_y crossref_primary_10_1016_j_carbon_2014_06_076 crossref_primary_10_1002_aesr_202500067 crossref_primary_10_1016_j_nanoen_2016_11_005 crossref_primary_10_1016_j_cplett_2021_138649 crossref_primary_10_1016_j_carbon_2017_03_089 crossref_primary_10_1039_D0SE01424A crossref_primary_10_1016_j_mtener_2017_09_015 crossref_primary_10_1016_j_jpowsour_2015_08_043 crossref_primary_10_1016_j_jpowsour_2016_08_127 crossref_primary_10_1016_j_electacta_2020_137414 crossref_primary_10_1002_adma_201503097 crossref_primary_10_1016_j_jallcom_2022_164598 crossref_primary_10_1038_s41598_018_20096_8 crossref_primary_10_1021_acs_langmuir_5c01740 crossref_primary_10_1016_j_electacta_2019_05_139 crossref_primary_10_1016_j_chemosphere_2020_129420 crossref_primary_10_1016_j_jcis_2023_02_127 crossref_primary_10_1016_j_mattod_2015_01_002 crossref_primary_10_1002_aenm_201701203 crossref_primary_10_1002_adma_201602547 crossref_primary_10_1007_s12274_016_1246_z crossref_primary_10_1063_1_5025128 crossref_primary_10_1002_smll_201702616 crossref_primary_10_1002_aenm_202301737 crossref_primary_10_1016_j_carbon_2015_11_066 crossref_primary_10_1002_aenm_202400499 crossref_primary_10_1039_D3NR02933F crossref_primary_10_1111_jace_19177 crossref_primary_10_1016_j_compositesb_2019_05_036 crossref_primary_10_3390_nano14090754 crossref_primary_10_1007_s00894_020_04367_8 crossref_primary_10_1016_j_jmapro_2024_04_081 crossref_primary_10_1016_j_micromeso_2015_02_036 crossref_primary_10_1002_adfm_201700762 crossref_primary_10_1016_j_jpowsour_2023_233967 crossref_primary_10_1016_j_jelechem_2019_113617 crossref_primary_10_1016_j_pmatsci_2020_100717 crossref_primary_10_1002_chem_201801912 crossref_primary_10_1016_j_synthmet_2022_117131 crossref_primary_10_1038_nature18284 crossref_primary_10_1002_cplu_201800121 crossref_primary_10_1016_j_diamond_2023_109920 crossref_primary_10_1039_C7CP08471D crossref_primary_10_1016_j_electacta_2016_03_102 crossref_primary_10_1016_j_est_2025_117868 crossref_primary_10_1016_j_cej_2022_138462 crossref_primary_10_1016_j_cclet_2024_110726 crossref_primary_10_1038_srep19822 crossref_primary_10_1039_D2NR03865J crossref_primary_10_3389_fchem_2017_00117 crossref_primary_10_1016_j_nanoen_2015_01_007 crossref_primary_10_1038_srep27365 crossref_primary_10_1002_adma_201602210 crossref_primary_10_1016_j_jpowsour_2020_228759 crossref_primary_10_1007_s13762_018_1670_6 crossref_primary_10_1016_j_rser_2025_116001 crossref_primary_10_1016_j_cej_2018_11_171 crossref_primary_10_1002_chem_201704211 crossref_primary_10_1002_ente_202001086 crossref_primary_10_1002_advs_201600382 crossref_primary_10_1002_adma_201505917 crossref_primary_10_1088_1361_6528_aa6107 crossref_primary_10_1016_j_carbon_2015_02_042 crossref_primary_10_1016_j_micromeso_2021_111662 crossref_primary_10_1002_cphc_201500174 crossref_primary_10_3390_gels10090553 crossref_primary_10_1002_adma_201600164 crossref_primary_10_1016_j_carbon_2021_06_004 crossref_primary_10_1080_02726351_2017_1401570 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1016_j_carbon_2019_03_093 crossref_primary_10_1515_ntrev_2025_0189 crossref_primary_10_1016_j_carbon_2017_12_102 crossref_primary_10_1039_D0QM00291G crossref_primary_10_1016_j_carbon_2015_02_052 crossref_primary_10_1016_j_carbon_2016_12_049 crossref_primary_10_1039_C5QI00187K crossref_primary_10_1016_j_bios_2016_08_015 crossref_primary_10_1007_s41918_022_00177_z crossref_primary_10_1039_C5CC08148C crossref_primary_10_1016_j_electacta_2017_05_042 crossref_primary_10_1088_0957_4484_25_50_504001 crossref_primary_10_1002_jccs_201700458 crossref_primary_10_1016_j_jelechem_2018_12_039 crossref_primary_10_1016_j_electacta_2014_09_059 crossref_primary_10_3390_ma13030594 crossref_primary_10_1016_j_nanoen_2016_02_024 crossref_primary_10_1016_j_partic_2021_02_005 crossref_primary_10_1186_s40580_017_0123_0 crossref_primary_10_1016_j_ccr_2020_213438 crossref_primary_10_1016_j_commatsci_2020_109978 crossref_primary_10_1002_adfm_201401876 crossref_primary_10_1002_aenm_201500771 crossref_primary_10_1016_j_carbon_2025_120431 crossref_primary_10_1016_j_electacta_2020_136502 crossref_primary_10_1038_srep14229 crossref_primary_10_1002_macp_201800536 crossref_primary_10_1016_j_cej_2014_12_086 crossref_primary_10_1007_s11664_021_09079_0 crossref_primary_10_1002_adma_201604219 crossref_primary_10_1016_j_est_2021_102314 crossref_primary_10_1016_j_surfcoat_2016_11_023 crossref_primary_10_1002_adma_201501983 crossref_primary_10_1039_D3NR01647A crossref_primary_10_1016_j_electacta_2014_09_069 crossref_primary_10_1016_j_electacta_2019_04_192 crossref_primary_10_1002_app_45001 crossref_primary_10_1016_j_carbon_2017_06_097 crossref_primary_10_1002_ente_202100933 crossref_primary_10_1002_cctc_201500198 crossref_primary_10_1002_adma_201400910 crossref_primary_10_1016_j_apsusc_2018_09_185 crossref_primary_10_1246_bcsj_20170043 crossref_primary_10_1016_j_apsusc_2017_07_291 crossref_primary_10_1016_j_jallcom_2019_152421 crossref_primary_10_1016_j_jpowsour_2015_11_017 crossref_primary_10_1016_j_pmatsci_2017_07_001 crossref_primary_10_1016_j_apsusc_2018_07_027 crossref_primary_10_1002_asia_202400611 crossref_primary_10_1016_j_polymer_2022_124888 crossref_primary_10_1039_D0NR09167G crossref_primary_10_1016_j_memsci_2020_118360 crossref_primary_10_1016_j_carbon_2021_07_080 crossref_primary_10_1016_j_ceramint_2018_08_314 crossref_primary_10_1002_ente_201700154 crossref_primary_10_1002_anie_201710190 crossref_primary_10_1007_s10853_020_04746_9 crossref_primary_10_1016_j_jphotochemrev_2016_06_001 crossref_primary_10_1016_j_jpcs_2017_09_009 crossref_primary_10_1016_j_compositesb_2018_03_004 crossref_primary_10_1002_ente_201600502 crossref_primary_10_1016_j_cclet_2021_11_032 crossref_primary_10_1016_j_matchemphys_2022_127060 crossref_primary_10_1016_j_est_2021_102658 crossref_primary_10_1002_aenm_201702381 crossref_primary_10_1016_j_clay_2023_107202 crossref_primary_10_1002_aenm_201801804 crossref_primary_10_1016_j_seppur_2025_135134 crossref_primary_10_1088_1361_648X_ace578 crossref_primary_10_1002_smll_201403575 crossref_primary_10_1007_s41918_022_00174_2 crossref_primary_10_1149_2162_8777_ad15a7 crossref_primary_10_1002_ange_201710190 crossref_primary_10_1016_j_ijhydene_2016_07_198 crossref_primary_10_1016_j_colsurfa_2016_05_012 crossref_primary_10_1016_j_bios_2015_06_042 crossref_primary_10_1038_srep43413 crossref_primary_10_1002_aenm_202101025 crossref_primary_10_1016_j_compositesb_2018_11_085 crossref_primary_10_1016_j_apsusc_2017_06_279 crossref_primary_10_1016_j_compscitech_2018_01_032 crossref_primary_10_1186_1556_276X_9_672 crossref_primary_10_1016_j_cplett_2019_06_058 crossref_primary_10_1002_adma_202108750 crossref_primary_10_1002_aenm_201902494 crossref_primary_10_1002_sstr_202000118 crossref_primary_10_1002_adfm_201604687 crossref_primary_10_1016_j_carbon_2018_09_013 crossref_primary_10_1134_S102319351903011X crossref_primary_10_1007_s10853_019_04150_y crossref_primary_10_1007_s40820_019_0286_9 crossref_primary_10_1002_er_3676 crossref_primary_10_1002_adma_202004654 crossref_primary_10_1002_advs_201700146 crossref_primary_10_1016_j_apsusc_2022_153156 crossref_primary_10_1016_j_colsurfa_2022_130393 crossref_primary_10_3390_nano12010008 crossref_primary_10_1016_j_indcrop_2015_03_004 crossref_primary_10_1016_j_jpowsour_2014_09_017 crossref_primary_10_1016_j_snb_2015_06_035 crossref_primary_10_1016_j_carbon_2022_04_064 crossref_primary_10_1002_adfm_201603230 crossref_primary_10_1016_j_bios_2018_03_060 crossref_primary_10_1016_j_diamond_2021_108671 crossref_primary_10_1002_slct_201600461 crossref_primary_10_1007_s12613_020_2088_y crossref_primary_10_1016_j_jpowsour_2022_232509 crossref_primary_10_1002_chem_201700809 crossref_primary_10_1016_j_jallcom_2021_162640 crossref_primary_10_1016_j_matchemphys_2024_130229 crossref_primary_10_1016_j_electacta_2017_08_158 crossref_primary_10_1039_D0MH00815J crossref_primary_10_1038_srep07557 crossref_primary_10_1140_epjp_i2019_12612_4 crossref_primary_10_1002_smll_201903780 crossref_primary_10_1002_chem_202005020 crossref_primary_10_1016_j_cej_2024_158564 crossref_primary_10_1002_celc_201402315 crossref_primary_10_1016_j_nanoen_2015_06_019 crossref_primary_10_1088_1361_6528_aa7044 crossref_primary_10_1016_j_joule_2017_10_005 crossref_primary_10_1016_j_electacta_2018_09_001 crossref_primary_10_1016_j_mseb_2021_115139 crossref_primary_10_1016_j_carbon_2017_08_076 crossref_primary_10_1080_00914037_2015_1038814 crossref_primary_10_1016_j_electacta_2016_10_019 crossref_primary_10_1016_j_nanoen_2015_07_026 crossref_primary_10_1016_j_electacta_2017_09_083 crossref_primary_10_1016_j_matdes_2023_112043 crossref_primary_10_1016_j_electacta_2016_06_038 crossref_primary_10_1039_C7CC03060F crossref_primary_10_1557_jmr_2018_424 crossref_primary_10_1002_advs_202001335 crossref_primary_10_1016_j_jechem_2017_10_026 crossref_primary_10_1016_j_cclet_2018_10_040 crossref_primary_10_1039_C4CS00316K crossref_primary_10_1016_j_jcis_2016_06_035 crossref_primary_10_1088_2053_1583_aaf20a crossref_primary_10_1002_batt_201800067 crossref_primary_10_1002_aenm_201700826 crossref_primary_10_1002_smll_202400650 crossref_primary_10_1088_0957_4484_27_36_365401 crossref_primary_10_1002_adfm_201500321 crossref_primary_10_1016_j_electacta_2016_10_020 crossref_primary_10_1088_1361_6528_aaafc5 crossref_primary_10_1016_j_carbon_2016_10_056 crossref_primary_10_3389_fchem_2020_00043 crossref_primary_10_5012_bkcs_2014_35_8_2541 crossref_primary_10_1039_C9RA01255A crossref_primary_10_1016_j_bios_2018_06_064 crossref_primary_10_1016_j_ccst_2023_100144 crossref_primary_10_1016_j_cej_2018_08_016 crossref_primary_10_1016_j_memsci_2018_07_035 crossref_primary_10_1016_j_apsusc_2023_159185 crossref_primary_10_1016_j_ijhydene_2022_07_244 crossref_primary_10_1007_s40145_021_0562_2 crossref_primary_10_1116_1_5035333 crossref_primary_10_1016_j_carbon_2017_05_031 crossref_primary_10_1016_j_jpowsour_2022_231588 crossref_primary_10_1126_science_aan8285 crossref_primary_10_1016_j_carbon_2015_03_019 crossref_primary_10_1016_j_snb_2018_02_065 crossref_primary_10_1007_s11426_023_1681_x crossref_primary_10_1038_s41598_025_10472_6 crossref_primary_10_1016_j_jelechem_2020_114489 crossref_primary_10_1016_j_mtcomm_2020_101755 crossref_primary_10_1016_j_carbon_2016_11_036 crossref_primary_10_1007_s10008_017_3689_x crossref_primary_10_1002_mame_201600161 crossref_primary_10_1002_tcr_202100067 crossref_primary_10_1039_C9QI01028A crossref_primary_10_1039_D3QM00566F crossref_primary_10_1007_s10853_015_9510_2 crossref_primary_10_1039_C6CC07450B crossref_primary_10_1039_D0BM00841A crossref_primary_10_1016_j_jpowsour_2019_01_028 crossref_primary_10_1016_j_mattod_2025_05_021 crossref_primary_10_1016_j_electacta_2016_10_008 crossref_primary_10_1016_j_carbon_2019_01_039 crossref_primary_10_1002_smtd_201900163 crossref_primary_10_1016_j_carbon_2015_03_045 crossref_primary_10_1002_anie_201501788 crossref_primary_10_1016_j_carbon_2016_03_002 crossref_primary_10_1016_j_electacta_2015_11_090 crossref_primary_10_1002_adma_201501115 crossref_primary_10_1016_j_pmatsci_2020_100665 crossref_primary_10_1007_s10337_017_3415_y crossref_primary_10_1016_j_chroma_2016_04_032 crossref_primary_10_1016_j_matt_2019_10_001 crossref_primary_10_1016_j_apsusc_2020_146696 crossref_primary_10_1016_j_cej_2017_07_064 crossref_primary_10_1016_j_surfcoat_2016_10_092 crossref_primary_10_1002_slct_201904375 crossref_primary_10_1016_j_cej_2023_145045 crossref_primary_10_1016_j_electacta_2016_04_105 crossref_primary_10_1002_adts_202300579 crossref_primary_10_1002_smll_202201110 crossref_primary_10_1016_j_energy_2024_131275 crossref_primary_10_1002_advs_201900119 crossref_primary_10_1016_j_jpowsour_2017_08_092 crossref_primary_10_1063_1_4943639 crossref_primary_10_1002_advs_202304497 crossref_primary_10_1016_j_nanoen_2020_104762 crossref_primary_10_1016_j_flatc_2021_100224 crossref_primary_10_1016_j_electacta_2021_138255 crossref_primary_10_1016_j_jcis_2016_12_064 crossref_primary_10_1016_j_apt_2021_10_013 crossref_primary_10_1016_j_cej_2023_146361 crossref_primary_10_1016_j_nanoms_2021_01_002 crossref_primary_10_20964_2016_12_42 crossref_primary_10_1016_j_electacta_2022_141719 crossref_primary_10_1007_s10854_018_9993_0 crossref_primary_10_1016_j_jpowsour_2019_227422 |
| Cites_doi | 10.1039/c2ra20845h 10.1021/ja312221g 10.1039/c2jm16825a 10.1021/jp303265d 10.1002/adma.200803606 10.1351/pac199466081739 10.1002/adma.201202289 10.1021/jp204036a 10.1002/adma.201200197 10.1021/nn300655c 10.1039/c001635g 10.1021/cm060014p 10.1039/c2nr32699j 10.1002/adfm.201200403 10.1039/c1cc10412h 10.1038/nature00785 10.1021/ja308676h 10.1002/adma.201201948 10.1002/anie.201006240 10.1016/j.micromeso.2012.04.038 10.1038/srep00427 10.1039/C2TA00192F 10.1002/adma.200501366 10.1002/adfm.201203286 10.1002/adfm.201000287 10.1002/chem.201100727 10.1039/c1jm11728a 10.1039/c2jm15865e 10.1021/nn101187z 10.1021/j100786a032 10.1039/c002690p 10.1002/anie.201001634 10.1002/adma.200901079 10.1039/c1sm00011j 10.1002/chem.201200551 10.1021/nn102618n 10.1039/c2jm16541d 10.1016/j.carbon.2011.06.006 10.1126/science.1202747 10.1021/nn3003345 10.1039/c3ee23870a 10.1002/smll.201203155 10.1039/B802654H 10.1039/c2cc37413g 10.1021/cr300115g 10.1039/c000051e 10.1039/c2nr32157b 10.1021/ja1072299 10.1002/adma.201204196 10.1002/adma.201001068 10.1039/C2RA22702A 10.1126/science.1200770 10.1039/c1nr10879d 10.1039/c2jm34816k 10.1021/nl802558y 10.1002/adma.200700699 10.1002/adma.201104971 10.1038/srep01238 10.1039/c2jm30221g 10.1039/c2cc35120j 10.1038/ncomms2251 10.1021/nn204656d 10.1002/adfm.201200186 10.1039/c0jm04043f 10.1039/b502551f 10.1016/0021-9797(68)90272-5 10.1021/ma201620w 10.1039/c1nr10355e 10.1038/369387a0 10.1002/anie.200901678 10.1021/jp9035887 10.1021/am3022366 10.1021/cm062882s 10.1002/anie.201100170 10.1039/c2nr31438j 10.1002/adma.200401643 10.1002/adma.201102838 10.1039/c2cc33979j 10.1002/anie.201000270 10.1038/nmat1849 10.1002/adma.200501576 10.1016/j.jcis.2010.04.054 10.1021/cr900070d 10.1002/anie.200702046 10.1021/nl203903z 10.1002/adma.200600148 10.1002/anie.201101891 10.1002/adma.201101599 10.1021/nn3021772 10.1021/jp1120299 10.1002/adma.201201680 10.1039/c2cc36234a 10.1038/srep01408 10.1016/j.carbon.2011.07.032 10.1021/nn2001728 10.1039/c2cc32189k 10.1021/ja100102y 10.1021/ja310849c 10.1016/j.carbon.2012.06.013 10.1039/c2nr31397a 10.1038/nnano.2009.58 10.1021/jp0714365 10.1039/C2EE23284G 10.1021/cm702028z 10.1039/c1cp22409c 10.1021/nn300097q 10.1021/nn1027104 10.1002/anie.201207277 10.1039/b822668g 10.1021/ar300122m 10.1021/ja3030565 10.1039/C1JM13947A 10.1021/nl302175j 10.1002/anie.201000167 10.1039/C2TC00235C 10.1007/978-1-4757-3058-6 10.1002/adma.200300380 10.1002/adma.201201978 10.1021/ja200244s 10.1039/C2TA00887D 10.1002/adfm.200700093 10.1039/c1sm05498h 10.1002/cssc.201200421 10.1002/smll.201100990 10.1002/adma.201001410 |
| ContentType | Journal Article |
| Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| DOI | 10.1002/adma.201303115 |
| DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef PubMed Materials Research Database Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | 864 |
| ExternalDocumentID | 24347321 10_1002_adma_201303115 ADMA201303115 ark_67375_WNG_BSL6KC9N_6 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: 973 Program of China funderid: 2012CB933404; 2013CBA01602 – fundername: Natural Science Foundation of China funderid: 61235007; 21174083; 21102091; 21372155 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT ALUQN AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE NPM RWI RWM WRC 7X8 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| ID | FETCH-LOGICAL-c5565-e7379862a2471c333dc8fd372258b8a9a3e3b41e960e4f809f2b0b877eb8ef3d3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 652 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331910200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 13:45:03 EDT 2025 Thu Jul 10 23:12:35 EDT 2025 Sun Nov 09 10:52:35 EST 2025 Wed Feb 19 01:52:18 EST 2025 Tue Nov 18 21:48:59 EST 2025 Sat Nov 29 07:18:53 EST 2025 Wed Aug 20 07:26:29 EDT 2025 Tue Nov 11 03:33:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | template self-assembly porous materials energy storage and conversion graphene |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5565-e7379862a2471c333dc8fd372258b8a9a3e3b41e960e4f809f2b0b877eb8ef3d3 |
| Notes | 973 Program of China - No. 2012CB933404; No. 2013CBA01602 ArticleID:ADMA201303115 ark:/67375/WNG-BSL6KC9N-6 Natural Science Foundation of China - No. 61235007; No. 21174083; No. 21102091; No. 21372155 istex:75D5E507FC60F8B7D6D86D465A60A2387F0CA8CB These two authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 24347321 |
| PQID | 1499126245 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1753512267 proquest_miscellaneous_1513491064 proquest_miscellaneous_1499126245 pubmed_primary_24347321 crossref_primary_10_1002_adma_201303115 crossref_citationtrail_10_1002_adma_201303115 wiley_primary_10_1002_adma_201303115_ADMA201303115 istex_primary_ark_67375_WNG_BSL6KC9N_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv. Mater |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Y. J. Chen, Q. S. Wang, C. L. Zhu, P. Gao, Q. Y. Ouyang, T. S. Wang, Y. Ma, C. W. Sun, J. Mater. Chem. 2012, 22, 5924. M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Chem. Mater. 2008, 20, 634. S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Small 2013, 9, 1173. Y. Huang, X. L. Huang, J. S. Lian, D. Xu, L. M. Wang, X. B. Zhang, J. Mater. Chem. 2012, 22, 2844. X. Mi, G. B. Huang, W. S. Xie, W. Wang, Y. Liu, J. P. Gao, Carbon 2012, 50, 4856. L. B. Zhang, G. Y. Chen, M. N. Hedhili, H. N. Zhang, P. Wang, Nanoscale 2012, 4, 7038. Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chem. Commun. 2010, 46, 4740. D. A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739. G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387. C. Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 2011, 47, 4962. W. F. Chen, S. R. Li, C. H. Chen, L. F. Yan, Adv. Mater. 2011, 23, 5679. Y. X. Xu, Q. O. Wu, Y. Q. Sun, H. Bai, G. Q. Shi, ACS Nano 2010, 4, 7358. L. Guardia, F. Suarez-Garcia, J. I. Paredes, P. Solis-Fernandez, R. Rozada, M. J. Fernandez-Merino, A. Martinez-Alonso, J. M. D. Tascon, Microporous Mesoporous Mat. 2012, 160, 18. X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206. M. A. Worsley, S. O. Kucheyev, H. E. Mason, M. D. Merrill, B. P. Mayer, J. Lewicki, C. A. Valdez, M. E. Suss, M. Stadermann, P. J. Pauzauskie, J. H. Satcher, J. Biener, T. F. Baumann, Chem. Commun. 2012, 48, 8428. Y. Q. Sun, Q. Wu, G. Q. Shi, Phys. Chem. Chem. Phys. 2011, 13, 17249. A. H. Lu, F. Schuth, Adv. Mater. 2006, 18, 1793. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752. P. Yadav, A. Banerjee, S. Unni, J. Jog, S. Kurungot, S. Ogale, ChemSusChem 2012, 5, 2159. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications; Kluwer-Plenum Press: New York, 1999. Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 2013, 135, 4799. S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217. X. H. Rui, J. X. Zhu, D. Sim, C. Xu, Y. Zeng, H. H. Hng, T. M. Lim, Q. Y. Yan, Nanoscale 2011, 3, 4752. M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, Adv. Funct. Mater. 2007, 17, 3505. J. M. Lee, I. Y. Kim, S. Y. Han, T. W. Kim, S. J. Hwang, Chem. Eur. J. 2012, 18, 13800. H. F. Zhang, A. I. Cooper, Soft Matter 2005, 1, 107. S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575. I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater. 2006, 18, 69. H. Bai, C. Li, X. L. Wang, G. Q. Shi, Chem. Commun. 2010, 46, 2376. L. Chen, X. J. Wang, X. T. Zhang, H. M. Zhang, J. Mater. Chem. 2012, 22, 22090. H. Qiu, X. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, ACS Appl. Mater. Inter. 2013, 5, 782. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. Z. M. He, J. Liu, Y. Qiao, C. M. Li, T. T. Y. Tan, Nano Lett. 2012, 12, 4738. J. Chen, K. X. Sheng, P. H. Luo, C. Li, G. Q. Shi, Adv. Mater. 2012, 24, 4569. M. Wang, L. Fu, L. Gan, C. Zhang, M. Ruemmeli, A. Bachmatiuk, K. Huang, Y. Fang, Z. Liu, Sci. Rep. 2013, 3, 1238 W. F. Chen, L. F. Yan, Nanoscale 2011, 3, 3132. H. Jiang, P. S. Lee, C. Li, Energy Environ. Sci. 2013, 6, 41. Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532. Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082. X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. F. R. R. Harry Marsh, Activated Carbon; Elsevier Science, 2005. P. Adelhelm, Y. S. Hu, L. Chuenchom, M. Antonietti, B. M. Smarsly, J. Maier, Adv. Mater. 2007, 19, 4012. C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, D. S. Su, Chem. Commun. 2012, 48, 7149. Z. Xu, Y. Zhang, P. G. Li, C. Gao, ACS Nano 2012, 6, 7103. W. Lv, Y. Tao, W. Ni, Z. Zhou, F. Y. Su, X. C. Chen, F. M. Jin, Q. H. Yang, J. Mater. Chem. 2011, 21, 12352. Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Müllen, Adv. Mater. 2012, 24, 5130. J. Biener, S. Dasgupta, L. H. Shao, D. Wang, M. A. Worsley, A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O. Kucheyev, B. C. Wood, T. M. Willey, A. V. Hamza, J. Weissmuller, H. Hahn, T. F. Baumann, Adv. Mater. 2012, 24, 5083. J. T. Clarke, J. Phys. Chem. 1964, 68, 884. S. B. Yang, L. J. Zhi, K. Tang, X. L. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634. Y. S. Bae, R. Q. Snurr, Angew. Chem. Int. Ed. 2011, 50, 11586. M. Pumera, Chem. Soc. Rev. 2010, 39, 4146. N. G. Sahoo, Y. Pan, L. Li, S. H. Chan, Adv. Mater. 2012, 24, 4203. S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 2013, DOI: 10.1002/adfm.201203286. D. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, Z. Jin, Carbon 2011, 49, 5166. S. Srinivasan, W. H. Shin, J. W. Choi, A. Coskun, J. Mater. Chem. A 2013, 1, 43. Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144. S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, S. O. Kim, Angew. Chem. Int. Ed. 2010, 49, 10084. A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328. Z. Y. Sui, X. T. Zhang, Y. Lei, Y. J. Luo, Carbon 2011, 49, 4314. J. L. Vickery, A. J. Patil, S. Mann, Adv. Mater. 2009, 21, 2180. G. F. Cai, J. P. Tu, J. Zhang, Y. J. Mai, Y. Lu, C. D. Gu, X. L. Wang, Nanoscale 2012, 4, 5724. A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 2005, 17, 1648. M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067. Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. J. Yan, W. Sun, T. Wei, Q. Zhang, Z. J. Fan, F. Wei, J. Mater. Chem. 2012, 22, 11494. J. W. Colsonname, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Adv. Mater. 2012, 24, 4419. L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, E. P. Giannelis, J. Am. Chem. Soc. 2011, 133, 6122. J. H. Liu, G. S. Chen, M. Jiang, Macromolecules 2011, 44, 7682. B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, Y. S. Huh, Nanoscale 2012, 4, 5924. A. I. Cooper, Adv. Mater. 2003, 15, 1049. C. W. Lo, D. F. Zhu, H. R. Jiang, Soft Matter 2011, 7, 5604. Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Adv. Funct. Mater. 2012, 22, 3699. X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou, H. J. Zhang, J. Phys. Chem. C 2011, 115, 21567. D. Fan, Y. Liu, J. He, Y. Zhou, Y. Yang, J. Mater. Chem. 2012, 22, 1396. C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696. M. B. Zheng, D. F. Qiu, B. Zhao, L. Y. Ma, X. R. Wang, Z. X. Lin, L. J. Pan, Y. D. Zheng, Y. Shi, RSC Adv. 2013, 3, 699. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62. C. Dickinson, W. Zhou, R. P. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006, 18, 3088. D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027. Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296. P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 2012, 48, 9888. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073. V. Sridhar, I. K. Oh, J. Colloid Interface Sci. 2010, 348, 384. T. Maiyalagan, X. C. Dong, P. Chen, X. Wang, J. Mater. Chem. 2012, 22, 5286. Z. Tang, S. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. 2010, 49, 4603. Z. M. Wang, W. Wang, N. Coombs, N. Soheilnia, G. A. Ozin, ACS Nano 2010, 4, 7437. S. B. Yang, Y. Sun, L. Chen, Y. Hernandez, X. L. Feng, K. Müllen, Sci. Rep. 2012, 2. 427 M. C. Gutiérrez, M. J. Hortigüela, J. M. Amarilla, R. Jiménez, M. L. Ferrer, F. del Monte, J. Phys. Chem. C 2007, 111, 5557. L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241. M. E. Davis, Nature 2002, 417, 813. L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 2011, 21, 10399. C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 2011, 23, 599. Y. Shao, H. Wang, Q. Zhang, Y. Li, J. Mater. Chem. C 2013, 1, 1245. L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang, X. Feng, ACS Appl. Mater. Inter. 2013. Y. Q. Sun, C. Li, G. Q. Shi, J. Mater. Chem. 2012, 22, 12810. L. Zhang, G. Q. Shi, J. Phys. Chem. C 2011, 115, 17206. M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132. S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795. S. Z. Zu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651. K. W. Chen, L. B. Chen, Y. Q. Chen, H. Bai, L. Li, J. Mater. Chem. 2012, 22, 20968. Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1524. Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed. 2012, 51, 12124. J. Liu, Z. Wang, Y. Zhao, H. H. Cheng, C. A. Hu, L. Jiang, L. T. Qu, Nanoscale 2012, 4, 7563. B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020. N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664. X. Y. Xiao, T. E. Beechem, M. T. Brumbach, T. N. Lambert, D. J. Davis, J. R. Michael, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, R. Polsky, ACS Nano 2012, 6, 3573. L. L. Zhang, X. Zhao, M. D. Stoller, Y. W. Zhu, H. X. Ji, S. Murali, Y. P. Wu, S. Perales, B. Clevenger, R. S. Ruoff, Nano Lett. 2012, 12, 1806. J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 6124. X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao, Chem. Eur. J. 2011, 17, 10898. C. G. Hu, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, L. T. Qu, Chem. Commun. 2012, 48, 11865. Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo, L 2011; 115 1968; 26 2013; 3 2013; 25 2013; 1 2010; 348 2012; 160 1994; 66 2003; 15 2008; 8 2009; 113 2012; 18 2011; 13 2011; 17 2012; 12 2013; 5 2013; 6 2009; 48 2013; 9 2012; 51 2010; 22 2010; 20 2012; 134 2010; 110 2007; 6 2011; 21 2011; 23 2008; 20 2012; 24 2010; 4 2012; 22 2007; 17 2007; 19 2009; 21 2013; 46 2010; 39 2006; 18 2005 2002; 417 1964; 68 2011; 3 2011; 5 2011; 332 2011; 133 2011; 7 1999 2012; 50 2010; 49 2012; 2 1994; 369 2012; 3 2012; 112 2010; 46 2007; 111 2011; 50 2008; 47 2010; 132 2011; 44 2013; 135 2005; 1 2013 2009; 4 2012; 48 2011; 47 2012; 6 2011; 49 2005; 17 2012; 116 2012; 4 2012; 5 2009; 38 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 Chen L. (e_1_2_7_117_1) 2012; 22 e_1_2_7_26_1 e_1_2_7_49_1 Sun Y. Q. (e_1_2_7_33_1) 2012; 22 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 Xiao L. (e_1_2_7_126_1) 2013 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 Harry Marsh F. R. R. (e_1_2_7_43_1) 2005 e_1_2_7_28_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 Li X. Y. (e_1_2_7_125_1) 2011; 115 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 |
| References_xml | – reference: Y. S. Bae, R. Q. Snurr, Angew. Chem. Int. Ed. 2011, 50, 11586. – reference: R. J. White, V. Budarin, R. Luque, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 3401. – reference: D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027. – reference: Z. Xu, Y. Zhang, P. G. Li, C. Gao, ACS Nano 2012, 6, 7103. – reference: Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Adv. Funct. Mater. 2012, 22, 3699. – reference: V. Sridhar, I. K. Oh, J. Colloid Interface Sci. 2010, 348, 384. – reference: D. A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739. – reference: J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073. – reference: Z. M. He, J. Liu, Y. Qiao, C. M. Li, T. T. Y. Tan, Nano Lett. 2012, 12, 4738. – reference: X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao, Chem. Eur. J. 2011, 17, 10898. – reference: B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, Y. S. Huh, Nanoscale 2012, 4, 5924. – reference: L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 2011, 21, 10399. – reference: Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296. – reference: J. L. Vickery, A. J. Patil, S. Mann, Adv. Mater. 2009, 21, 2180. – reference: X. Mi, G. B. Huang, W. S. Xie, W. Wang, Y. Liu, J. P. Gao, Carbon 2012, 50, 4856. – reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132. – reference: J. W. Colsonname, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228. – reference: J. Biener, S. Dasgupta, L. H. Shao, D. Wang, M. A. Worsley, A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O. Kucheyev, B. C. Wood, T. M. Willey, A. V. Hamza, J. Weissmuller, H. Hahn, T. F. Baumann, Adv. Mater. 2012, 24, 5083. – reference: C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. S. Zhao, Energy Environ. Sci. 2013, 6, 1388. – reference: P. Adelhelm, Y. S. Hu, L. Chuenchom, M. Antonietti, B. M. Smarsly, J. Maier, Adv. Mater. 2007, 19, 4012. – reference: C. G. Hu, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, L. T. Qu, Chem. Commun. 2012, 48, 11865. – reference: S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339. – reference: J. M. Lee, I. Y. Kim, S. Y. Han, T. W. Kim, S. J. Hwang, Chem. Eur. J. 2012, 18, 13800. – reference: S. Z. Zu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651. – reference: Y. Q. Sun, C. Li, G. Q. Shi, J. Mater. Chem. 2012, 22, 12810. – reference: J. Yan, W. Sun, T. Wei, Q. Zhang, Z. J. Fan, F. Wei, J. Mater. Chem. 2012, 22, 11494. – reference: B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications; Kluwer-Plenum Press: New York, 1999. – reference: Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082. – reference: P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 2012, 48, 9888. – reference: W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62. – reference: M. A. Worsley, S. O. Kucheyev, H. E. Mason, M. D. Merrill, B. P. Mayer, J. Lewicki, C. A. Valdez, M. E. Suss, M. Stadermann, P. J. Pauzauskie, J. H. Satcher, J. Biener, T. F. Baumann, Chem. Commun. 2012, 48, 8428. – reference: L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408. – reference: M. Pumera, Chem. Soc. Rev. 2010, 39, 4146. – reference: Y. Huang, X. L. Huang, J. S. Lian, D. Xu, L. M. Wang, X. B. Zhang, J. Mater. Chem. 2012, 22, 2844. – reference: J. Liu, Z. Wang, Y. Zhao, H. H. Cheng, C. A. Hu, L. Jiang, L. T. Qu, Nanoscale 2012, 4, 7563. – reference: H. F. Zhang, A. I. Cooper, Soft Matter 2005, 1, 107. – reference: L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang, X. Feng, ACS Appl. Mater. Inter. 2013. – reference: M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, L. Yuste, F. Rojo, C. Abrusci, F. Catalina, F. del Monte, M. L. Ferrer, Chem. Mater. 2007, 19, 1968. – reference: L. L. Zhang, X. Zhao, M. D. Stoller, Y. W. Zhu, H. X. Ji, S. Murali, Y. P. Wu, S. Perales, B. Clevenger, R. S. Ruoff, Nano Lett. 2012, 12, 1806. – reference: M. E. Davis, Nature 2002, 417, 813. – reference: L. Guardia, F. Suarez-Garcia, J. I. Paredes, P. Solis-Fernandez, R. Rozada, M. J. Fernandez-Merino, A. Martinez-Alonso, J. M. D. Tascon, Microporous Mesoporous Mat. 2012, 160, 18. – reference: M. C. Gutiérrez, M. J. Hortigüela, J. M. Amarilla, R. Jiménez, M. L. Ferrer, F. del Monte, J. Phys. Chem. C 2007, 111, 5557. – reference: H. Qiu, X. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, ACS Appl. Mater. Inter. 2013, 5, 782. – reference: S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 2013, DOI: 10.1002/adfm.201203286. – reference: Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chem. Commun. 2010, 46, 4740. – reference: Z. M. Wang, W. Wang, N. Coombs, N. Soheilnia, G. A. Ozin, ACS Nano 2010, 4, 7437. – reference: Y. C. Yong, X. C. Dong, M. B. Chan-Park, H. Song, P. Chen, ACS Nano 2012, 6, 2394. – reference: M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498. – reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. – reference: S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217. – reference: M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Chem. Mater. 2008, 20, 634. – reference: N. N. Zhang, R. Q. Li, L. Zhang, H. B. Chen, W. C. Wang, Y. Liu, T. Wu, X. D. Wang, W. Wang, Y. Li, Y. Zhao, J. P. Gao, Soft Matter 2011, 7, 7231. – reference: C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696. – reference: K. W. Chen, L. B. Chen, Y. Q. Chen, H. Bai, L. Li, J. Mater. Chem. 2012, 22, 20968. – reference: W. Lv, Y. Tao, W. Ni, Z. Zhou, F. Y. Su, X. C. Chen, F. M. Jin, Q. H. Yang, J. Mater. Chem. 2011, 21, 12352. – reference: L. B. Zhang, G. Y. Chen, M. N. Hedhili, H. N. Zhang, P. Wang, Nanoscale 2012, 4, 7038. – reference: C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, D. S. Su, Chem. Commun. 2012, 48, 7149. – reference: R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 481. – reference: L. Dai, Acc. Chem. Res. 2013, 46, 31. – reference: L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241. – reference: Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Müllen, Adv. Mater. 2012, 24, 5130. – reference: L. Wang, L. Sun, C. G. Tian, T. X. Tan, G. Mu, H. X. Zhang, H. G. Fu, RSC Adv. 2012, 2, 8359. – reference: S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, S. O. Kim, Angew. Chem. Int. Ed. 2010, 49, 10084. – reference: M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067. – reference: I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater. 2006, 18, 69. – reference: G. F. Cai, J. P. Tu, J. Zhang, Y. J. Mai, Y. Lu, C. D. Gu, X. L. Wang, Nanoscale 2012, 4, 5724. – reference: Z. Tang, S. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. 2010, 49, 4603. – reference: Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144. – reference: Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed. 2012, 51, 12124. – reference: Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1524. – reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. – reference: A. H. Lu, F. Schuth, Adv. Mater. 2006, 18, 1793. – reference: H. Jiang, P. S. Lee, C. Li, Energy Environ. Sci. 2013, 6, 41. – reference: Y. Q. Sun, Q. Wu, G. Q. Shi, Phys. Chem. Chem. Phys. 2011, 13, 17249. – reference: Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532. – reference: S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795. – reference: S. Srinivasan, W. H. Shin, J. W. Choi, A. Coskun, J. Mater. Chem. A 2013, 1, 43. – reference: Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906. – reference: H. Bai, C. Li, X. L. Wang, G. Q. Shi, Chem. Commun. 2010, 46, 2376. – reference: Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324. – reference: A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 2005, 17, 1648. – reference: X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206. – reference: Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 2013, 135, 4799. – reference: P. Yadav, A. Banerjee, S. Unni, J. Jog, S. Kurungot, S. Ogale, ChemSusChem 2012, 5, 2159. – reference: H. L. Guo, P. Su, X. Kang, S. K. Ning, J. Mater. Chem. A 2013, 1, 2248. – reference: W. F. Chen, L. F. Yan, Nanoscale 2011, 3, 3132. – reference: C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 2011, 23, 599. – reference: D. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, Z. Jin, Carbon 2011, 49, 5166. – reference: F. R. R. Harry Marsh, Activated Carbon; Elsevier Science, 2005. – reference: C. Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 2011, 47, 4962. – reference: Y. X. Xu, Q. O. Wu, Y. Q. Sun, H. Bai, G. Q. Shi, ACS Nano 2010, 4, 7358. – reference: X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Adv. Mater. 2012, 24, 4419. – reference: Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Chem. Commun. 2012, 48, 10663. – reference: M. B. Zheng, D. F. Qiu, B. Zhao, L. Y. Ma, X. R. Wang, Z. X. Lin, L. J. Pan, Y. D. Zheng, Y. Shi, RSC Adv. 2013, 3, 699. – reference: S. Yin, Y. Zhang, J. Kong, C. Zou, C. M. Li, X. Lu, J. Ma, F. Y. C. Boey, X. Chen, ACS Nano 2011, 5, 3831. – reference: Y. J. Chen, Q. S. Wang, C. L. Zhu, P. Gao, Q. Y. Ouyang, T. S. Wang, Y. Ma, C. W. Sun, J. Mater. Chem. 2012, 22, 5924. – reference: A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328. – reference: Z. Y. Sui, X. T. Zhang, Y. Lei, Y. J. Luo, Carbon 2011, 49, 4314. – reference: J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 6124. – reference: S. B. Yang, L. J. Zhi, K. Tang, X. L. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634. – reference: J. H. Liu, G. S. Chen, M. Jiang, Macromolecules 2011, 44, 7682. – reference: M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, Adv. Funct. Mater. 2007, 17, 3505. – reference: A. I. Cooper, Adv. Mater. 2003, 15, 1049. – reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. – reference: X. H. Rui, J. X. Zhu, D. Sim, C. Xu, Y. Zeng, H. H. Hng, T. M. Lim, Q. Y. Yan, Nanoscale 2011, 3, 4752. – reference: Y. Shao, H. Wang, Q. Zhang, Y. Li, J. Mater. Chem. C 2013, 1, 1245. – reference: X. Y. Xiao, T. E. Beechem, M. T. Brumbach, T. N. Lambert, D. J. Davis, J. R. Michael, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, R. Polsky, ACS Nano 2012, 6, 3573. – reference: C. Dickinson, W. Zhou, R. P. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006, 18, 3088. – reference: D. Fan, Y. Liu, J. He, Y. Zhou, Y. Yang, J. Mater. Chem. 2012, 22, 1396. – reference: J. Liu, H. Cai, X. Yu, K. Zhang, X. Li, J. Li, N. Pan, Q. Shi, Y. Luo, X. Wang, J. Phys. Chem. C 2012, 116, 15741. – reference: C. W. Lo, D. F. Zhu, H. R. Jiang, Soft Matter 2011, 7, 5604. – reference: W. F. Chen, S. R. Li, C. H. Chen, L. F. Yan, Adv. Mater. 2011, 23, 5679. – reference: B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020. – reference: J. Chen, K. X. Sheng, P. H. Luo, C. Li, G. Q. Shi, Adv. Mater. 2012, 24, 4569. – reference: L. Zhang, G. Q. Shi, J. Phys. Chem. C 2011, 115, 17206. – reference: G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387. – reference: M. Wang, L. Fu, L. Gan, C. Zhang, M. Ruemmeli, A. Bachmatiuk, K. Huang, Y. Fang, Z. Liu, Sci. Rep. 2013, 3, 1238 – reference: H. Bai, C. Li, X. Wang, G. Shi, J. Phys. Chem. C 2011, 115, 5545. – reference: T. Maiyalagan, X. C. Dong, P. Chen, X. Wang, J. Mater. Chem. 2012, 22, 5286. – reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752. – reference: N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664. – reference: N. G. Sahoo, Y. Pan, L. Li, S. H. Chan, Adv. Mater. 2012, 24, 4203. – reference: S. B. Yang, Y. Sun, L. Chen, Y. Hernandez, X. L. Feng, K. Müllen, Sci. Rep. 2012, 2. 427 – reference: X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou, H. J. Zhang, J. Phys. Chem. C 2011, 115, 21567. – reference: L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, E. P. Giannelis, J. Am. Chem. Soc. 2011, 133, 6122. – reference: F. Liu, T. S. Seo, Adv. Funct. Mater. 2010, 20, 1930. – reference: J. T. Clarke, J. Phys. Chem. 1964, 68, 884. – reference: L. Chen, X. J. Wang, X. T. Zhang, H. M. Zhang, J. Mater. Chem. 2012, 22, 22090. – reference: S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Small 2013, 9, 1173. – reference: S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575. – volume: 15 start-page: 1049 year: 2003 publication-title: Adv. Mater. – volume: 134 start-page: 19532 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 4569 year: 2012 publication-title: Adv. Mater. – volume: 22 start-page: 11494 year: 2012 publication-title: J. Mater. Chem. – year: 2005 – volume: 135 start-page: 4799 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 9888 year: 2012 publication-title: Chem. Commun. – volume: 17 start-page: 1648 year: 2005 publication-title: Adv. Mater. – volume: 134 start-page: 9082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 41 year: 2013 publication-title: Energy Environ. Sci. – volume: 348 start-page: 384 year: 2010 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 1241 year: 2012 publication-title: Nat. Commun. – volume: 7 start-page: 5604 year: 2011 publication-title: Soft Matter – volume: 8 start-page: 3498 year: 2008 publication-title: Nano Lett. – volume: 20 start-page: 1930 year: 2010 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 7682 year: 2011 publication-title: Macromolecules – volume: 369 start-page: 387 year: 1994 publication-title: Nature – volume: 66 start-page: 1739 year: 1994 publication-title: Pure Appl. Chem. – volume: 2 start-page: 8359 year: 2012 publication-title: RSC Adv. – volume: 7 start-page: 3163 year: 2011 publication-title: Small – volume: 111 start-page: 5557 year: 2007 publication-title: J. Phys. Chem. C – volume: 135 start-page: 1524 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 4146 year: 2010 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 1296 year: 2013 publication-title: Adv. Mater. – volume: 9 start-page: 1173 year: 2013 publication-title: Small – volume: 332 start-page: 228 year: 2011 publication-title: Science – volume: 19 start-page: 4012 year: 2007 publication-title: Adv. Mater. – volume: 18 start-page: 13800 year: 2012 publication-title: Chem. Eur. J. – volume: 21 start-page: 12352 year: 2011 publication-title: J. Mater. Chem. – volume: 22 start-page: 3699 year: 2012 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 11865 year: 2012 publication-title: Chem. Commun. – volume: 21 start-page: 2180 year: 2009 publication-title: Adv. Mater. – volume: 19 start-page: 1968 year: 2007 publication-title: Chem. Mater. – volume: 49 start-page: 5166 year: 2011 publication-title: Carbon – volume: 7 start-page: 7231 year: 2011 publication-title: Soft Matter – volume: 20 start-page: 634 year: 2008 publication-title: Chem. Mater. – volume: 48 start-page: 10663 year: 2012 publication-title: Chem. Commun. – volume: 22 start-page: 2090 year: 2012 publication-title: J. Mater. Chem. – volume: 4 start-page: 7437 year: 2010 publication-title: ACS Nano – year: 2013 publication-title: Adv. Funct. Mater. – volume: 417 start-page: 813 year: 2002 publication-title: Nature – volume: 1 start-page: 1245 year: 2013 publication-title: J. Mater. Chem. C – volume: 132 start-page: 6124 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2073 year: 2006 publication-title: Adv. Mater. – volume: 22 start-page: 5924 year: 2012 publication-title: J. Mater. Chem. – year: 2013 publication-title: ACS Appl. Mater. Inter. – volume: 17 start-page: 10898 year: 2011 publication-title: Chem. Eur. J. – volume: 12 start-page: 1806 year: 2012 publication-title: Nano Lett. – volume: 13 start-page: 17249 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 7358 year: 2010 publication-title: ACS Nano – volume: 6 start-page: 7103 year: 2012 publication-title: ACS Nano – volume: 22 start-page: 5286 year: 2012 publication-title: J. Mater. Chem. – volume: 24 start-page: 4203 year: 2012 publication-title: Adv. Mater. – volume: 49 start-page: 8328 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 112 start-page: 6027 year: 2012 publication-title: Chem. Rev. – volume: 115 start-page: 17206 year: 2011 publication-title: J. Phys. Chem. C – volume: 4 start-page: 7038 year: 2012 publication-title: Nanoscale – volume: 1 start-page: 2248 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 3634 year: 2012 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 3505 year: 2007 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 7149 year: 2012 publication-title: Chem. Commun. – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 21 start-page: 10399 year: 2011 publication-title: J. Mater. Chem. – volume: 4 start-page: 5724 year: 2012 publication-title: Nanoscale – volume: 3 start-page: 4752 year: 2011 publication-title: Nanoscale – volume: 46 start-page: 2376 year: 2010 publication-title: Chem. Commun. – volume: 6 start-page: 3206 year: 2012 publication-title: ACS Nano – volume: 23 start-page: 599 year: 2011 publication-title: Adv. Mater. – volume: 24 start-page: 5083 year: 2012 publication-title: Adv. Mater. – volume: 22 start-page: 2810 year: 2012 publication-title: J. Mater. Chem. – volume: 116 start-page: 15741 year: 2012 publication-title: J. Phys. Chem. C – volume: 1 start-page: 43 year: 2013 publication-title: J. Mater. Chem. A – volume: 115 start-page: 1567 year: 2011 publication-title: J. Phys. Chem. C – volume: 132 start-page: 14067 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 782 year: 2013 publication-title: ACS Appl. Mater. Inter. – volume: 49 start-page: 10084 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 3088 year: 2006 publication-title: Chem. Mater. – volume: 24 start-page: 4144 year: 2012 publication-title: Adv. Mater. – volume: 47 start-page: 4962 year: 2011 publication-title: Chem. Commun. – volume: 21 start-page: 2664 year: 2009 publication-title: Adv. Mater. – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 115 start-page: 5545 year: 2011 publication-title: J. Phys. Chem. C – volume: 113 start-page: 13651 year: 2009 publication-title: J. Phys. Chem. C – volume: 50 start-page: 4856 year: 2012 publication-title: Carbon – volume: 51 start-page: 12124 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 110 start-page: 132 year: 2010 publication-title: Chem. Rev. – volume: 22 start-page: 1396 year: 2012 publication-title: J. Mater. Chem. – volume: 48 start-page: 7752 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 4314 year: 2011 publication-title: Carbon – volume: 3 start-page: 3132 year: 2011 publication-title: Nanoscale – volume: 46 start-page: 31 year: 2013 publication-title: Acc. Chem. Res. – volume: 22 start-page: 2844 year: 2012 publication-title: J. Mater. Chem. – volume: 4 start-page: 4324 year: 2010 publication-title: ACS Nano – volume: 48 start-page: 8428 year: 2012 publication-title: Chem. Commun. – volume: 6 start-page: 1388 year: 2013 publication-title: Energy Environ. Sci. – volume: 6 start-page: 3573 year: 2012 publication-title: ACS Nano – volume: 4 start-page: 7563 year: 2012 publication-title: Nanoscale – volume: 47 start-page: 3696 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 217 year: 2009 publication-title: Nat. Nanotechnol. – volume: 23 start-page: 5679 year: 2011 publication-title: Adv. Mater. – volume: 3 start-page: 1238 year: 2013 publication-title: Sci. Rep. – volume: 6 start-page: 4020 year: 2012 publication-title: ACS Nano – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 4 start-page: 5924 year: 2012 publication-title: Nanoscale – volume: 18 start-page: 1793 year: 2006 publication-title: Adv. Mater. – volume: 1 start-page: 107 year: 2005 publication-title: Soft Matter – volume: 6 start-page: 2394 year: 2012 publication-title: ACS Nano – volume: 46 start-page: 4740 year: 2010 publication-title: Chem. Commun. – volume: 5 start-page: 3831 year: 2011 publication-title: ACS Nano – volume: 22 start-page: 20968 year: 2012 publication-title: J. Mater. Chem. – volume: 5 start-page: 2159 year: 2012 publication-title: ChemSusChem – volume: 38 start-page: 481 year: 2009 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 699 year: 2013 publication-title: RSC Adv. – volume: 68 start-page: 884 year: 1964 publication-title: J. Phys. Chem. – volume: 24 start-page: 4419 year: 2012 publication-title: Adv. Mater. – volume: 12 start-page: 4738 year: 2012 publication-title: Nano Lett. – volume: 18 start-page: 69 year: 2006 publication-title: Adv. Mater. – volume: 49 start-page: 4795 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 62 year: 1968 publication-title: J. Colloid Interface Sci. – volume: 38 start-page: 3401 year: 2009 publication-title: Chem. Soc. Rev. – volume: 160 start-page: 18 year: 2012 publication-title: Microporous Mesoporous Mat. – volume: 23 start-page: 3575 year: 2011 publication-title: Adv. Mater. – volume: 49 start-page: 4603 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 427 year: 2012 publication-title: Sci. Rep. – volume: 3 start-page: 1408 year: 2013 publication-title: Sci. Rep. – volume: 24 start-page: 5130 year: 2012 publication-title: Adv. Mater. – volume: 133 start-page: 6122 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5339 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 11586 year: 2011 publication-title: Angew. Chem. Int. Ed. – year: 1999 – ident: e_1_2_7_32_1 doi: 10.1039/c2ra20845h – ident: e_1_2_7_29_1 doi: 10.1021/ja312221g – ident: e_1_2_7_46_1 doi: 10.1039/c2jm16825a – ident: e_1_2_7_51_1 doi: 10.1021/jp303265d – ident: e_1_2_7_71_1 doi: 10.1002/adma.200803606 – ident: e_1_2_7_24_1 doi: 10.1351/pac199466081739 – volume-title: Activated Carbon year: 2005 ident: e_1_2_7_43_1 – ident: e_1_2_7_120_1 doi: 10.1002/adma.201202289 – volume: 22 start-page: 2090 year: 2012 ident: e_1_2_7_117_1 publication-title: J. Mater. Chem. – ident: e_1_2_7_105_1 doi: 10.1021/jp204036a – ident: e_1_2_7_119_1 doi: 10.1002/adma.201200197 – ident: e_1_2_7_121_1 doi: 10.1021/nn300655c – ident: e_1_2_7_41_1 doi: 10.1039/c001635g – ident: e_1_2_7_27_1 doi: 10.1021/cm060014p – ident: e_1_2_7_106_1 doi: 10.1039/c2nr32699j – ident: e_1_2_7_79_1 doi: 10.1002/adfm.201200403 – ident: e_1_2_7_62_1 doi: 10.1039/c1cc10412h – ident: e_1_2_7_1_1 doi: 10.1038/nature00785 – ident: e_1_2_7_128_1 doi: 10.1021/ja308676h – ident: e_1_2_7_108_1 doi: 10.1002/adma.201201948 – ident: e_1_2_7_65_1 doi: 10.1002/anie.201006240 – ident: e_1_2_7_30_1 doi: 10.1016/j.micromeso.2012.04.038 – ident: e_1_2_7_49_1 doi: 10.1038/srep00427 – ident: e_1_2_7_60_1 doi: 10.1039/C2TA00192F – ident: e_1_2_7_39_1 doi: 10.1002/adma.200501366 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201203286 – ident: e_1_2_7_103_1 doi: 10.1002/adfm.201000287 – ident: e_1_2_7_77_1 doi: 10.1002/chem.201100727 – ident: e_1_2_7_97_1 doi: 10.1039/c1jm11728a – ident: e_1_2_7_98_1 doi: 10.1039/c2jm15865e – ident: e_1_2_7_104_1 doi: 10.1021/nn101187z – ident: e_1_2_7_17_1 doi: 10.1021/j100786a032 – ident: e_1_2_7_14_1 doi: 10.1039/c002690p – ident: e_1_2_7_26_1 doi: 10.1002/anie.201001634 – volume: 115 start-page: 1567 year: 2011 ident: e_1_2_7_125_1 publication-title: J. Phys. Chem. C – ident: e_1_2_7_124_1 doi: 10.1002/adma.200901079 – ident: e_1_2_7_100_1 doi: 10.1039/c1sm00011j – ident: e_1_2_7_47_1 doi: 10.1002/chem.201200551 – ident: e_1_2_7_28_1 doi: 10.1021/nn102618n – ident: e_1_2_7_89_1 doi: 10.1039/c2jm16541d – ident: e_1_2_7_63_1 doi: 10.1016/j.carbon.2011.06.006 – ident: e_1_2_7_130_1 doi: 10.1126/science.1202747 – ident: e_1_2_7_81_1 doi: 10.1021/nn3003345 – ident: e_1_2_7_23_1 doi: 10.1039/c3ee23870a – ident: e_1_2_7_21_1 doi: 10.1002/smll.201203155 – ident: e_1_2_7_7_1 doi: 10.1039/B802654H – ident: e_1_2_7_95_1 doi: 10.1039/c2cc37413g – ident: e_1_2_7_18_1 doi: 10.1021/cr300115g – ident: e_1_2_7_54_1 doi: 10.1039/c000051e – ident: e_1_2_7_115_1 doi: 10.1039/c2nr32157b – ident: e_1_2_7_99_1 doi: 10.1021/ja1072299 – ident: e_1_2_7_93_1 doi: 10.1002/adma.201204196 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201001068 – ident: e_1_2_7_50_1 doi: 10.1039/C2RA22702A – ident: e_1_2_7_44_1 doi: 10.1126/science.1200770 – ident: e_1_2_7_45_1 doi: 10.1039/c1nr10879d – ident: e_1_2_7_118_1 doi: 10.1039/c2jm34816k – ident: e_1_2_7_16_1 doi: 10.1021/nl802558y – ident: e_1_2_7_123_1 doi: 10.1002/adma.200700699 – ident: e_1_2_7_19_1 doi: 10.1002/adma.201104971 – ident: e_1_2_7_92_1 doi: 10.1038/srep01238 – ident: e_1_2_7_48_1 doi: 10.1039/c2jm30221g – ident: e_1_2_7_113_1 doi: 10.1039/c2cc35120j – ident: e_1_2_7_75_1 doi: 10.1038/ncomms2251 – ident: e_1_2_7_90_1 doi: 10.1021/nn204656d – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201200186 – ident: e_1_2_7_56_1 doi: 10.1039/c0jm04043f – ident: e_1_2_7_3_1 doi: 10.1039/b502551f – ident: e_1_2_7_85_1 doi: 10.1016/0021-9797(68)90272-5 – ident: e_1_2_7_58_1 doi: 10.1021/ma201620w – ident: e_1_2_7_114_1 doi: 10.1039/c1nr10355e – ident: e_1_2_7_64_1 doi: 10.1038/369387a0 – ident: e_1_2_7_12_1 doi: 10.1002/anie.200901678 – ident: e_1_2_7_53_1 doi: 10.1021/jp9035887 – ident: e_1_2_7_91_1 doi: 10.1021/am3022366 – ident: e_1_2_7_69_1 doi: 10.1021/cm062882s – ident: e_1_2_7_37_1 doi: 10.1002/anie.201100170 – ident: e_1_2_7_82_1 doi: 10.1039/c2nr31438j – ident: e_1_2_7_42_1 doi: 10.1002/adma.200401643 – ident: e_1_2_7_116_1 doi: 10.1002/adma.201102838 – ident: e_1_2_7_107_1 doi: 10.1039/c2cc33979j – ident: e_1_2_7_94_1 doi: 10.1002/anie.201000270 – ident: e_1_2_7_11_1 doi: 10.1038/nmat1849 – ident: e_1_2_7_4_1 doi: 10.1002/adma.200501576 – ident: e_1_2_7_55_1 doi: 10.1016/j.jcis.2010.04.054 – ident: e_1_2_7_13_1 doi: 10.1021/cr900070d – ident: e_1_2_7_25_1 doi: 10.1002/anie.200702046 – ident: e_1_2_7_109_1 doi: 10.1021/nl203903z – ident: e_1_2_7_5_1 doi: 10.1002/adma.200600148 – ident: e_1_2_7_9_1 doi: 10.1002/anie.201101891 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201101599 – ident: e_1_2_7_76_1 doi: 10.1021/nn3021772 – ident: e_1_2_7_57_1 doi: 10.1021/jp1120299 – ident: e_1_2_7_86_1 doi: 10.1002/adma.201201680 – volume: 22 start-page: 2810 year: 2012 ident: e_1_2_7_33_1 publication-title: J. Mater. Chem. – ident: e_1_2_7_52_1 doi: 10.1039/c2cc36234a – ident: e_1_2_7_111_1 doi: 10.1038/srep01408 – ident: e_1_2_7_59_1 doi: 10.1016/j.carbon.2011.07.032 – ident: e_1_2_7_66_1 doi: 10.1021/nn2001728 – ident: e_1_2_7_83_1 doi: 10.1039/c2cc32189k – ident: e_1_2_7_40_1 doi: 10.1021/ja100102y – ident: e_1_2_7_34_1 doi: 10.1021/ja310849c – ident: e_1_2_7_74_1 doi: 10.1016/j.carbon.2012.06.013 – ident: e_1_2_7_80_1 doi: 10.1039/c2nr31397a – ident: e_1_2_7_35_1 doi: 10.1038/nnano.2009.58 – ident: e_1_2_7_68_1 doi: 10.1021/jp0714365 – ident: e_1_2_7_22_1 doi: 10.1039/C2EE23284G – ident: e_1_2_7_70_1 doi: 10.1021/cm702028z – ident: e_1_2_7_112_1 doi: 10.1039/c1cp22409c – ident: e_1_2_7_88_1 doi: 10.1021/nn300097q – ident: e_1_2_7_61_1 doi: 10.1021/nn1027104 – year: 2013 ident: e_1_2_7_126_1 publication-title: ACS Appl. Mater. Inter. – ident: e_1_2_7_129_1 doi: 10.1002/anie.201207277 – ident: e_1_2_7_6_1 doi: 10.1039/b822668g – ident: e_1_2_7_20_1 doi: 10.1021/ar300122m – ident: e_1_2_7_96_1 doi: 10.1021/ja3030565 – ident: e_1_2_7_84_1 doi: 10.1039/C1JM13947A – ident: e_1_2_7_72_1 doi: 10.1021/nl302175j – ident: e_1_2_7_8_1 doi: 10.1002/anie.201000167 – ident: e_1_2_7_102_1 doi: 10.1039/C2TC00235C – ident: e_1_2_7_127_1 doi: 10.1007/978-1-4757-3058-6 – ident: e_1_2_7_2_1 doi: 10.1002/adma.200300380 – ident: e_1_2_7_78_1 doi: 10.1002/adma.201201978 – ident: e_1_2_7_73_1 doi: 10.1021/ja200244s – ident: e_1_2_7_110_1 doi: 10.1039/C2TA00887D – ident: e_1_2_7_67_1 doi: 10.1002/adfm.200700093 – ident: e_1_2_7_101_1 doi: 10.1039/c1sm05498h – ident: e_1_2_7_122_1 doi: 10.1002/cssc.201200421 – ident: e_1_2_7_87_1 doi: 10.1002/smll.201100990 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201001410 |
| SSID | ssj0009606 |
| Score | 2.6256416 |
| Snippet | Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas,... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 849 |
| SubjectTerms | Capacitors Conversion Devices Energy storage energy storage and conversion Fuel cells Graphene Lithium batteries Porous materials self-assembly Supercapacitors template |
| Title | Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices |
| URI | https://api.istex.fr/ark:/67375/WNG-BSL6KC9N-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201303115 https://www.ncbi.nlm.nih.gov/pubmed/24347321 https://www.proquest.com/docview/1499126245 https://www.proquest.com/docview/1513491064 https://www.proquest.com/docview/1753512267 |
| Volume | 26 |
| WOSCitedRecordID | wos000331910200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-054M--P2xWksE0aeld0k2H4_nfVSwPYq1eA9CSDZZkJY9ubuKf76T7N62B7aCvm1gdslOZiYzycxvAN6qKvhKlC53nvqcx5tCrYPAmEdUuKX4khYuNZuQs5maz_XxlSr-Bh-iO3CLmpHsdVRw61b7l6Ch1ifcoGiDB7HKvBcrqzD86o0_T08PL4F3ReqvGe_7ci242gA39un-9he2NqZe5PGvP3md205s2oWmD_5__g_hfuuBkmEjMo_gVqgfw70ruIRP4NvxYrm4WJGDiGaNxpAc2XUjqQR9XDJs8wbIpOmhU7agA2SSCgnJCcbxaKaIrT0Zxaz2dCRHxiFZpadwOp18GX3M2zYMeVmgu5cHyaTGwMdS3MhKxpgvVeWZREugnLLassAcHwTkdOCV6uuKur5TUganQsU8ewY79aIOL4BYVXhrMSRjynJbaetxrIJSmqLf4lgG-WYNTNlilMdWGeemQVemJnLNdFzL4H1H_6NB57iW8l1a0o7MLs9iTpsszNfZgflwcig-jfTMiAzebNbcoKbF6xNbB-Q5BknoS1NBeXEDTRHhHjHM5jfQYISIbhYVMoPnjVB1s6KcccnoIAOaZOcvf2WG46NhN3r5Ly-9grv4zJtE9F3YWS8vwmu4U_5cf18t9-C2nKu9Vqd-AzDUHs0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CLRLsgfsgXI2E4Claazu-PJZeNrQ2mtgm9oBkObEjoaEUdR3i53PspBmVYEiIR0cnUXx8rvbxdwDeqMq7SpRFWjjqUh5OCrX2AnMeUaFLcSXNithsQua5OjvTR201YbgL0-BDdBtuQTOivQ4KHjak965QQ62LwEHBCA_DNfM-F0yqHvQnH2en8yvkXREbbIYDv1QLrjbIjQO6t_2FLc_UD0z-8buwczuKjW5odvc_TOAe3GljUDJqhOY-3PD1A9j5BZnwIXw-Wq6WlxdkP-BZozkkC7tuZJVglEtGbeUAmTZddMoWdoBM41VCcoyZPBoqYmtHxqGuPW7KkYmPdukRnM6mJ-ODtG3EkJYZBnypl0xqTH0sRVdWMsZcqSrHJNoCVSirLfOs4EOPrPa8UgNd0WJQKCl9oXzFHNuFXr2s_RMgVmXOWkzKmLLcVto6HCuvlKYYuRQsgXSzCKZsUcpDs4yvpsFXpiZwzXRcS-BdR_-twef4I-XbuKYdmV2dh6o2mZlP-b55fzwXh2OdG5HA682iG9S1cIBia488xzQJo2kqKM-uockC4CMm2vwaGswRMdCiQibwuJGq7q8oZ1wyOkyARuH5y6zMaLIYdaOn__LSK7h1cLKYm_mH_PAZ3MbnvClLfw699erSv4Cb5ff1l4vVy1a1fgKffiHV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFiF4YHwTNsBICJ6itbbj2I9dPwZaF1WMiT0gWXbsSAiUTl2H-PM5O2lGJRgS4tHRJYrP92mffwfwWlbeVaK0qXXUpTycFCrlBeY8okKX4kqa2dhsIi8KeXamFm01YbgL0-BDdBtuQTOivQ4K7s9dtX-FGmpcBA4KRngYrpn3eaYy3oP-5MPsdH6FvCtig81w4JcqweUGuXFA97e_sOWZ-oHJP34Xdm5HsdENzXb-wwTuwd02BiWjRmjuww1fP4A7vyATPoTPi-VqeXlBDgOeNZpDcmzWjawSjHLJqK0cINOmi07Zwg6QabxKSE4wk0dDRUztyDjUtcdNOTLx0S49gtPZ9OP4Xdo2YkjLDAO-1OcsV5j6GIqurGSMuVJWjuVoC6SVRhnmmeVDj6z2vJIDVVE7sDLPvZW-Yo49hl69rP1TIEZmzhhMypg03FTKOBxLL6WiGLlYlkC6WQRdtijloVnGN93gK1MduKY7riXwtqM_b_A5_kj5Jq5pR2ZWX0NVW57pT8WhPjiZi6OxKrRI4NVm0TXqWjhAMbVHnmOahNE0FZRn19BkAfARE21-DQ3miBhoUZEn8KSRqu6vKGc8Z3SYAI3C85dZ6dHkeNSNnv3LSy_h1mIy0_P3xdEu3MbHvKlK34PeenXpn8PN8vv6y8XqRatZPwH3MSFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+graphene+materials+for+advanced+electrochemical+energy+storage+and+conversion+devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Sheng&rft.au=Wu%2C+Dongqing&rft.au=Li%2C+Shuang&rft.au=Zhang%2C+Fan&rft.date=2014-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=26&rft.issue=6&rft.spage=849&rft_id=info:doi/10.1002%2Fadma.201303115&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |