Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices

Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 26; H. 6; S. 849 - 864
Hauptverfasser: Han, Sheng, Wu, Dongqing, Li, Shuang, Zhang, Fan, Feng, Xinliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Blackwell Publishing Ltd 01.02.2014
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed. This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed.
AbstractList Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed.
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed. This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed.
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high‐performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices are also discussed. This Progress Report summarizes the typical fabrication methods for porous graphene materials with micro‐, meso‐, and macro‐porous structures. The structure–property relationships of these materials and their application in advanced electrochemical devices, such as lithium ion batteries, supercapacitors, and fuel cells are also discussed.
Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed.Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed.
Author Wu, Dongqing
Han, Sheng
Feng, Xinliang
Zhang, Fan
Li, Shuang
Author_xml – sequence: 1
  givenname: Sheng
  surname: Han
  fullname: Han, Sheng
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China
– sequence: 2
  givenname: Dongqing
  surname: Wu
  fullname: Wu, Dongqing
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China
– sequence: 3
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China
– sequence: 4
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  email: fan-zhang@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China
– sequence: 5
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
  email: fan-zhang@sjtu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24347321$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEURS1URNPCliXyks0Ef3u8DGlIEWlBKogNkuXxvGkNM-NgTwL5950qJUJIKCtvznnv-d4zdNLHHhB6ScmUEsLeuLpzU0YoJ5xS-QRNqGS0EMTIEzQhhsvCKFGeorOcvxNCjCLqGTplggvNGZ2gb59iipuMl8mt76AHfOUGSMG1GTcx4Vm9db2HGi9a8EOK_g664F2LFz2k2x2-GWJyt4BdX-N57LeQcog9voBt8JCfo6fNOAlePL7n6Mu7xef5ZbH6uHw_n60KL6WSBWiuTamYY0JTzzmvfdnUXDMmy6p0xnHglaAwHg-iKYlpWEWqUmuoSmh4zc_R6_3cdYo_N5AH24XsoW1dD-PnLNWSS8qY0sdRSbkwlChxHBXGUKaYkCP66hHdVB3Udp1C59LO_sl5BKZ7wKeYc4LmgFBiH4q0D0XaQ5GjIP4RfBjcMIY7JBfa_2tmr_0KLeyOLLGzi6vZ326xd0Me4PfBdemHHYPT0n69Xtq3Nyv1YW6ureL3GIK_xQ
CitedBy_id crossref_primary_10_1016_j_microc_2021_106710
crossref_primary_10_1016_j_seppur_2024_128708
crossref_primary_10_1016_j_jelechem_2016_05_036
crossref_primary_10_1016_j_ijhydene_2024_05_030
crossref_primary_10_1016_j_jallcom_2019_01_295
crossref_primary_10_1016_j_cej_2025_159671
crossref_primary_10_1016_j_diamond_2021_108816
crossref_primary_10_1039_C9NR07255A
crossref_primary_10_1002_adma_201701677
crossref_primary_10_1002_adma_201503390
crossref_primary_10_1016_j_jelechem_2020_114703
crossref_primary_10_1016_j_cej_2015_01_072
crossref_primary_10_1002_admi_201500842
crossref_primary_10_1016_j_electacta_2014_12_169
crossref_primary_10_1016_j_ijhydene_2022_09_065
crossref_primary_10_1016_j_jallcom_2019_02_090
crossref_primary_10_1002_aenm_201402115
crossref_primary_10_1016_j_nantod_2022_101379
crossref_primary_10_1038_srep07171
crossref_primary_10_1080_22243682_2018_1555677
crossref_primary_10_3390_polym10121339
crossref_primary_10_1002_aenm_201803215
crossref_primary_10_1002_adma_201805864
crossref_primary_10_1016_j_carbon_2019_05_017
crossref_primary_10_1016_j_carbon_2024_119547
crossref_primary_10_1007_s41918_019_00033_7
crossref_primary_10_1039_D4NR00588K
crossref_primary_10_1016_j_jallcom_2015_09_185
crossref_primary_10_1016_j_matchemphys_2020_123769
crossref_primary_10_1016_j_diamond_2018_03_033
crossref_primary_10_1007_s10853_021_05899_x
crossref_primary_10_1002_adma_201805658
crossref_primary_10_1016_j_carbon_2016_02_086
crossref_primary_10_1155_2018_6026437
crossref_primary_10_1002_celc_201700801
crossref_primary_10_1016_j_apsusc_2017_09_145
crossref_primary_10_1039_D5NJ00891C
crossref_primary_10_1002_ppsc_201600262
crossref_primary_10_1051_mfreview_2023011
crossref_primary_10_1016_j_rser_2023_114030
crossref_primary_10_1002_cctc_201403026
crossref_primary_10_1002_smll_201600282
crossref_primary_10_1016_j_micromeso_2017_10_026
crossref_primary_10_1016_j_apsusc_2017_10_231
crossref_primary_10_1016_j_jpowsour_2024_234988
crossref_primary_10_1016_j_ceramint_2021_05_048
crossref_primary_10_1016_j_est_2020_101575
crossref_primary_10_1002_smll_201800752
crossref_primary_10_1007_s10118_020_2411_0
crossref_primary_10_1016_j_commatsci_2017_04_024
crossref_primary_10_1016_j_ces_2018_04_004
crossref_primary_10_1016_j_est_2022_105666
crossref_primary_10_1007_s42452_020_03401_x
crossref_primary_10_3390_gels8100622
crossref_primary_10_1016_j_carbon_2019_07_040
crossref_primary_10_1016_j_molliq_2024_124523
crossref_primary_10_1016_j_sna_2016_04_061
crossref_primary_10_1002_adom_201800606
crossref_primary_10_3390_ma17246195
crossref_primary_10_1063_5_0128899
crossref_primary_10_1002_celc_201600059
crossref_primary_10_1016_j_jece_2024_114708
crossref_primary_10_1093_nsr_nwz140
crossref_primary_10_1002_admt_201700223
crossref_primary_10_1002_aenm_201502159
crossref_primary_10_3390_nano9010101
crossref_primary_10_1007_s12274_020_3030_3
crossref_primary_10_1016_j_electacta_2017_02_083
crossref_primary_10_1088_2632_2153_ad0937
crossref_primary_10_1002_adfm_201602459
crossref_primary_10_1016_j_bioelechem_2020_107461
crossref_primary_10_1007_s12649_025_03121_6
crossref_primary_10_1016_j_nanoen_2014_10_005
crossref_primary_10_1016_j_carbon_2022_06_010
crossref_primary_10_1002_adma_202302199
crossref_primary_10_1002_adfm_202103632
crossref_primary_10_1016_j_apsusc_2020_146728
crossref_primary_10_1016_j_matdes_2023_112529
crossref_primary_10_1016_j_mtchem_2024_102200
crossref_primary_10_1016_j_jsamd_2025_100937
crossref_primary_10_1007_s11664_025_12294_8
crossref_primary_10_3390_s22228661
crossref_primary_10_1002_admi_202100783
crossref_primary_10_1088_1361_6528_ab432d
crossref_primary_10_1016_j_carbon_2016_10_085
crossref_primary_10_1016_j_jcis_2017_10_022
crossref_primary_10_1007_s11664_025_11825_7
crossref_primary_10_1002_adfm_201909265
crossref_primary_10_1002_aenm_202000099
crossref_primary_10_1016_j_apmt_2019_100507
crossref_primary_10_1002_cphc_202400601
crossref_primary_10_1016_j_jcis_2025_138025
crossref_primary_10_1002_adfm_201403273
crossref_primary_10_1016_j_ceramint_2017_11_181
crossref_primary_10_1002_adfm_201805026
crossref_primary_10_1002_adfm_201501733
crossref_primary_10_1002_adma_201405904
crossref_primary_10_1016_j_jpowsour_2015_06_062
crossref_primary_10_1016_j_snb_2015_11_091
crossref_primary_10_1002_adfm_202000842
crossref_primary_10_1002_adfm_201909035
crossref_primary_10_1016_j_rser_2023_113594
crossref_primary_10_1016_j_surfcoat_2016_11_110
crossref_primary_10_1038_s42004_024_01222_2
crossref_primary_10_1016_j_isci_2025_112271
crossref_primary_10_1007_s11814_016_0113_7
crossref_primary_10_1016_j_apenergy_2016_03_066
crossref_primary_10_1007_s12274_017_1731_z
crossref_primary_10_1016_S1872_2067_14_60100_5
crossref_primary_10_1039_C7CS00871F
crossref_primary_10_1016_j_jclepro_2018_11_020
crossref_primary_10_1007_s10800_019_01366_3
crossref_primary_10_1016_j_nantod_2016_07_005
crossref_primary_10_1002_adma_202307209
crossref_primary_10_1002_adma_201600586
crossref_primary_10_1002_smll_202202901
crossref_primary_10_1016_j_electacta_2018_05_017
crossref_primary_10_1016_j_electacta_2018_05_018
crossref_primary_10_1016_j_apcatb_2017_02_011
crossref_primary_10_1016_j_electacta_2015_12_143
crossref_primary_10_1002_adfm_202010867
crossref_primary_10_1016_j_jpowsour_2016_03_089
crossref_primary_10_1002_adfm_202007458
crossref_primary_10_3389_fmats_2025_1586574
crossref_primary_10_1016_j_electacta_2015_09_099
crossref_primary_10_1007_s10854_018_8760_6
crossref_primary_10_1038_srep27081
crossref_primary_10_1002_adma_201800696
crossref_primary_10_1016_j_jallcom_2018_12_006
crossref_primary_10_1016_j_bios_2016_05_002
crossref_primary_10_1063_1_4993585
crossref_primary_10_1155_2019_2710712
crossref_primary_10_1088_2053_1591_3_7_075020
crossref_primary_10_1016_j_jpowsour_2014_10_010
crossref_primary_10_1038_s42004_017_0005_8
crossref_primary_10_1007_s10800_017_1085_y
crossref_primary_10_3390_polym11040726
crossref_primary_10_1016_j_electacta_2018_10_177
crossref_primary_10_1016_j_jpowsour_2016_03_091
crossref_primary_10_1002_cctc_201601607
crossref_primary_10_1007_s10450_019_00067_9
crossref_primary_10_1016_j_sna_2021_113118
crossref_primary_10_1063_5_0203665
crossref_primary_10_1007_s12274_017_1448_z
crossref_primary_10_1002_smll_201803858
crossref_primary_10_1016_j_est_2021_103149
crossref_primary_10_1177_0040517516671120
crossref_primary_10_1002_admi_201801838
crossref_primary_10_1007_s10008_016_3189_4
crossref_primary_10_1039_C9NR01719D
crossref_primary_10_3390_nano15130992
crossref_primary_10_1016_j_elecom_2015_01_014
crossref_primary_10_1038_srep14510
crossref_primary_10_3390_catal7080234
crossref_primary_10_3390_nano11040827
crossref_primary_10_1038_s41598_018_24265_7
crossref_primary_10_1016_j_jechem_2020_05_069
crossref_primary_10_1016_j_est_2019_100960
crossref_primary_10_1002_adfm_202505329
crossref_primary_10_1007_s10854_016_6240_4
crossref_primary_10_1016_j_surfcoat_2020_126075
crossref_primary_10_1039_C9QM00425D
crossref_primary_10_1002_aelm_202300334
crossref_primary_10_1016_j_est_2025_117654
crossref_primary_10_3390_nano12111828
crossref_primary_10_1016_j_tsf_2015_06_060
crossref_primary_10_1007_s10934_017_0504_0
crossref_primary_10_1016_S1872_5805_17_60140_9
crossref_primary_10_1016_j_carbon_2019_04_110
crossref_primary_10_1007_s00604_018_2846_y
crossref_primary_10_1002_ange_201501788
crossref_primary_10_1016_j_carbon_2019_10_106
crossref_primary_10_1039_D2AN01161A
crossref_primary_10_1007_s11581_016_1807_x
crossref_primary_10_1016_j_rser_2016_11_220
crossref_primary_10_1016_j_cej_2023_143436
crossref_primary_10_1016_j_carbon_2015_06_007
crossref_primary_10_1063_1_5016326
crossref_primary_10_1016_j_jcis_2021_08_042
crossref_primary_10_1038_srep43116
crossref_primary_10_1016_j_ijhydene_2017_12_147
crossref_primary_10_1016_j_surfin_2021_101258
crossref_primary_10_1002_slct_202304491
crossref_primary_10_1016_j_nanoen_2019_03_074
crossref_primary_10_1007_s11164_016_2514_y
crossref_primary_10_1016_j_carbon_2014_06_076
crossref_primary_10_1002_aesr_202500067
crossref_primary_10_1016_j_nanoen_2016_11_005
crossref_primary_10_1016_j_cplett_2021_138649
crossref_primary_10_1016_j_carbon_2017_03_089
crossref_primary_10_1039_D0SE01424A
crossref_primary_10_1016_j_mtener_2017_09_015
crossref_primary_10_1016_j_jpowsour_2015_08_043
crossref_primary_10_1016_j_jpowsour_2016_08_127
crossref_primary_10_1016_j_electacta_2020_137414
crossref_primary_10_1002_adma_201503097
crossref_primary_10_1016_j_jallcom_2022_164598
crossref_primary_10_1038_s41598_018_20096_8
crossref_primary_10_1021_acs_langmuir_5c01740
crossref_primary_10_1016_j_electacta_2019_05_139
crossref_primary_10_1016_j_chemosphere_2020_129420
crossref_primary_10_1016_j_jcis_2023_02_127
crossref_primary_10_1016_j_mattod_2015_01_002
crossref_primary_10_1002_aenm_201701203
crossref_primary_10_1002_adma_201602547
crossref_primary_10_1007_s12274_016_1246_z
crossref_primary_10_1063_1_5025128
crossref_primary_10_1002_smll_201702616
crossref_primary_10_1002_aenm_202301737
crossref_primary_10_1016_j_carbon_2015_11_066
crossref_primary_10_1002_aenm_202400499
crossref_primary_10_1039_D3NR02933F
crossref_primary_10_1111_jace_19177
crossref_primary_10_1016_j_compositesb_2019_05_036
crossref_primary_10_3390_nano14090754
crossref_primary_10_1007_s00894_020_04367_8
crossref_primary_10_1016_j_jmapro_2024_04_081
crossref_primary_10_1016_j_micromeso_2015_02_036
crossref_primary_10_1002_adfm_201700762
crossref_primary_10_1016_j_jpowsour_2023_233967
crossref_primary_10_1016_j_jelechem_2019_113617
crossref_primary_10_1016_j_pmatsci_2020_100717
crossref_primary_10_1002_chem_201801912
crossref_primary_10_1016_j_synthmet_2022_117131
crossref_primary_10_1038_nature18284
crossref_primary_10_1002_cplu_201800121
crossref_primary_10_1016_j_diamond_2023_109920
crossref_primary_10_1039_C7CP08471D
crossref_primary_10_1016_j_electacta_2016_03_102
crossref_primary_10_1016_j_est_2025_117868
crossref_primary_10_1016_j_cej_2022_138462
crossref_primary_10_1016_j_cclet_2024_110726
crossref_primary_10_1038_srep19822
crossref_primary_10_1039_D2NR03865J
crossref_primary_10_3389_fchem_2017_00117
crossref_primary_10_1016_j_nanoen_2015_01_007
crossref_primary_10_1038_srep27365
crossref_primary_10_1002_adma_201602210
crossref_primary_10_1016_j_jpowsour_2020_228759
crossref_primary_10_1007_s13762_018_1670_6
crossref_primary_10_1016_j_rser_2025_116001
crossref_primary_10_1016_j_cej_2018_11_171
crossref_primary_10_1002_chem_201704211
crossref_primary_10_1002_ente_202001086
crossref_primary_10_1002_advs_201600382
crossref_primary_10_1002_adma_201505917
crossref_primary_10_1088_1361_6528_aa6107
crossref_primary_10_1016_j_carbon_2015_02_042
crossref_primary_10_1016_j_micromeso_2021_111662
crossref_primary_10_1002_cphc_201500174
crossref_primary_10_3390_gels10090553
crossref_primary_10_1002_adma_201600164
crossref_primary_10_1016_j_carbon_2021_06_004
crossref_primary_10_1080_02726351_2017_1401570
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1016_j_carbon_2019_03_093
crossref_primary_10_1515_ntrev_2025_0189
crossref_primary_10_1016_j_carbon_2017_12_102
crossref_primary_10_1039_D0QM00291G
crossref_primary_10_1016_j_carbon_2015_02_052
crossref_primary_10_1016_j_carbon_2016_12_049
crossref_primary_10_1039_C5QI00187K
crossref_primary_10_1016_j_bios_2016_08_015
crossref_primary_10_1007_s41918_022_00177_z
crossref_primary_10_1039_C5CC08148C
crossref_primary_10_1016_j_electacta_2017_05_042
crossref_primary_10_1088_0957_4484_25_50_504001
crossref_primary_10_1002_jccs_201700458
crossref_primary_10_1016_j_jelechem_2018_12_039
crossref_primary_10_1016_j_electacta_2014_09_059
crossref_primary_10_3390_ma13030594
crossref_primary_10_1016_j_nanoen_2016_02_024
crossref_primary_10_1016_j_partic_2021_02_005
crossref_primary_10_1186_s40580_017_0123_0
crossref_primary_10_1016_j_ccr_2020_213438
crossref_primary_10_1016_j_commatsci_2020_109978
crossref_primary_10_1002_adfm_201401876
crossref_primary_10_1002_aenm_201500771
crossref_primary_10_1016_j_carbon_2025_120431
crossref_primary_10_1016_j_electacta_2020_136502
crossref_primary_10_1038_srep14229
crossref_primary_10_1002_macp_201800536
crossref_primary_10_1016_j_cej_2014_12_086
crossref_primary_10_1007_s11664_021_09079_0
crossref_primary_10_1002_adma_201604219
crossref_primary_10_1016_j_est_2021_102314
crossref_primary_10_1016_j_surfcoat_2016_11_023
crossref_primary_10_1002_adma_201501983
crossref_primary_10_1039_D3NR01647A
crossref_primary_10_1016_j_electacta_2014_09_069
crossref_primary_10_1016_j_electacta_2019_04_192
crossref_primary_10_1002_app_45001
crossref_primary_10_1016_j_carbon_2017_06_097
crossref_primary_10_1002_ente_202100933
crossref_primary_10_1002_cctc_201500198
crossref_primary_10_1002_adma_201400910
crossref_primary_10_1016_j_apsusc_2018_09_185
crossref_primary_10_1246_bcsj_20170043
crossref_primary_10_1016_j_apsusc_2017_07_291
crossref_primary_10_1016_j_jallcom_2019_152421
crossref_primary_10_1016_j_jpowsour_2015_11_017
crossref_primary_10_1016_j_pmatsci_2017_07_001
crossref_primary_10_1016_j_apsusc_2018_07_027
crossref_primary_10_1002_asia_202400611
crossref_primary_10_1016_j_polymer_2022_124888
crossref_primary_10_1039_D0NR09167G
crossref_primary_10_1016_j_memsci_2020_118360
crossref_primary_10_1016_j_carbon_2021_07_080
crossref_primary_10_1016_j_ceramint_2018_08_314
crossref_primary_10_1002_ente_201700154
crossref_primary_10_1002_anie_201710190
crossref_primary_10_1007_s10853_020_04746_9
crossref_primary_10_1016_j_jphotochemrev_2016_06_001
crossref_primary_10_1016_j_jpcs_2017_09_009
crossref_primary_10_1016_j_compositesb_2018_03_004
crossref_primary_10_1002_ente_201600502
crossref_primary_10_1016_j_cclet_2021_11_032
crossref_primary_10_1016_j_matchemphys_2022_127060
crossref_primary_10_1016_j_est_2021_102658
crossref_primary_10_1002_aenm_201702381
crossref_primary_10_1016_j_clay_2023_107202
crossref_primary_10_1002_aenm_201801804
crossref_primary_10_1016_j_seppur_2025_135134
crossref_primary_10_1088_1361_648X_ace578
crossref_primary_10_1002_smll_201403575
crossref_primary_10_1007_s41918_022_00174_2
crossref_primary_10_1149_2162_8777_ad15a7
crossref_primary_10_1002_ange_201710190
crossref_primary_10_1016_j_ijhydene_2016_07_198
crossref_primary_10_1016_j_colsurfa_2016_05_012
crossref_primary_10_1016_j_bios_2015_06_042
crossref_primary_10_1038_srep43413
crossref_primary_10_1002_aenm_202101025
crossref_primary_10_1016_j_compositesb_2018_11_085
crossref_primary_10_1016_j_apsusc_2017_06_279
crossref_primary_10_1016_j_compscitech_2018_01_032
crossref_primary_10_1186_1556_276X_9_672
crossref_primary_10_1016_j_cplett_2019_06_058
crossref_primary_10_1002_adma_202108750
crossref_primary_10_1002_aenm_201902494
crossref_primary_10_1002_sstr_202000118
crossref_primary_10_1002_adfm_201604687
crossref_primary_10_1016_j_carbon_2018_09_013
crossref_primary_10_1134_S102319351903011X
crossref_primary_10_1007_s10853_019_04150_y
crossref_primary_10_1007_s40820_019_0286_9
crossref_primary_10_1002_er_3676
crossref_primary_10_1002_adma_202004654
crossref_primary_10_1002_advs_201700146
crossref_primary_10_1016_j_apsusc_2022_153156
crossref_primary_10_1016_j_colsurfa_2022_130393
crossref_primary_10_3390_nano12010008
crossref_primary_10_1016_j_indcrop_2015_03_004
crossref_primary_10_1016_j_jpowsour_2014_09_017
crossref_primary_10_1016_j_snb_2015_06_035
crossref_primary_10_1016_j_carbon_2022_04_064
crossref_primary_10_1002_adfm_201603230
crossref_primary_10_1016_j_bios_2018_03_060
crossref_primary_10_1016_j_diamond_2021_108671
crossref_primary_10_1002_slct_201600461
crossref_primary_10_1007_s12613_020_2088_y
crossref_primary_10_1016_j_jpowsour_2022_232509
crossref_primary_10_1002_chem_201700809
crossref_primary_10_1016_j_jallcom_2021_162640
crossref_primary_10_1016_j_matchemphys_2024_130229
crossref_primary_10_1016_j_electacta_2017_08_158
crossref_primary_10_1039_D0MH00815J
crossref_primary_10_1038_srep07557
crossref_primary_10_1140_epjp_i2019_12612_4
crossref_primary_10_1002_smll_201903780
crossref_primary_10_1002_chem_202005020
crossref_primary_10_1016_j_cej_2024_158564
crossref_primary_10_1002_celc_201402315
crossref_primary_10_1016_j_nanoen_2015_06_019
crossref_primary_10_1088_1361_6528_aa7044
crossref_primary_10_1016_j_joule_2017_10_005
crossref_primary_10_1016_j_electacta_2018_09_001
crossref_primary_10_1016_j_mseb_2021_115139
crossref_primary_10_1016_j_carbon_2017_08_076
crossref_primary_10_1080_00914037_2015_1038814
crossref_primary_10_1016_j_electacta_2016_10_019
crossref_primary_10_1016_j_nanoen_2015_07_026
crossref_primary_10_1016_j_electacta_2017_09_083
crossref_primary_10_1016_j_matdes_2023_112043
crossref_primary_10_1016_j_electacta_2016_06_038
crossref_primary_10_1039_C7CC03060F
crossref_primary_10_1557_jmr_2018_424
crossref_primary_10_1002_advs_202001335
crossref_primary_10_1016_j_jechem_2017_10_026
crossref_primary_10_1016_j_cclet_2018_10_040
crossref_primary_10_1039_C4CS00316K
crossref_primary_10_1016_j_jcis_2016_06_035
crossref_primary_10_1088_2053_1583_aaf20a
crossref_primary_10_1002_batt_201800067
crossref_primary_10_1002_aenm_201700826
crossref_primary_10_1002_smll_202400650
crossref_primary_10_1088_0957_4484_27_36_365401
crossref_primary_10_1002_adfm_201500321
crossref_primary_10_1016_j_electacta_2016_10_020
crossref_primary_10_1088_1361_6528_aaafc5
crossref_primary_10_1016_j_carbon_2016_10_056
crossref_primary_10_3389_fchem_2020_00043
crossref_primary_10_5012_bkcs_2014_35_8_2541
crossref_primary_10_1039_C9RA01255A
crossref_primary_10_1016_j_bios_2018_06_064
crossref_primary_10_1016_j_ccst_2023_100144
crossref_primary_10_1016_j_cej_2018_08_016
crossref_primary_10_1016_j_memsci_2018_07_035
crossref_primary_10_1016_j_apsusc_2023_159185
crossref_primary_10_1016_j_ijhydene_2022_07_244
crossref_primary_10_1007_s40145_021_0562_2
crossref_primary_10_1116_1_5035333
crossref_primary_10_1016_j_carbon_2017_05_031
crossref_primary_10_1016_j_jpowsour_2022_231588
crossref_primary_10_1126_science_aan8285
crossref_primary_10_1016_j_carbon_2015_03_019
crossref_primary_10_1016_j_snb_2018_02_065
crossref_primary_10_1007_s11426_023_1681_x
crossref_primary_10_1038_s41598_025_10472_6
crossref_primary_10_1016_j_jelechem_2020_114489
crossref_primary_10_1016_j_mtcomm_2020_101755
crossref_primary_10_1016_j_carbon_2016_11_036
crossref_primary_10_1007_s10008_017_3689_x
crossref_primary_10_1002_mame_201600161
crossref_primary_10_1002_tcr_202100067
crossref_primary_10_1039_C9QI01028A
crossref_primary_10_1039_D3QM00566F
crossref_primary_10_1007_s10853_015_9510_2
crossref_primary_10_1039_C6CC07450B
crossref_primary_10_1039_D0BM00841A
crossref_primary_10_1016_j_jpowsour_2019_01_028
crossref_primary_10_1016_j_mattod_2025_05_021
crossref_primary_10_1016_j_electacta_2016_10_008
crossref_primary_10_1016_j_carbon_2019_01_039
crossref_primary_10_1002_smtd_201900163
crossref_primary_10_1016_j_carbon_2015_03_045
crossref_primary_10_1002_anie_201501788
crossref_primary_10_1016_j_carbon_2016_03_002
crossref_primary_10_1016_j_electacta_2015_11_090
crossref_primary_10_1002_adma_201501115
crossref_primary_10_1016_j_pmatsci_2020_100665
crossref_primary_10_1007_s10337_017_3415_y
crossref_primary_10_1016_j_chroma_2016_04_032
crossref_primary_10_1016_j_matt_2019_10_001
crossref_primary_10_1016_j_apsusc_2020_146696
crossref_primary_10_1016_j_cej_2017_07_064
crossref_primary_10_1016_j_surfcoat_2016_10_092
crossref_primary_10_1002_slct_201904375
crossref_primary_10_1016_j_cej_2023_145045
crossref_primary_10_1016_j_electacta_2016_04_105
crossref_primary_10_1002_adts_202300579
crossref_primary_10_1002_smll_202201110
crossref_primary_10_1016_j_energy_2024_131275
crossref_primary_10_1002_advs_201900119
crossref_primary_10_1016_j_jpowsour_2017_08_092
crossref_primary_10_1063_1_4943639
crossref_primary_10_1002_advs_202304497
crossref_primary_10_1016_j_nanoen_2020_104762
crossref_primary_10_1016_j_flatc_2021_100224
crossref_primary_10_1016_j_electacta_2021_138255
crossref_primary_10_1016_j_jcis_2016_12_064
crossref_primary_10_1016_j_apt_2021_10_013
crossref_primary_10_1016_j_cej_2023_146361
crossref_primary_10_1016_j_nanoms_2021_01_002
crossref_primary_10_20964_2016_12_42
crossref_primary_10_1016_j_electacta_2022_141719
crossref_primary_10_1007_s10854_018_9993_0
crossref_primary_10_1016_j_jpowsour_2019_227422
Cites_doi 10.1039/c2ra20845h
10.1021/ja312221g
10.1039/c2jm16825a
10.1021/jp303265d
10.1002/adma.200803606
10.1351/pac199466081739
10.1002/adma.201202289
10.1021/jp204036a
10.1002/adma.201200197
10.1021/nn300655c
10.1039/c001635g
10.1021/cm060014p
10.1039/c2nr32699j
10.1002/adfm.201200403
10.1039/c1cc10412h
10.1038/nature00785
10.1021/ja308676h
10.1002/adma.201201948
10.1002/anie.201006240
10.1016/j.micromeso.2012.04.038
10.1038/srep00427
10.1039/C2TA00192F
10.1002/adma.200501366
10.1002/adfm.201203286
10.1002/adfm.201000287
10.1002/chem.201100727
10.1039/c1jm11728a
10.1039/c2jm15865e
10.1021/nn101187z
10.1021/j100786a032
10.1039/c002690p
10.1002/anie.201001634
10.1002/adma.200901079
10.1039/c1sm00011j
10.1002/chem.201200551
10.1021/nn102618n
10.1039/c2jm16541d
10.1016/j.carbon.2011.06.006
10.1126/science.1202747
10.1021/nn3003345
10.1039/c3ee23870a
10.1002/smll.201203155
10.1039/B802654H
10.1039/c2cc37413g
10.1021/cr300115g
10.1039/c000051e
10.1039/c2nr32157b
10.1021/ja1072299
10.1002/adma.201204196
10.1002/adma.201001068
10.1039/C2RA22702A
10.1126/science.1200770
10.1039/c1nr10879d
10.1039/c2jm34816k
10.1021/nl802558y
10.1002/adma.200700699
10.1002/adma.201104971
10.1038/srep01238
10.1039/c2jm30221g
10.1039/c2cc35120j
10.1038/ncomms2251
10.1021/nn204656d
10.1002/adfm.201200186
10.1039/c0jm04043f
10.1039/b502551f
10.1016/0021-9797(68)90272-5
10.1021/ma201620w
10.1039/c1nr10355e
10.1038/369387a0
10.1002/anie.200901678
10.1021/jp9035887
10.1021/am3022366
10.1021/cm062882s
10.1002/anie.201100170
10.1039/c2nr31438j
10.1002/adma.200401643
10.1002/adma.201102838
10.1039/c2cc33979j
10.1002/anie.201000270
10.1038/nmat1849
10.1002/adma.200501576
10.1016/j.jcis.2010.04.054
10.1021/cr900070d
10.1002/anie.200702046
10.1021/nl203903z
10.1002/adma.200600148
10.1002/anie.201101891
10.1002/adma.201101599
10.1021/nn3021772
10.1021/jp1120299
10.1002/adma.201201680
10.1039/c2cc36234a
10.1038/srep01408
10.1016/j.carbon.2011.07.032
10.1021/nn2001728
10.1039/c2cc32189k
10.1021/ja100102y
10.1021/ja310849c
10.1016/j.carbon.2012.06.013
10.1039/c2nr31397a
10.1038/nnano.2009.58
10.1021/jp0714365
10.1039/C2EE23284G
10.1021/cm702028z
10.1039/c1cp22409c
10.1021/nn300097q
10.1021/nn1027104
10.1002/anie.201207277
10.1039/b822668g
10.1021/ar300122m
10.1021/ja3030565
10.1039/C1JM13947A
10.1021/nl302175j
10.1002/anie.201000167
10.1039/C2TC00235C
10.1007/978-1-4757-3058-6
10.1002/adma.200300380
10.1002/adma.201201978
10.1021/ja200244s
10.1039/C2TA00887D
10.1002/adfm.200700093
10.1039/c1sm05498h
10.1002/cssc.201200421
10.1002/smll.201100990
10.1002/adma.201001410
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1002/adma.201303115
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
PubMed
Materials Research Database

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 864
ExternalDocumentID 24347321
10_1002_adma_201303115
ADMA201303115
ark_67375_WNG_BSL6KC9N_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: 973 Program of China
  funderid: 2012CB933404; 2013CBA01602
– fundername: Natural Science Foundation of China
  funderid: 61235007; 21174083; 21102091; 21372155
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
RWI
RWM
WRC
7X8
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c5565-e7379862a2471c333dc8fd372258b8a9a3e3b41e960e4f809f2b0b877eb8ef3d3
IEDL.DBID DRFUL
ISICitedReferencesCount 652
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331910200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 13:45:03 EDT 2025
Thu Jul 10 23:12:35 EDT 2025
Sun Nov 09 10:52:35 EST 2025
Wed Feb 19 01:52:18 EST 2025
Tue Nov 18 21:48:59 EST 2025
Sat Nov 29 07:18:53 EST 2025
Wed Aug 20 07:26:29 EDT 2025
Tue Nov 11 03:33:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords template
self-assembly
porous materials
energy storage and conversion
graphene
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5565-e7379862a2471c333dc8fd372258b8a9a3e3b41e960e4f809f2b0b877eb8ef3d3
Notes 973 Program of China - No. 2012CB933404; No. 2013CBA01602
ArticleID:ADMA201303115
ark:/67375/WNG-BSL6KC9N-6
Natural Science Foundation of China - No. 61235007; No. 21174083; No. 21102091; No. 21372155
istex:75D5E507FC60F8B7D6D86D465A60A2387F0CA8CB
These two authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24347321
PQID 1499126245
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1753512267
proquest_miscellaneous_1513491064
proquest_miscellaneous_1499126245
pubmed_primary_24347321
crossref_primary_10_1002_adma_201303115
crossref_citationtrail_10_1002_adma_201303115
wiley_primary_10_1002_adma_201303115_ADMA201303115
istex_primary_ark_67375_WNG_BSL6KC9N_6
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Y. J. Chen, Q. S. Wang, C. L. Zhu, P. Gao, Q. Y. Ouyang, T. S. Wang, Y. Ma, C. W. Sun, J. Mater. Chem. 2012, 22, 5924.
M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Chem. Mater. 2008, 20, 634.
S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Small 2013, 9, 1173.
Y. Huang, X. L. Huang, J. S. Lian, D. Xu, L. M. Wang, X. B. Zhang, J. Mater. Chem. 2012, 22, 2844.
X. Mi, G. B. Huang, W. S. Xie, W. Wang, Y. Liu, J. P. Gao, Carbon 2012, 50, 4856.
L. B. Zhang, G. Y. Chen, M. N. Hedhili, H. N. Zhang, P. Wang, Nanoscale 2012, 4, 7038.
Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chem. Commun. 2010, 46, 4740.
D. A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739.
G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
C. Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 2011, 47, 4962.
W. F. Chen, S. R. Li, C. H. Chen, L. F. Yan, Adv. Mater. 2011, 23, 5679.
Y. X. Xu, Q. O. Wu, Y. Q. Sun, H. Bai, G. Q. Shi, ACS Nano 2010, 4, 7358.
L. Guardia, F. Suarez-Garcia, J. I. Paredes, P. Solis-Fernandez, R. Rozada, M. J. Fernandez-Merino, A. Martinez-Alonso, J. M. D. Tascon, Microporous Mesoporous Mat. 2012, 160, 18.
X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206.
M. A. Worsley, S. O. Kucheyev, H. E. Mason, M. D. Merrill, B. P. Mayer, J. Lewicki, C. A. Valdez, M. E. Suss, M. Stadermann, P. J. Pauzauskie, J. H. Satcher, J. Biener, T. F. Baumann, Chem. Commun. 2012, 48, 8428.
Y. Q. Sun, Q. Wu, G. Q. Shi, Phys. Chem. Chem. Phys. 2011, 13, 17249.
A. H. Lu, F. Schuth, Adv. Mater. 2006, 18, 1793.
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.
P. Yadav, A. Banerjee, S. Unni, J. Jog, S. Kurungot, S. Ogale, ChemSusChem 2012, 5, 2159.
B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications; Kluwer-Plenum Press: New York, 1999.
Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 2013, 135, 4799.
S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.
X. H. Rui, J. X. Zhu, D. Sim, C. Xu, Y. Zeng, H. H. Hng, T. M. Lim, Q. Y. Yan, Nanoscale 2011, 3, 4752.
M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, Adv. Funct. Mater. 2007, 17, 3505.
J. M. Lee, I. Y. Kim, S. Y. Han, T. W. Kim, S. J. Hwang, Chem. Eur. J. 2012, 18, 13800.
H. F. Zhang, A. I. Cooper, Soft Matter 2005, 1, 107.
S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575.
I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater. 2006, 18, 69.
H. Bai, C. Li, X. L. Wang, G. Q. Shi, Chem. Commun. 2010, 46, 2376.
L. Chen, X. J. Wang, X. T. Zhang, H. M. Zhang, J. Mater. Chem. 2012, 22, 22090.
H. Qiu, X. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, ACS Appl. Mater. Inter. 2013, 5, 782.
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
Z. M. He, J. Liu, Y. Qiao, C. M. Li, T. T. Y. Tan, Nano Lett. 2012, 12, 4738.
J. Chen, K. X. Sheng, P. H. Luo, C. Li, G. Q. Shi, Adv. Mater. 2012, 24, 4569.
M. Wang, L. Fu, L. Gan, C. Zhang, M. Ruemmeli, A. Bachmatiuk, K. Huang, Y. Fang, Z. Liu, Sci. Rep. 2013, 3, 1238
W. F. Chen, L. F. Yan, Nanoscale 2011, 3, 3132.
H. Jiang, P. S. Lee, C. Li, Energy Environ. Sci. 2013, 6, 41.
Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532.
Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082.
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
F. R. R. Harry Marsh, Activated Carbon; Elsevier Science, 2005.
P. Adelhelm, Y. S. Hu, L. Chuenchom, M. Antonietti, B. M. Smarsly, J. Maier, Adv. Mater. 2007, 19, 4012.
C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, D. S. Su, Chem. Commun. 2012, 48, 7149.
Z. Xu, Y. Zhang, P. G. Li, C. Gao, ACS Nano 2012, 6, 7103.
W. Lv, Y. Tao, W. Ni, Z. Zhou, F. Y. Su, X. C. Chen, F. M. Jin, Q. H. Yang, J. Mater. Chem. 2011, 21, 12352.
Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Müllen, Adv. Mater. 2012, 24, 5130.
J. Biener, S. Dasgupta, L. H. Shao, D. Wang, M. A. Worsley, A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O. Kucheyev, B. C. Wood, T. M. Willey, A. V. Hamza, J. Weissmuller, H. Hahn, T. F. Baumann, Adv. Mater. 2012, 24, 5083.
J. T. Clarke, J. Phys. Chem. 1964, 68, 884.
S. B. Yang, L. J. Zhi, K. Tang, X. L. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634.
Y. S. Bae, R. Q. Snurr, Angew. Chem. Int. Ed. 2011, 50, 11586.
M. Pumera, Chem. Soc. Rev. 2010, 39, 4146.
N. G. Sahoo, Y. Pan, L. Li, S. H. Chan, Adv. Mater. 2012, 24, 4203.
S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 2013, DOI: 10.1002/adfm.201203286.
D. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, Z. Jin, Carbon 2011, 49, 5166.
S. Srinivasan, W. H. Shin, J. W. Choi, A. Coskun, J. Mater. Chem. A 2013, 1, 43.
Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144.
S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, S. O. Kim, Angew. Chem. Int. Ed. 2010, 49, 10084.
A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328.
Z. Y. Sui, X. T. Zhang, Y. Lei, Y. J. Luo, Carbon 2011, 49, 4314.
J. L. Vickery, A. J. Patil, S. Mann, Adv. Mater. 2009, 21, 2180.
G. F. Cai, J. P. Tu, J. Zhang, Y. J. Mai, Y. Lu, C. D. Gu, X. L. Wang, Nanoscale 2012, 4, 5724.
A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 2005, 17, 1648.
M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067.
Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324.
Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
J. Yan, W. Sun, T. Wei, Q. Zhang, Z. J. Fan, F. Wei, J. Mater. Chem. 2012, 22, 11494.
J. W. Colsonname, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Adv. Mater. 2012, 24, 4419.
L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, E. P. Giannelis, J. Am. Chem. Soc. 2011, 133, 6122.
J. H. Liu, G. S. Chen, M. Jiang, Macromolecules 2011, 44, 7682.
B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, Y. S. Huh, Nanoscale 2012, 4, 5924.
A. I. Cooper, Adv. Mater. 2003, 15, 1049.
C. W. Lo, D. F. Zhu, H. R. Jiang, Soft Matter 2011, 7, 5604.
Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Adv. Funct. Mater. 2012, 22, 3699.
X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou, H. J. Zhang, J. Phys. Chem. C 2011, 115, 21567.
D. Fan, Y. Liu, J. He, Y. Zhou, Y. Yang, J. Mater. Chem. 2012, 22, 1396.
C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696.
M. B. Zheng, D. F. Qiu, B. Zhao, L. Y. Ma, X. R. Wang, Z. X. Lin, L. J. Pan, Y. D. Zheng, Y. Shi, RSC Adv. 2013, 3, 699.
W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
C. Dickinson, W. Zhou, R. P. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006, 18, 3088.
D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027.
Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296.
P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 2012, 48, 9888.
J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
V. Sridhar, I. K. Oh, J. Colloid Interface Sci. 2010, 348, 384.
T. Maiyalagan, X. C. Dong, P. Chen, X. Wang, J. Mater. Chem. 2012, 22, 5286.
Z. Tang, S. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. 2010, 49, 4603.
Z. M. Wang, W. Wang, N. Coombs, N. Soheilnia, G. A. Ozin, ACS Nano 2010, 4, 7437.
S. B. Yang, Y. Sun, L. Chen, Y. Hernandez, X. L. Feng, K. Müllen, Sci. Rep. 2012, 2. 427
M. C. Gutiérrez, M. J. Hortigüela, J. M. Amarilla, R. Jiménez, M. L. Ferrer, F. del Monte, J. Phys. Chem. C 2007, 111, 5557.
L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241.
M. E. Davis, Nature 2002, 417, 813.
L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 2011, 21, 10399.
C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 2011, 23, 599.
Y. Shao, H. Wang, Q. Zhang, Y. Li, J. Mater. Chem. C 2013, 1, 1245.
L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang, X. Feng, ACS Appl. Mater. Inter. 2013.
Y. Q. Sun, C. Li, G. Q. Shi, J. Mater. Chem. 2012, 22, 12810.
L. Zhang, G. Q. Shi, J. Phys. Chem. C 2011, 115, 17206.
M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795.
S. Z. Zu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651.
K. W. Chen, L. B. Chen, Y. Q. Chen, H. Bai, L. Li, J. Mater. Chem. 2012, 22, 20968.
Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1524.
Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed. 2012, 51, 12124.
J. Liu, Z. Wang, Y. Zhao, H. H. Cheng, C. A. Hu, L. Jiang, L. T. Qu, Nanoscale 2012, 4, 7563.
B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020.
N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664.
X. Y. Xiao, T. E. Beechem, M. T. Brumbach, T. N. Lambert, D. J. Davis, J. R. Michael, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, R. Polsky, ACS Nano 2012, 6, 3573.
L. L. Zhang, X. Zhao, M. D. Stoller, Y. W. Zhu, H. X. Ji, S. Murali, Y. P. Wu, S. Perales, B. Clevenger, R. S. Ruoff, Nano Lett. 2012, 12, 1806.
J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 6124.
X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao, Chem. Eur. J. 2011, 17, 10898.
C. G. Hu, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, L. T. Qu, Chem. Commun. 2012, 48, 11865.
Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo, L
2011; 115
1968; 26
2013; 3
2013; 25
2013; 1
2010; 348
2012; 160
1994; 66
2003; 15
2008; 8
2009; 113
2012; 18
2011; 13
2011; 17
2012; 12
2013; 5
2013; 6
2009; 48
2013; 9
2012; 51
2010; 22
2010; 20
2012; 134
2010; 110
2007; 6
2011; 21
2011; 23
2008; 20
2012; 24
2010; 4
2012; 22
2007; 17
2007; 19
2009; 21
2013; 46
2010; 39
2006; 18
2005
2002; 417
1964; 68
2011; 3
2011; 5
2011; 332
2011; 133
2011; 7
1999
2012; 50
2010; 49
2012; 2
1994; 369
2012; 3
2012; 112
2010; 46
2007; 111
2011; 50
2008; 47
2010; 132
2011; 44
2013; 135
2005; 1
2013
2009; 4
2012; 48
2011; 47
2012; 6
2011; 49
2005; 17
2012; 116
2012; 4
2012; 5
2009; 38
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Chen L. (e_1_2_7_117_1) 2012; 22
e_1_2_7_26_1
e_1_2_7_49_1
Sun Y. Q. (e_1_2_7_33_1) 2012; 22
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
Xiao L. (e_1_2_7_126_1) 2013
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
Harry Marsh F. R. R. (e_1_2_7_43_1) 2005
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
Li X. Y. (e_1_2_7_125_1) 2011; 115
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
References_xml – reference: Y. S. Bae, R. Q. Snurr, Angew. Chem. Int. Ed. 2011, 50, 11586.
– reference: R. J. White, V. Budarin, R. Luque, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 3401.
– reference: D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027.
– reference: Z. Xu, Y. Zhang, P. G. Li, C. Gao, ACS Nano 2012, 6, 7103.
– reference: Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, X. B. Zhang, Adv. Funct. Mater. 2012, 22, 3699.
– reference: V. Sridhar, I. K. Oh, J. Colloid Interface Sci. 2010, 348, 384.
– reference: D. A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739.
– reference: J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073.
– reference: Z. M. He, J. Liu, Y. Qiao, C. M. Li, T. T. Y. Tan, Nano Lett. 2012, 12, 4738.
– reference: X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao, Chem. Eur. J. 2011, 17, 10898.
– reference: B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, Y. S. Huh, Nanoscale 2012, 4, 5924.
– reference: L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 2011, 21, 10399.
– reference: Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng, Adv. Mater. 2013, 25, 1296.
– reference: J. L. Vickery, A. J. Patil, S. Mann, Adv. Mater. 2009, 21, 2180.
– reference: X. Mi, G. B. Huang, W. S. Xie, W. Wang, Y. Liu, J. P. Gao, Carbon 2012, 50, 4856.
– reference: M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
– reference: J. W. Colsonname, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science 2011, 332, 228.
– reference: J. Biener, S. Dasgupta, L. H. Shao, D. Wang, M. A. Worsley, A. Wittstock, J. R. I. Lee, M. M. Biener, C. A. Orme, S. O. Kucheyev, B. C. Wood, T. M. Willey, A. V. Hamza, J. Weissmuller, H. Hahn, T. F. Baumann, Adv. Mater. 2012, 24, 5083.
– reference: C. Xu, B. Xu, Y. Gu, Z. Xiong, J. Sun, X. S. Zhao, Energy Environ. Sci. 2013, 6, 1388.
– reference: P. Adelhelm, Y. S. Hu, L. Chuenchom, M. Antonietti, B. M. Smarsly, J. Maier, Adv. Mater. 2007, 19, 4012.
– reference: C. G. Hu, Y. Zhao, H. H. Cheng, Y. Hu, G. Q. Shi, L. M. Dai, L. T. Qu, Chem. Commun. 2012, 48, 11865.
– reference: S. B. Yang, X. L. Feng, X. C. Wang, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 5339.
– reference: J. M. Lee, I. Y. Kim, S. Y. Han, T. W. Kim, S. J. Hwang, Chem. Eur. J. 2012, 18, 13800.
– reference: S. Z. Zu, B. H. Han, J. Phys. Chem. C 2009, 113, 13651.
– reference: Y. Q. Sun, C. Li, G. Q. Shi, J. Mater. Chem. 2012, 22, 12810.
– reference: J. Yan, W. Sun, T. Wei, Q. Zhang, Z. J. Fan, F. Wei, J. Mater. Chem. 2012, 22, 11494.
– reference: B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications; Kluwer-Plenum Press: New York, 1999.
– reference: Z. S. Wu, S. B. Yang, Y. Sun, K. Parvez, X. L. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 9082.
– reference: P. Bhunia, G. Kim, C. Baik, H. Lee, Chem. Commun. 2012, 48, 9888.
– reference: W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62.
– reference: M. A. Worsley, S. O. Kucheyev, H. E. Mason, M. D. Merrill, B. P. Mayer, J. Lewicki, C. A. Valdez, M. E. Suss, M. Stadermann, P. J. Pauzauskie, J. H. Satcher, J. Biener, T. F. Baumann, Chem. Commun. 2012, 48, 8428.
– reference: L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, Y. Chen, Sci. Rep. 2013, 3, 1408.
– reference: M. Pumera, Chem. Soc. Rev. 2010, 39, 4146.
– reference: Y. Huang, X. L. Huang, J. S. Lian, D. Xu, L. M. Wang, X. B. Zhang, J. Mater. Chem. 2012, 22, 2844.
– reference: J. Liu, Z. Wang, Y. Zhao, H. H. Cheng, C. A. Hu, L. Jiang, L. T. Qu, Nanoscale 2012, 4, 7563.
– reference: H. F. Zhang, A. I. Cooper, Soft Matter 2005, 1, 107.
– reference: L. Xiao, D. Wu, S. Han, Y. Huang, S. Li, M. He, F. Zhang, X. Feng, ACS Appl. Mater. Inter. 2013.
– reference: M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, L. Yuste, F. Rojo, C. Abrusci, F. Catalina, F. del Monte, M. L. Ferrer, Chem. Mater. 2007, 19, 1968.
– reference: L. L. Zhang, X. Zhao, M. D. Stoller, Y. W. Zhu, H. X. Ji, S. Murali, Y. P. Wu, S. Perales, B. Clevenger, R. S. Ruoff, Nano Lett. 2012, 12, 1806.
– reference: M. E. Davis, Nature 2002, 417, 813.
– reference: L. Guardia, F. Suarez-Garcia, J. I. Paredes, P. Solis-Fernandez, R. Rozada, M. J. Fernandez-Merino, A. Martinez-Alonso, J. M. D. Tascon, Microporous Mesoporous Mat. 2012, 160, 18.
– reference: M. C. Gutiérrez, M. J. Hortigüela, J. M. Amarilla, R. Jiménez, M. L. Ferrer, F. del Monte, J. Phys. Chem. C 2007, 111, 5557.
– reference: H. Qiu, X. Dong, B. Sana, T. Peng, D. Paramelle, P. Chen, S. Lim, ACS Appl. Mater. Inter. 2013, 5, 782.
– reference: S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 2013, DOI: 10.1002/adfm.201203286.
– reference: Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chem. Commun. 2010, 46, 4740.
– reference: Z. M. Wang, W. Wang, N. Coombs, N. Soheilnia, G. A. Ozin, ACS Nano 2010, 4, 7437.
– reference: Y. C. Yong, X. C. Dong, M. B. Chan-Park, H. Song, P. Chen, ACS Nano 2012, 6, 2394.
– reference: M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 2008, 8, 3498.
– reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
– reference: S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.
– reference: M. C. Gutiérrez, M. L. Ferrer, F. del Monte, Chem. Mater. 2008, 20, 634.
– reference: N. N. Zhang, R. Q. Li, L. Zhang, H. B. Chen, W. C. Wang, Y. Liu, T. Wu, X. D. Wang, W. Wang, Y. Li, Y. Zhao, J. P. Gao, Soft Matter 2011, 7, 7231.
– reference: C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696.
– reference: K. W. Chen, L. B. Chen, Y. Q. Chen, H. Bai, L. Li, J. Mater. Chem. 2012, 22, 20968.
– reference: W. Lv, Y. Tao, W. Ni, Z. Zhou, F. Y. Su, X. C. Chen, F. M. Jin, Q. H. Yang, J. Mater. Chem. 2011, 21, 12352.
– reference: L. B. Zhang, G. Y. Chen, M. N. Hedhili, H. N. Zhang, P. Wang, Nanoscale 2012, 4, 7038.
– reference: C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, D. S. Su, Chem. Commun. 2012, 48, 7149.
– reference: R. J. White, R. Luque, V. L. Budarin, J. H. Clark, D. J. Macquarrie, Chem. Soc. Rev. 2009, 38, 481.
– reference: L. Dai, Acc. Chem. Res. 2013, 46, 31.
– reference: L. Qiu, J. Z. Liu, S. L. Y. Chang, Y. Wu, D. Li, Nat. Commun. 2012, 3, 1241.
– reference: Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Müllen, Adv. Mater. 2012, 24, 5130.
– reference: L. Wang, L. Sun, C. G. Tian, T. X. Tan, G. Mu, H. X. Zhang, H. G. Fu, RSC Adv. 2012, 2, 8359.
– reference: S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, S. O. Kim, Angew. Chem. Int. Ed. 2010, 49, 10084.
– reference: M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher, T. F. Baumann, J. Am. Chem. Soc. 2010, 132, 14067.
– reference: I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, N. Nakashima, Adv. Mater. 2006, 18, 69.
– reference: G. F. Cai, J. P. Tu, J. Zhang, Y. J. Mai, Y. Lu, C. D. Gu, X. L. Wang, Nanoscale 2012, 4, 5724.
– reference: Z. Tang, S. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. 2010, 49, 4603.
– reference: Z. Niu, J. Chen, H. H. Hng, J. Ma, X. Chen, Adv. Mater. 2012, 24, 4144.
– reference: Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Angew. Chem. Int. Ed. 2012, 51, 12124.
– reference: Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2013, 135, 1524.
– reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
– reference: A. H. Lu, F. Schuth, Adv. Mater. 2006, 18, 1793.
– reference: H. Jiang, P. S. Lee, C. Li, Energy Environ. Sci. 2013, 6, 41.
– reference: Y. Q. Sun, Q. Wu, G. Q. Shi, Phys. Chem. Chem. Phys. 2011, 13, 17249.
– reference: Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532.
– reference: S. B. Yang, X. L. Feng, L. Wang, K. Tang, J. Maier, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 4795.
– reference: S. Srinivasan, W. H. Shin, J. W. Choi, A. Coskun, J. Mater. Chem. A 2013, 1, 43.
– reference: Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
– reference: H. Bai, C. Li, X. L. Wang, G. Q. Shi, Chem. Commun. 2010, 46, 2376.
– reference: Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324.
– reference: A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando, Adv. Mater. 2005, 17, 1648.
– reference: X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206.
– reference: Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, J. Am. Chem. Soc. 2013, 135, 4799.
– reference: P. Yadav, A. Banerjee, S. Unni, J. Jog, S. Kurungot, S. Ogale, ChemSusChem 2012, 5, 2159.
– reference: H. L. Guo, P. Su, X. Kang, S. K. Ning, J. Mater. Chem. A 2013, 1, 2248.
– reference: W. F. Chen, L. F. Yan, Nanoscale 2011, 3, 3132.
– reference: C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole, C. Sanchez, Adv. Mater. 2011, 23, 599.
– reference: D. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, Z. Jin, Carbon 2011, 49, 5166.
– reference: F. R. R. Harry Marsh, Activated Carbon; Elsevier Science, 2005.
– reference: C. Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 2011, 47, 4962.
– reference: Y. X. Xu, Q. O. Wu, Y. Q. Sun, H. Bai, G. Q. Shi, ACS Nano 2010, 4, 7358.
– reference: X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, D. Zhao, Adv. Mater. 2012, 24, 4419.
– reference: Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Chem. Commun. 2012, 48, 10663.
– reference: M. B. Zheng, D. F. Qiu, B. Zhao, L. Y. Ma, X. R. Wang, Z. X. Lin, L. J. Pan, Y. D. Zheng, Y. Shi, RSC Adv. 2013, 3, 699.
– reference: S. Yin, Y. Zhang, J. Kong, C. Zou, C. M. Li, X. Lu, J. Ma, F. Y. C. Boey, X. Chen, ACS Nano 2011, 5, 3831.
– reference: Y. J. Chen, Q. S. Wang, C. L. Zhu, P. Gao, Q. Y. Ouyang, T. S. Wang, Y. Ma, C. W. Sun, J. Mater. Chem. 2012, 22, 5924.
– reference: A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328.
– reference: Z. Y. Sui, X. T. Zhang, Y. Lei, Y. J. Luo, Carbon 2011, 49, 4314.
– reference: J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc. 2010, 132, 6124.
– reference: S. B. Yang, L. J. Zhi, K. Tang, X. L. Feng, J. Maier, K. Müllen, Adv. Funct. Mater. 2012, 22, 3634.
– reference: J. H. Liu, G. S. Chen, M. Jiang, Macromolecules 2011, 44, 7682.
– reference: M. C. Gutiérrez, Z. Y. García-Carvajal, M. Jobbágy, F. Rubio, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, Adv. Funct. Mater. 2007, 17, 3505.
– reference: A. I. Cooper, Adv. Mater. 2003, 15, 1049.
– reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
– reference: X. H. Rui, J. X. Zhu, D. Sim, C. Xu, Y. Zeng, H. H. Hng, T. M. Lim, Q. Y. Yan, Nanoscale 2011, 3, 4752.
– reference: Y. Shao, H. Wang, Q. Zhang, Y. Li, J. Mater. Chem. C 2013, 1, 1245.
– reference: X. Y. Xiao, T. E. Beechem, M. T. Brumbach, T. N. Lambert, D. J. Davis, J. R. Michael, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, R. Polsky, ACS Nano 2012, 6, 3573.
– reference: C. Dickinson, W. Zhou, R. P. Hodgkins, Y. Shi, D. Zhao, H. He, Chem. Mater. 2006, 18, 3088.
– reference: D. Fan, Y. Liu, J. He, Y. Zhou, Y. Yang, J. Mater. Chem. 2012, 22, 1396.
– reference: J. Liu, H. Cai, X. Yu, K. Zhang, X. Li, J. Li, N. Pan, Q. Shi, Y. Luo, X. Wang, J. Phys. Chem. C 2012, 116, 15741.
– reference: C. W. Lo, D. F. Zhu, H. R. Jiang, Soft Matter 2011, 7, 5604.
– reference: W. F. Chen, S. R. Li, C. H. Chen, L. F. Yan, Adv. Mater. 2011, 23, 5679.
– reference: B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020.
– reference: J. Chen, K. X. Sheng, P. H. Luo, C. Li, G. Q. Shi, Adv. Mater. 2012, 24, 4569.
– reference: L. Zhang, G. Q. Shi, J. Phys. Chem. C 2011, 115, 17206.
– reference: G. Widawski, M. Rawiso, B. Francois, Nature 1994, 369, 387.
– reference: M. Wang, L. Fu, L. Gan, C. Zhang, M. Ruemmeli, A. Bachmatiuk, K. Huang, Y. Fang, Z. Liu, Sci. Rep. 2013, 3, 1238
– reference: H. Bai, C. Li, X. Wang, G. Shi, J. Phys. Chem. C 2011, 115, 5545.
– reference: T. Maiyalagan, X. C. Dong, P. Chen, X. Wang, J. Mater. Chem. 2012, 22, 5286.
– reference: C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Angew. Chem. Int. Ed. 2009, 48, 7752.
– reference: N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664.
– reference: N. G. Sahoo, Y. Pan, L. Li, S. H. Chan, Adv. Mater. 2012, 24, 4203.
– reference: S. B. Yang, Y. Sun, L. Chen, Y. Hernandez, X. L. Feng, K. Müllen, Sci. Rep. 2012, 2. 427
– reference: X. Y. Li, X. L. Huang, D. P. Liu, X. Wang, S. Y. Song, L. Zhou, H. J. Zhang, J. Phys. Chem. C 2011, 115, 21567.
– reference: L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, E. P. Giannelis, J. Am. Chem. Soc. 2011, 133, 6122.
– reference: F. Liu, T. S. Seo, Adv. Funct. Mater. 2010, 20, 1930.
– reference: J. T. Clarke, J. Phys. Chem. 1964, 68, 884.
– reference: L. Chen, X. J. Wang, X. T. Zhang, H. M. Zhang, J. Mater. Chem. 2012, 22, 22090.
– reference: S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Small 2013, 9, 1173.
– reference: S. B. Yang, X. L. Feng, K. Müllen, Adv. Mater. 2011, 23, 3575.
– volume: 15
  start-page: 1049
  year: 2003
  publication-title: Adv. Mater.
– volume: 134
  start-page: 19532
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 4569
  year: 2012
  publication-title: Adv. Mater.
– volume: 22
  start-page: 11494
  year: 2012
  publication-title: J. Mater. Chem.
– year: 2005
– volume: 135
  start-page: 4799
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 9888
  year: 2012
  publication-title: Chem. Commun.
– volume: 17
  start-page: 1648
  year: 2005
  publication-title: Adv. Mater.
– volume: 134
  start-page: 9082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 41
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 348
  start-page: 384
  year: 2010
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 1241
  year: 2012
  publication-title: Nat. Commun.
– volume: 7
  start-page: 5604
  year: 2011
  publication-title: Soft Matter
– volume: 8
  start-page: 3498
  year: 2008
  publication-title: Nano Lett.
– volume: 20
  start-page: 1930
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 7682
  year: 2011
  publication-title: Macromolecules
– volume: 369
  start-page: 387
  year: 1994
  publication-title: Nature
– volume: 66
  start-page: 1739
  year: 1994
  publication-title: Pure Appl. Chem.
– volume: 2
  start-page: 8359
  year: 2012
  publication-title: RSC Adv.
– volume: 7
  start-page: 3163
  year: 2011
  publication-title: Small
– volume: 111
  start-page: 5557
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 135
  start-page: 1524
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 4146
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 1296
  year: 2013
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1173
  year: 2013
  publication-title: Small
– volume: 332
  start-page: 228
  year: 2011
  publication-title: Science
– volume: 19
  start-page: 4012
  year: 2007
  publication-title: Adv. Mater.
– volume: 18
  start-page: 13800
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 21
  start-page: 12352
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 3699
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 11865
  year: 2012
  publication-title: Chem. Commun.
– volume: 21
  start-page: 2180
  year: 2009
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1968
  year: 2007
  publication-title: Chem. Mater.
– volume: 49
  start-page: 5166
  year: 2011
  publication-title: Carbon
– volume: 7
  start-page: 7231
  year: 2011
  publication-title: Soft Matter
– volume: 20
  start-page: 634
  year: 2008
  publication-title: Chem. Mater.
– volume: 48
  start-page: 10663
  year: 2012
  publication-title: Chem. Commun.
– volume: 22
  start-page: 2090
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 7437
  year: 2010
  publication-title: ACS Nano
– year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 417
  start-page: 813
  year: 2002
  publication-title: Nature
– volume: 1
  start-page: 1245
  year: 2013
  publication-title: J. Mater. Chem. C
– volume: 132
  start-page: 6124
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2073
  year: 2006
  publication-title: Adv. Mater.
– volume: 22
  start-page: 5924
  year: 2012
  publication-title: J. Mater. Chem.
– year: 2013
  publication-title: ACS Appl. Mater. Inter.
– volume: 17
  start-page: 10898
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 1806
  year: 2012
  publication-title: Nano Lett.
– volume: 13
  start-page: 17249
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 7358
  year: 2010
  publication-title: ACS Nano
– volume: 6
  start-page: 7103
  year: 2012
  publication-title: ACS Nano
– volume: 22
  start-page: 5286
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 4203
  year: 2012
  publication-title: Adv. Mater.
– volume: 49
  start-page: 8328
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 6027
  year: 2012
  publication-title: Chem. Rev.
– volume: 115
  start-page: 17206
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 7038
  year: 2012
  publication-title: Nanoscale
– volume: 1
  start-page: 2248
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 3634
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 3505
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 7149
  year: 2012
  publication-title: Chem. Commun.
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 21
  start-page: 10399
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 5724
  year: 2012
  publication-title: Nanoscale
– volume: 3
  start-page: 4752
  year: 2011
  publication-title: Nanoscale
– volume: 46
  start-page: 2376
  year: 2010
  publication-title: Chem. Commun.
– volume: 6
  start-page: 3206
  year: 2012
  publication-title: ACS Nano
– volume: 23
  start-page: 599
  year: 2011
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5083
  year: 2012
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2810
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 116
  start-page: 15741
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 43
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 1567
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 14067
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 782
  year: 2013
  publication-title: ACS Appl. Mater. Inter.
– volume: 49
  start-page: 10084
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 3088
  year: 2006
  publication-title: Chem. Mater.
– volume: 24
  start-page: 4144
  year: 2012
  publication-title: Adv. Mater.
– volume: 47
  start-page: 4962
  year: 2011
  publication-title: Chem. Commun.
– volume: 21
  start-page: 2664
  year: 2009
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 115
  start-page: 5545
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 13651
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 50
  start-page: 4856
  year: 2012
  publication-title: Carbon
– volume: 51
  start-page: 12124
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 110
  start-page: 132
  year: 2010
  publication-title: Chem. Rev.
– volume: 22
  start-page: 1396
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 48
  start-page: 7752
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 4314
  year: 2011
  publication-title: Carbon
– volume: 3
  start-page: 3132
  year: 2011
  publication-title: Nanoscale
– volume: 46
  start-page: 31
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 2844
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 4324
  year: 2010
  publication-title: ACS Nano
– volume: 48
  start-page: 8428
  year: 2012
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1388
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 3573
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 7563
  year: 2012
  publication-title: Nanoscale
– volume: 47
  start-page: 3696
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 217
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 23
  start-page: 5679
  year: 2011
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1238
  year: 2013
  publication-title: Sci. Rep.
– volume: 6
  start-page: 4020
  year: 2012
  publication-title: ACS Nano
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 4
  start-page: 5924
  year: 2012
  publication-title: Nanoscale
– volume: 18
  start-page: 1793
  year: 2006
  publication-title: Adv. Mater.
– volume: 1
  start-page: 107
  year: 2005
  publication-title: Soft Matter
– volume: 6
  start-page: 2394
  year: 2012
  publication-title: ACS Nano
– volume: 46
  start-page: 4740
  year: 2010
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3831
  year: 2011
  publication-title: ACS Nano
– volume: 22
  start-page: 20968
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 2159
  year: 2012
  publication-title: ChemSusChem
– volume: 38
  start-page: 481
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 699
  year: 2013
  publication-title: RSC Adv.
– volume: 68
  start-page: 884
  year: 1964
  publication-title: J. Phys. Chem.
– volume: 24
  start-page: 4419
  year: 2012
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4738
  year: 2012
  publication-title: Nano Lett.
– volume: 18
  start-page: 69
  year: 2006
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4795
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 62
  year: 1968
  publication-title: J. Colloid Interface Sci.
– volume: 38
  start-page: 3401
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 160
  start-page: 18
  year: 2012
  publication-title: Microporous Mesoporous Mat.
– volume: 23
  start-page: 3575
  year: 2011
  publication-title: Adv. Mater.
– volume: 49
  start-page: 4603
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 427
  year: 2012
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1408
  year: 2013
  publication-title: Sci. Rep.
– volume: 24
  start-page: 5130
  year: 2012
  publication-title: Adv. Mater.
– volume: 133
  start-page: 6122
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5339
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 11586
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– year: 1999
– ident: e_1_2_7_32_1
  doi: 10.1039/c2ra20845h
– ident: e_1_2_7_29_1
  doi: 10.1021/ja312221g
– ident: e_1_2_7_46_1
  doi: 10.1039/c2jm16825a
– ident: e_1_2_7_51_1
  doi: 10.1021/jp303265d
– ident: e_1_2_7_71_1
  doi: 10.1002/adma.200803606
– ident: e_1_2_7_24_1
  doi: 10.1351/pac199466081739
– volume-title: Activated Carbon
  year: 2005
  ident: e_1_2_7_43_1
– ident: e_1_2_7_120_1
  doi: 10.1002/adma.201202289
– volume: 22
  start-page: 2090
  year: 2012
  ident: e_1_2_7_117_1
  publication-title: J. Mater. Chem.
– ident: e_1_2_7_105_1
  doi: 10.1021/jp204036a
– ident: e_1_2_7_119_1
  doi: 10.1002/adma.201200197
– ident: e_1_2_7_121_1
  doi: 10.1021/nn300655c
– ident: e_1_2_7_41_1
  doi: 10.1039/c001635g
– ident: e_1_2_7_27_1
  doi: 10.1021/cm060014p
– ident: e_1_2_7_106_1
  doi: 10.1039/c2nr32699j
– ident: e_1_2_7_79_1
  doi: 10.1002/adfm.201200403
– ident: e_1_2_7_62_1
  doi: 10.1039/c1cc10412h
– ident: e_1_2_7_1_1
  doi: 10.1038/nature00785
– ident: e_1_2_7_128_1
  doi: 10.1021/ja308676h
– ident: e_1_2_7_108_1
  doi: 10.1002/adma.201201948
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201006240
– ident: e_1_2_7_30_1
  doi: 10.1016/j.micromeso.2012.04.038
– ident: e_1_2_7_49_1
  doi: 10.1038/srep00427
– ident: e_1_2_7_60_1
  doi: 10.1039/C2TA00192F
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.200501366
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201203286
– ident: e_1_2_7_103_1
  doi: 10.1002/adfm.201000287
– ident: e_1_2_7_77_1
  doi: 10.1002/chem.201100727
– ident: e_1_2_7_97_1
  doi: 10.1039/c1jm11728a
– ident: e_1_2_7_98_1
  doi: 10.1039/c2jm15865e
– ident: e_1_2_7_104_1
  doi: 10.1021/nn101187z
– ident: e_1_2_7_17_1
  doi: 10.1021/j100786a032
– ident: e_1_2_7_14_1
  doi: 10.1039/c002690p
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201001634
– volume: 115
  start-page: 1567
  year: 2011
  ident: e_1_2_7_125_1
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_124_1
  doi: 10.1002/adma.200901079
– ident: e_1_2_7_100_1
  doi: 10.1039/c1sm00011j
– ident: e_1_2_7_47_1
  doi: 10.1002/chem.201200551
– ident: e_1_2_7_28_1
  doi: 10.1021/nn102618n
– ident: e_1_2_7_89_1
  doi: 10.1039/c2jm16541d
– ident: e_1_2_7_63_1
  doi: 10.1016/j.carbon.2011.06.006
– ident: e_1_2_7_130_1
  doi: 10.1126/science.1202747
– ident: e_1_2_7_81_1
  doi: 10.1021/nn3003345
– ident: e_1_2_7_23_1
  doi: 10.1039/c3ee23870a
– ident: e_1_2_7_21_1
  doi: 10.1002/smll.201203155
– ident: e_1_2_7_7_1
  doi: 10.1039/B802654H
– ident: e_1_2_7_95_1
  doi: 10.1039/c2cc37413g
– ident: e_1_2_7_18_1
  doi: 10.1021/cr300115g
– ident: e_1_2_7_54_1
  doi: 10.1039/c000051e
– ident: e_1_2_7_115_1
  doi: 10.1039/c2nr32157b
– ident: e_1_2_7_99_1
  doi: 10.1021/ja1072299
– ident: e_1_2_7_93_1
  doi: 10.1002/adma.201204196
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_7_50_1
  doi: 10.1039/C2RA22702A
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1200770
– ident: e_1_2_7_45_1
  doi: 10.1039/c1nr10879d
– ident: e_1_2_7_118_1
  doi: 10.1039/c2jm34816k
– ident: e_1_2_7_16_1
  doi: 10.1021/nl802558y
– ident: e_1_2_7_123_1
  doi: 10.1002/adma.200700699
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201104971
– ident: e_1_2_7_92_1
  doi: 10.1038/srep01238
– ident: e_1_2_7_48_1
  doi: 10.1039/c2jm30221g
– ident: e_1_2_7_113_1
  doi: 10.1039/c2cc35120j
– ident: e_1_2_7_75_1
  doi: 10.1038/ncomms2251
– ident: e_1_2_7_90_1
  doi: 10.1021/nn204656d
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201200186
– ident: e_1_2_7_56_1
  doi: 10.1039/c0jm04043f
– ident: e_1_2_7_3_1
  doi: 10.1039/b502551f
– ident: e_1_2_7_85_1
  doi: 10.1016/0021-9797(68)90272-5
– ident: e_1_2_7_58_1
  doi: 10.1021/ma201620w
– ident: e_1_2_7_114_1
  doi: 10.1039/c1nr10355e
– ident: e_1_2_7_64_1
  doi: 10.1038/369387a0
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.200901678
– ident: e_1_2_7_53_1
  doi: 10.1021/jp9035887
– ident: e_1_2_7_91_1
  doi: 10.1021/am3022366
– ident: e_1_2_7_69_1
  doi: 10.1021/cm062882s
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201100170
– ident: e_1_2_7_82_1
  doi: 10.1039/c2nr31438j
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.200401643
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.201102838
– ident: e_1_2_7_107_1
  doi: 10.1039/c2cc33979j
– ident: e_1_2_7_94_1
  doi: 10.1002/anie.201000270
– ident: e_1_2_7_11_1
  doi: 10.1038/nmat1849
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.200501576
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jcis.2010.04.054
– ident: e_1_2_7_13_1
  doi: 10.1021/cr900070d
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.200702046
– ident: e_1_2_7_109_1
  doi: 10.1021/nl203903z
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.200600148
– ident: e_1_2_7_9_1
  doi: 10.1002/anie.201101891
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201101599
– ident: e_1_2_7_76_1
  doi: 10.1021/nn3021772
– ident: e_1_2_7_57_1
  doi: 10.1021/jp1120299
– ident: e_1_2_7_86_1
  doi: 10.1002/adma.201201680
– volume: 22
  start-page: 2810
  year: 2012
  ident: e_1_2_7_33_1
  publication-title: J. Mater. Chem.
– ident: e_1_2_7_52_1
  doi: 10.1039/c2cc36234a
– ident: e_1_2_7_111_1
  doi: 10.1038/srep01408
– ident: e_1_2_7_59_1
  doi: 10.1016/j.carbon.2011.07.032
– ident: e_1_2_7_66_1
  doi: 10.1021/nn2001728
– ident: e_1_2_7_83_1
  doi: 10.1039/c2cc32189k
– ident: e_1_2_7_40_1
  doi: 10.1021/ja100102y
– ident: e_1_2_7_34_1
  doi: 10.1021/ja310849c
– ident: e_1_2_7_74_1
  doi: 10.1016/j.carbon.2012.06.013
– ident: e_1_2_7_80_1
  doi: 10.1039/c2nr31397a
– ident: e_1_2_7_35_1
  doi: 10.1038/nnano.2009.58
– ident: e_1_2_7_68_1
  doi: 10.1021/jp0714365
– ident: e_1_2_7_22_1
  doi: 10.1039/C2EE23284G
– ident: e_1_2_7_70_1
  doi: 10.1021/cm702028z
– ident: e_1_2_7_112_1
  doi: 10.1039/c1cp22409c
– ident: e_1_2_7_88_1
  doi: 10.1021/nn300097q
– ident: e_1_2_7_61_1
  doi: 10.1021/nn1027104
– year: 2013
  ident: e_1_2_7_126_1
  publication-title: ACS Appl. Mater. Inter.
– ident: e_1_2_7_129_1
  doi: 10.1002/anie.201207277
– ident: e_1_2_7_6_1
  doi: 10.1039/b822668g
– ident: e_1_2_7_20_1
  doi: 10.1021/ar300122m
– ident: e_1_2_7_96_1
  doi: 10.1021/ja3030565
– ident: e_1_2_7_84_1
  doi: 10.1039/C1JM13947A
– ident: e_1_2_7_72_1
  doi: 10.1021/nl302175j
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201000167
– ident: e_1_2_7_102_1
  doi: 10.1039/C2TC00235C
– ident: e_1_2_7_127_1
  doi: 10.1007/978-1-4757-3058-6
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.200300380
– ident: e_1_2_7_78_1
  doi: 10.1002/adma.201201978
– ident: e_1_2_7_73_1
  doi: 10.1021/ja200244s
– ident: e_1_2_7_110_1
  doi: 10.1039/C2TA00887D
– ident: e_1_2_7_67_1
  doi: 10.1002/adfm.200700093
– ident: e_1_2_7_101_1
  doi: 10.1039/c1sm05498h
– ident: e_1_2_7_122_1
  doi: 10.1002/cssc.201200421
– ident: e_1_2_7_87_1
  doi: 10.1002/smll.201100990
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201001410
SSID ssj0009606
Score 2.6256416
Snippet Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 849
SubjectTerms Capacitors
Conversion
Devices
Energy storage
energy storage and conversion
Fuel cells
Graphene
Lithium batteries
Porous materials
self-assembly
Supercapacitors
template
Title Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices
URI https://api.istex.fr/ark:/67375/WNG-BSL6KC9N-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201303115
https://www.ncbi.nlm.nih.gov/pubmed/24347321
https://www.proquest.com/docview/1499126245
https://www.proquest.com/docview/1513491064
https://www.proquest.com/docview/1753512267
Volume 26
WOSCitedRecordID wos000331910200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-054M--P2xWksE0aeld0k2H4_nfVSwPYq1eA9CSDZZkJY9ubuKf76T7N62B7aCvm1gdslOZiYzycxvAN6qKvhKlC53nvqcx5tCrYPAmEdUuKX4khYuNZuQs5maz_XxlSr-Bh-iO3CLmpHsdVRw61b7l6Ch1ifcoGiDB7HKvBcrqzD86o0_T08PL4F3ReqvGe_7ci242gA39un-9he2NqZe5PGvP3md205s2oWmD_5__g_hfuuBkmEjMo_gVqgfw70ruIRP4NvxYrm4WJGDiGaNxpAc2XUjqQR9XDJs8wbIpOmhU7agA2SSCgnJCcbxaKaIrT0Zxaz2dCRHxiFZpadwOp18GX3M2zYMeVmgu5cHyaTGwMdS3MhKxpgvVeWZREugnLLassAcHwTkdOCV6uuKur5TUganQsU8ewY79aIOL4BYVXhrMSRjynJbaetxrIJSmqLf4lgG-WYNTNlilMdWGeemQVemJnLNdFzL4H1H_6NB57iW8l1a0o7MLs9iTpsszNfZgflwcig-jfTMiAzebNbcoKbF6xNbB-Q5BknoS1NBeXEDTRHhHjHM5jfQYISIbhYVMoPnjVB1s6KcccnoIAOaZOcvf2WG46NhN3r5Ly-9grv4zJtE9F3YWS8vwmu4U_5cf18t9-C2nKu9Vqd-AzDUHs0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5CLRLsgfsgXI2E4Claazu-PJZeNrQ2mtgm9oBkObEjoaEUdR3i53PspBmVYEiIR0cnUXx8rvbxdwDeqMq7SpRFWjjqUh5OCrX2AnMeUaFLcSXNithsQua5OjvTR201YbgL0-BDdBtuQTOivQ4KHjak965QQ62LwEHBCA_DNfM-F0yqHvQnH2en8yvkXREbbIYDv1QLrjbIjQO6t_2FLc_UD0z-8buwczuKjW5odvc_TOAe3GljUDJqhOY-3PD1A9j5BZnwIXw-Wq6WlxdkP-BZozkkC7tuZJVglEtGbeUAmTZddMoWdoBM41VCcoyZPBoqYmtHxqGuPW7KkYmPdukRnM6mJ-ODtG3EkJYZBnypl0xqTH0sRVdWMsZcqSrHJNoCVSirLfOs4EOPrPa8UgNd0WJQKCl9oXzFHNuFXr2s_RMgVmXOWkzKmLLcVto6HCuvlKYYuRQsgXSzCKZsUcpDs4yvpsFXpiZwzXRcS-BdR_-twef4I-XbuKYdmV2dh6o2mZlP-b55fzwXh2OdG5HA682iG9S1cIBia488xzQJo2kqKM-uockC4CMm2vwaGswRMdCiQibwuJGq7q8oZ1wyOkyARuH5y6zMaLIYdaOn__LSK7h1cLKYm_mH_PAZ3MbnvClLfw699erSv4Cb5ff1l4vVy1a1fgKffiHV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFiF4YHwTNsBICJ6itbbj2I9dPwZaF1WMiT0gWXbsSAiUTl2H-PM5O2lGJRgS4tHRJYrP92mffwfwWlbeVaK0qXXUpTycFCrlBeY8okKX4kqa2dhsIi8KeXamFm01YbgL0-BDdBtuQTOivQ4K7s9dtX-FGmpcBA4KRngYrpn3eaYy3oP-5MPsdH6FvCtig81w4JcqweUGuXFA97e_sOWZ-oHJP34Xdm5HsdENzXb-wwTuwd02BiWjRmjuww1fP4A7vyATPoTPi-VqeXlBDgOeNZpDcmzWjawSjHLJqK0cINOmi07Zwg6QabxKSE4wk0dDRUztyDjUtcdNOTLx0S49gtPZ9OP4Xdo2YkjLDAO-1OcsV5j6GIqurGSMuVJWjuVoC6SVRhnmmeVDj6z2vJIDVVE7sDLPvZW-Yo49hl69rP1TIEZmzhhMypg03FTKOBxLL6WiGLlYlkC6WQRdtijloVnGN93gK1MduKY7riXwtqM_b_A5_kj5Jq5pR2ZWX0NVW57pT8WhPjiZi6OxKrRI4NVm0TXqWjhAMbVHnmOahNE0FZRn19BkAfARE21-DQ3miBhoUZEn8KSRqu6vKGc8Z3SYAI3C85dZ6dHkeNSNnv3LSy_h1mIy0_P3xdEu3MbHvKlK34PeenXpn8PN8vv6y8XqRatZPwH3MSFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+graphene+materials+for+advanced+electrochemical+energy+storage+and+conversion+devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Han%2C+Sheng&rft.au=Wu%2C+Dongqing&rft.au=Li%2C+Shuang&rft.au=Zhang%2C+Fan&rft.date=2014-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=26&rft.issue=6&rft.spage=849&rft_id=info:doi/10.1002%2Fadma.201303115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon