Automated image analysis for tracking cargo transport in axons

The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Microscopy research and technique Ročník 74; číslo 7; s. 605 - 613
Hlavní autori: Zhang, Kai, Osakada, Yasuko, Xie, Wenjun, Cui, Bianxiao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2011
Predmet:
ISSN:1059-910X, 1097-0029, 1097-0029
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time‐lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back‐projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal‐to‐noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore‐labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.
AbstractList The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time‐lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back‐projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal‐to‐noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore‐labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This paper presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution and minimal human intervention. The method is based on novel applications of several algorithms including 2-D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. ? 2010 Wiley-Liss, Inc.
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.
Author Cui, Bianxiao
Osakada, Yasuko
Xie, Wenjun
Zhang, Kai
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Department of Chemistry, Stanford University, Stanford, California 94305
– sequence: 2
  givenname: Yasuko
  surname: Osakada
  fullname: Osakada, Yasuko
  organization: Department of Chemistry, Stanford University, Stanford, California 94305
– sequence: 3
  givenname: Wenjun
  surname: Xie
  fullname: Xie, Wenjun
  organization: Department of Chemistry, Stanford University, Stanford, California 94305
– sequence: 4
  givenname: Bianxiao
  surname: Cui
  fullname: Cui, Bianxiao
  email: bcui@stanford.edu
  organization: Department of Chemistry, Stanford University, Stanford, California 94305
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20945466$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1PFDEYhRuDEVi98QeYudOYDLTTdjq9ISGEL7OoFxiMN023885amGmXtqvsv6fDwkaN4apfzzk5fc8u2nLeAUJvCd4jGFf71zCkvQpLyl6gHYKlKPOt3Br3XJaS4O_baDfGa4wJ4YS9QtsZZpzV9Q46OFwmP-gEbWEHPYdCO92voo1F50ORgjY31s0Lo8Pcj0cXFz6kwrpC33kXX6OXne4jvHlcJ-jbyfHl0Vk5_XJ6fnQ4LQ3nNStb3REgkghGO5AtZVIQ0hgBwCjthK4F5S0QqM2sqeqKV5wTnOEZsFmjTUsn6GDtu1jOBmgNuJylV4uQQ4eV8tqqv1-c_anm_peiuKpktp-g948Gwd8uISY12Gig77UDv4yqEVRg3lQj-eFZkmTHRmAiaEbf_ZlqE-dpvBn4uAZM8DEG6DYIwWrsTo3dqYfuMoz_gY1NOlk__sj2_5eQteS37WH1jLn6dHxx-aQp1xobE9xtNDrcqDwnwdXV51PVfP2Br06mXGF6D6NmuzA
CitedBy_id crossref_primary_10_1159_000358092
crossref_primary_10_1016_j_neulet_2015_10_066
crossref_primary_10_1007_s00249_011_0722_3
crossref_primary_10_1016_j_nano_2015_03_005
crossref_primary_10_1111_tra_12127
crossref_primary_10_1111_tra_12710
crossref_primary_10_1111_tra_12456
crossref_primary_10_1007_s13238_016_0268_3
crossref_primary_10_1091_mbc_e15_06_0404
crossref_primary_10_1111_tra_12428
crossref_primary_10_1016_j_media_2015_06_006
crossref_primary_10_1109_TIP_2018_2867946
crossref_primary_10_1002_cm_21411
crossref_primary_10_3389_fnmol_2017_00004
crossref_primary_10_1016_j_neuron_2015_02_023
crossref_primary_10_1109_TMI_2011_2165554
Cites_doi 10.1038/nmeth1006-781
10.1016/S0092-8674(03)00111-9
10.1111/j.1600-0854.2007.00636.x
10.1016/j.jsb.2005.06.002
10.1016/j.tcb.2004.03.009
10.1007/400_2009_2
10.1088/1478-3967/2/1/008
10.1038/35074539
10.1016/S0006-3495(01)75884-5
10.1523/JNEUROSCI.21-21-08473.2001
10.1126/science.1105681
10.1109/4233.767088
10.1109/TIP.2010.2045031
10.1007/s00249-009-0458-5
10.1021/ac0600959
10.1242/jcs.01130
10.1002/cphc.200900555
10.1016/j.neuron.2006.05.022
10.1109/34.659930
10.1073/pnas.0706192104
10.1073/pnas.0808084105
10.1091/mbc.9.9.2463
10.1016/j.jneumeth.2006.07.028
10.1523/JNEUROSCI.23-08-03209.2003
10.1126/science.1084398
10.1007/s006070050027
10.1007/s00401-004-0952-x
10.1038/375061a0
10.1111/j.1365-2818.2007.01723.x
10.1006/jcis.1996.0217
10.1016/j.str.2009.09.008
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright © 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/jemt.20934
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-0029
EndPage 613
ExternalDocumentID PMC3022967
20945466
10_1002_jemt_20934
JEMT20934
ark_67375_WNG_8PZ0WFL5_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Health (NIH)
  funderid: NS057906
– fundername: Dreyfus New Faculty Award, Searle Scholar Award, Packard Fellowship
– fundername: NINDS NIH HHS
  grantid: R00 NS057906
– fundername: NINDS NIH HHS
  grantid: NS057906
– fundername: NINDS NIH HHS
  grantid: K99 NS057906
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TWZ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c5564-daf1e191743fe9d3497118c7ee433f7a6735de1e6cb8262525510743be4b8acd3
IEDL.DBID DRFUL
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292570900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-910X
1097-0029
IngestDate Tue Nov 04 01:59:46 EST 2025
Thu Oct 02 11:23:05 EDT 2025
Thu Jul 10 23:29:20 EDT 2025
Mon Jul 21 06:04:07 EDT 2025
Sat Nov 29 07:08:52 EST 2025
Tue Nov 18 21:37:37 EST 2025
Sun Sep 21 06:23:42 EDT 2025
Sun Sep 21 06:19:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5564-daf1e191743fe9d3497118c7ee433f7a6735de1e6cb8262525510743be4b8acd3
Notes istex:B8C2FE39CE334C38EC78C92C2E7CC2D32006FCDB
Dreyfus New Faculty Award, Searle Scholar Award, Packard Fellowship
ArticleID:JEMT20934
National Institute of Health (NIH) - No. NS057906
ark:/67375/WNG-8PZ0WFL5-0
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3022967
PMID 20945466
PQID 1022870173
PQPubID 23500
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3022967
proquest_miscellaneous_873705827
proquest_miscellaneous_1022870173
pubmed_primary_20945466
crossref_primary_10_1002_jemt_20934
crossref_citationtrail_10_1002_jemt_20934
wiley_primary_10_1002_jemt_20934_JEMT20934
istex_primary_ark_67375_WNG_8PZ0WFL5_0
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Microscopy research and technique
PublicationTitleAlternate Microsc. Res. Tech
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Cui B,Wu C,Chen L,Ramirez A,Bearer EL,Li WP,Mobley WC,Chu S. 2007. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104: 13666-13671.
Falnikar A,Baas PW. 2009. Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ 48: 47-64.
Roy S,Zhang B,Lee VM,Trojanowski JQ. 2005. Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathol 109: 5-13.
Steger C. 1998. An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20: 113-125.
Mudrakola HV,Zhang K,Cui B. 2009. Optically resolving individual microtubules in live axons. Structure 17: 1433-1441.
Pelzl C,Arcizet D,Piontek G,Schlegel J,Heinrich D. 2009. Axonal guidance by surface microstructuring for intracellular transport investigations. Chemphyschem 10: 2884-2890.
Stokin GB,Lillo C,Falzone TL,Brusch RG,Rockenstein E,Mount SL,Raman R,Davies P,Masliah E,Williams DS,Goldstein LS. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288.
Zhang K,Osakada Y,Vrljic M,Chen L,Mudrakola HV,Cui B. 2010. Single molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip, in press. DOI 10.1039/C003385E.
Miller KE,Sheetz MP. 2004. Axonal mitochondrial transport and potential are correlated. J Cell Sci 117: 2791-2804.
Crocker JC,Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179: 298-310.
Moerner WE. 2006. Single-molecule mountains yield nanoscale cell images. Nat Methods 3: 781-782.
Can A,Shen H,Turner JN,Tanenbaum HL,Roysam B. 1999. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3: 125-138.
Smal I,Grigoriev I,Akhmanova A,Niessen W,Meijering E. 2010. Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans Image Process 19:1861-1876.
Chetverikov D,Verestoy J. 1999. Feature point tracking for incomplete trajectories. Computing 62: 321-338.
Welzel O,Boening D,Stroebel A,Reulbach U,Klingauf J,Kornhuber J,Groemer TW. 2009. Determination of axonal transport velocities via image cross- and autocorrelation. Eur Biophys J 38: 883-889.
Yildiz A,Forkey JN,McKinney SA,Ha T,Goldman YE,Selvin PR. 2003. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300: 2061-2065.
Pelkmans L,Kartenbeck J,Helenius A. 2001. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473-483.
Kannan B,Har JY,Liu P,Maruyama I,Ding JL,Wohland T. 2006. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78: 3444-3451.
Li H,Li SH,Yu ZX,Shelbourne P,Li XJ. 2001. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21: 8473-8481.
Salehi A,Delcroix JD,Belichenko PV,Zhan K,Wu C,Valletta JS,Takimoto-Kimura R,Kleschevnikov AM,Sambamurti K,Chung PP,Xia W,Villar A,Campbell WA,Kulnane LS,Nixon RA,Lamb BT,Epstein CJ,Stokin GB,Goldstein LS,Mobley WC. 2006. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51: 29-42.
Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112: 467-480.
Lochner JE,Kingma M,Kuhn S,Meliza CD,Cutler B,Scalettar BA. 1998. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463-2476.
Sbalzarini IF,Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195.
Bronfman FC,Tcherpakov M,Jovin TM,Fainzilber M. 2003. Ligand-induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome. J Neurosci 23: 3209-3220.
Cheezum MK,Walker WF,Guilford WH. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81: 2378-2388.
Wu C,Ramirez A,Cui B,Ding J,Delcroix JD,Valletta JS,Liu JJ,Yang Y,Chu S,Mobley WC. 2007. A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway. Traffic 8: 1503-1520.
Collard JF,Cote F,Julien JP. 1995. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375: 61-64.
Taylor AM,Rhee SW,Jeon NL. 2006. Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol 321: 167-177.
Zhang Y,Zhou X,Degterev A,Lipinski M,Adjeroh D,Yuan J,Wong ST. 2007. A novel tracing algorithm for high throughput imaging screening of neuron-based assays. J Neurosci Methods 160: 149-162.
Carter BC,Shubeita GT,Gross SP. 2005. Tracking single particles: A user-friendly quantitative evaluation. Phys Biol 2: 60-72.
Holzbaur EL. 2004. Motor neurons rely on motor proteins. Trends Cell Biol 14: 233-240.
Ittner LM,Fath T,Ke YD,Bi M,van Eersel J,Li KM,Gunning P,Gotz J. 2008. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105: 15997-16002.
Racine V,Sachse M,Salamero J,Fraisier V,Trubuil A,Sibarita JB. 2007. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc Oxford 225: 214-228.
2007; 104
2007; 225
2005; 151
2006; 51
2006; 78
2010; 19
2007; 160
2008; 105
2006; 3
1999; 3
1999; 62
1995; 375
1998; 20
2003; 112
2009; 48
2001; 21
2001; 81
2009; 10
2004; 14
2007; 8
2005; 109
2005; 307
2001; 3
2005; 2
1996; 179
2003; 300
2004; 117
2006; 321
2009; 38
1998; 9
2003; 23
2009; 17
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
Zhang K (e_1_2_5_33_1)
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Taylor AM (e_1_2_5_28_1) 2006; 321
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – reference: Zhang Y,Zhou X,Degterev A,Lipinski M,Adjeroh D,Yuan J,Wong ST. 2007. A novel tracing algorithm for high throughput imaging screening of neuron-based assays. J Neurosci Methods 160: 149-162.
– reference: Collard JF,Cote F,Julien JP. 1995. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375: 61-64.
– reference: Mudrakola HV,Zhang K,Cui B. 2009. Optically resolving individual microtubules in live axons. Structure 17: 1433-1441.
– reference: Smal I,Grigoriev I,Akhmanova A,Niessen W,Meijering E. 2010. Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans Image Process 19:1861-1876.
– reference: Miller KE,Sheetz MP. 2004. Axonal mitochondrial transport and potential are correlated. J Cell Sci 117: 2791-2804.
– reference: Holzbaur EL. 2004. Motor neurons rely on motor proteins. Trends Cell Biol 14: 233-240.
– reference: Can A,Shen H,Turner JN,Tanenbaum HL,Roysam B. 1999. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3: 125-138.
– reference: Chetverikov D,Verestoy J. 1999. Feature point tracking for incomplete trajectories. Computing 62: 321-338.
– reference: Sbalzarini IF,Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195.
– reference: Li H,Li SH,Yu ZX,Shelbourne P,Li XJ. 2001. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21: 8473-8481.
– reference: Pelzl C,Arcizet D,Piontek G,Schlegel J,Heinrich D. 2009. Axonal guidance by surface microstructuring for intracellular transport investigations. Chemphyschem 10: 2884-2890.
– reference: Taylor AM,Rhee SW,Jeon NL. 2006. Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol 321: 167-177.
– reference: Racine V,Sachse M,Salamero J,Fraisier V,Trubuil A,Sibarita JB. 2007. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc Oxford 225: 214-228.
– reference: Kannan B,Har JY,Liu P,Maruyama I,Ding JL,Wohland T. 2006. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78: 3444-3451.
– reference: Ittner LM,Fath T,Ke YD,Bi M,van Eersel J,Li KM,Gunning P,Gotz J. 2008. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105: 15997-16002.
– reference: Steger C. 1998. An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20: 113-125.
– reference: Falnikar A,Baas PW. 2009. Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ 48: 47-64.
– reference: Lochner JE,Kingma M,Kuhn S,Meliza CD,Cutler B,Scalettar BA. 1998. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463-2476.
– reference: Roy S,Zhang B,Lee VM,Trojanowski JQ. 2005. Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathol 109: 5-13.
– reference: Bronfman FC,Tcherpakov M,Jovin TM,Fainzilber M. 2003. Ligand-induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome. J Neurosci 23: 3209-3220.
– reference: Stokin GB,Lillo C,Falzone TL,Brusch RG,Rockenstein E,Mount SL,Raman R,Davies P,Masliah E,Williams DS,Goldstein LS. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288.
– reference: Carter BC,Shubeita GT,Gross SP. 2005. Tracking single particles: A user-friendly quantitative evaluation. Phys Biol 2: 60-72.
– reference: Cheezum MK,Walker WF,Guilford WH. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81: 2378-2388.
– reference: Pelkmans L,Kartenbeck J,Helenius A. 2001. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473-483.
– reference: Salehi A,Delcroix JD,Belichenko PV,Zhan K,Wu C,Valletta JS,Takimoto-Kimura R,Kleschevnikov AM,Sambamurti K,Chung PP,Xia W,Villar A,Campbell WA,Kulnane LS,Nixon RA,Lamb BT,Epstein CJ,Stokin GB,Goldstein LS,Mobley WC. 2006. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51: 29-42.
– reference: Welzel O,Boening D,Stroebel A,Reulbach U,Klingauf J,Kornhuber J,Groemer TW. 2009. Determination of axonal transport velocities via image cross- and autocorrelation. Eur Biophys J 38: 883-889.
– reference: Crocker JC,Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179: 298-310.
– reference: Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112: 467-480.
– reference: Wu C,Ramirez A,Cui B,Ding J,Delcroix JD,Valletta JS,Liu JJ,Yang Y,Chu S,Mobley WC. 2007. A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway. Traffic 8: 1503-1520.
– reference: Moerner WE. 2006. Single-molecule mountains yield nanoscale cell images. Nat Methods 3: 781-782.
– reference: Yildiz A,Forkey JN,McKinney SA,Ha T,Goldman YE,Selvin PR. 2003. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300: 2061-2065.
– reference: Cui B,Wu C,Chen L,Ramirez A,Bearer EL,Li WP,Mobley WC,Chu S. 2007. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104: 13666-13671.
– reference: Zhang K,Osakada Y,Vrljic M,Chen L,Mudrakola HV,Cui B. 2010. Single molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip, in press. DOI 10.1039/C003385E.
– volume: 105
  start-page: 15997
  year: 2008
  end-page: 16002
  article-title: Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia
  publication-title: Proc Natl Acad Sci USA
– article-title: 2010. Single molecule imaging of NGF axonal transport in microfluidic devices
  publication-title: Lab Chip
– volume: 151
  start-page: 182
  year: 2005
  end-page: 195
  article-title: Feature point tracking and trajectory analysis for video imaging in cell biology
  publication-title: J Struct Biol
– volume: 62
  start-page: 321
  year: 1999
  end-page: 338
  article-title: Feature point tracking for incomplete trajectories
  publication-title: Computing
– volume: 81
  start-page: 2378
  year: 2001
  end-page: 2388
  article-title: Quantitative comparison of algorithms for tracking single fluorescent particles
  publication-title: Biophys J
– volume: 78
  start-page: 3444
  year: 2006
  end-page: 3451
  article-title: Electron multiplying charge‐coupled device camera based fluorescence correlation spectroscopy
  publication-title: Anal Chem
– volume: 17
  start-page: 1433
  year: 2009
  end-page: 1441
  article-title: Optically resolving individual microtubules in live axons
  publication-title: Structure
– volume: 48
  start-page: 47
  year: 2009
  end-page: 64
  article-title: Critical roles for microtubules in axonal development and disease
  publication-title: Results Probl Cell Differ
– volume: 14
  start-page: 233
  year: 2004
  end-page: 240
  article-title: Motor neurons rely on motor proteins
  publication-title: Trends Cell Biol
– volume: 300
  start-page: 2061
  year: 2003
  end-page: 2065
  article-title: Myosin V walks hand‐over‐hand: Single fluorophore imaging with 1.5‐nm localization
  publication-title: Science
– volume: 117
  start-page: 2791
  year: 2004
  end-page: 2804
  article-title: Axonal mitochondrial transport and potential are correlated
  publication-title: J Cell Sci
– volume: 3
  start-page: 781
  year: 2006
  end-page: 782
  article-title: Single‐molecule mountains yield nanoscale cell images
  publication-title: Nat Methods
– volume: 3
  start-page: 125
  year: 1999
  end-page: 138
  article-title: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 9
  start-page: 2463
  year: 1998
  end-page: 2476
  article-title: Real‐time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid
  publication-title: Mol Biol Cell
– volume: 19
  start-page: 1861
  year: 2010
  end-page: 1876
  article-title: Microtubule dynamics analysis using kymographs and variable‐rate particle filters
  publication-title: IEEE Trans Image Process
– volume: 104
  start-page: 13666
  year: 2007
  end-page: 13671
  article-title: One at a time, live tracking of NGF axonal transport using quantum dots
  publication-title: Proc Natl Acad Sci USA
– volume: 375
  start-page: 61
  year: 1995
  end-page: 64
  article-title: Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 160
  start-page: 149
  year: 2007
  end-page: 162
  article-title: A novel tracing algorithm for high throughput imaging screening of neuron‐based assays
  publication-title: J Neurosci Methods
– volume: 179
  start-page: 298
  year: 1996
  end-page: 310
  article-title: Methods of digital video microscopy for colloidal studies
  publication-title: J Colloid Interface Sci
– volume: 112
  start-page: 467
  year: 2003
  end-page: 480
  article-title: The molecular motor toolbox for intracellular transport
  publication-title: Cell
– volume: 3
  start-page: 473
  year: 2001
  end-page: 483
  article-title: Caveolar endocytosis of simian virus 40 reveals a new two‐step vesicular‐transport pathway to the ER
  publication-title: Nat Cell Biol
– volume: 21
  start-page: 8473
  year: 2001
  end-page: 8481
  article-title: Huntingtin aggregate‐associated axonal degeneration is an early pathological event in Huntington's disease mice
  publication-title: J Neurosci
– volume: 307
  start-page: 1282
  year: 2005
  end-page: 1288
  article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease
  publication-title: Science
– volume: 321
  start-page: 167
  year: 2006
  end-page: 177
  article-title: Microfluidic chambers for cell migration and neuroscience research
  publication-title: Methods Mol Biol
– volume: 109
  start-page: 5
  year: 2005
  end-page: 13
  article-title: Axonal transport defects: A common theme in neurodegenerative diseases
  publication-title: Acta Neuropathol
– volume: 225
  start-page: 214
  year: 2007
  end-page: 228
  article-title: Visualization and quantification of vesicle trafficking on a three‐dimensional cytoskeleton network in living cells
  publication-title: J Microsc Oxford
– volume: 51
  start-page: 29
  year: 2006
  end-page: 42
  article-title: Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration
  publication-title: Neuron
– volume: 8
  start-page: 1503
  year: 2007
  end-page: 1520
  article-title: A functional dynein‐microtubule network is required for NGF signaling through the Rap1/MAPK pathway
  publication-title: Traffic
– volume: 2
  start-page: 60
  year: 2005
  end-page: 72
  article-title: Tracking single particles: A user‐friendly quantitative evaluation
  publication-title: Phys Biol
– volume: 38
  start-page: 883
  year: 2009
  end-page: 889
  article-title: Determination of axonal transport velocities via image cross‐ and autocorrelation
  publication-title: Eur Biophys J
– volume: 23
  start-page: 3209
  year: 2003
  end-page: 3220
  article-title: Ligand‐induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome
  publication-title: J Neurosci
– volume: 10
  start-page: 2884
  year: 2009
  end-page: 2890
  article-title: Axonal guidance by surface microstructuring for intracellular transport investigations
  publication-title: Chemphyschem
– volume: 20
  start-page: 113
  year: 1998
  end-page: 125
  article-title: An unbiased detector of curvilinear structures
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: e_1_2_5_17_1
  doi: 10.1038/nmeth1006-781
– ident: e_1_2_5_29_1
  doi: 10.1016/S0092-8674(03)00111-9
– ident: e_1_2_5_31_1
  doi: 10.1111/j.1600-0854.2007.00636.x
– ident: e_1_2_5_24_1
  doi: 10.1016/j.jsb.2005.06.002
– ident: e_1_2_5_11_1
  doi: 10.1016/j.tcb.2004.03.009
– ident: e_1_2_5_10_1
  doi: 10.1007/400_2009_2
– ident: e_1_2_5_4_1
  doi: 10.1088/1478-3967/2/1/008
– ident: e_1_2_5_19_1
  doi: 10.1038/35074539
– ident: e_1_2_5_5_1
  doi: 10.1016/S0006-3495(01)75884-5
– ident: e_1_2_5_14_1
  doi: 10.1523/JNEUROSCI.21-21-08473.2001
– ident: e_1_2_5_27_1
  doi: 10.1126/science.1105681
– ident: e_1_2_5_3_1
  doi: 10.1109/4233.767088
– ident: e_1_2_5_25_1
  doi: 10.1109/TIP.2010.2045031
– ident: e_1_2_5_30_1
  doi: 10.1007/s00249-009-0458-5
– ident: e_1_2_5_13_1
  doi: 10.1021/ac0600959
– ident: e_1_2_5_16_1
  doi: 10.1242/jcs.01130
– ident: e_1_2_5_20_1
  doi: 10.1002/cphc.200900555
– ident: e_1_2_5_23_1
  doi: 10.1016/j.neuron.2006.05.022
– ident: e_1_2_5_26_1
  doi: 10.1109/34.659930
– ident: e_1_2_5_9_1
  doi: 10.1073/pnas.0706192104
– ident: e_1_2_5_12_1
  doi: 10.1073/pnas.0808084105
– ident: e_1_2_5_15_1
  doi: 10.1091/mbc.9.9.2463
– ident: e_1_2_5_33_1
  article-title: 2010. Single molecule imaging of NGF axonal transport in microfluidic devices
  publication-title: Lab Chip
– ident: e_1_2_5_34_1
  doi: 10.1016/j.jneumeth.2006.07.028
– ident: e_1_2_5_2_1
  doi: 10.1523/JNEUROSCI.23-08-03209.2003
– volume: 321
  start-page: 167
  year: 2006
  ident: e_1_2_5_28_1
  article-title: Microfluidic chambers for cell migration and neuroscience research
  publication-title: Methods Mol Biol
– ident: e_1_2_5_32_1
  doi: 10.1126/science.1084398
– ident: e_1_2_5_6_1
  doi: 10.1007/s006070050027
– ident: e_1_2_5_22_1
  doi: 10.1007/s00401-004-0952-x
– ident: e_1_2_5_7_1
  doi: 10.1038/375061a0
– ident: e_1_2_5_21_1
  doi: 10.1111/j.1365-2818.2007.01723.x
– ident: e_1_2_5_8_1
  doi: 10.1006/jcis.1996.0217
– ident: e_1_2_5_18_1
  doi: 10.1016/j.str.2009.09.008
SSID ssj0011514
Score 2.1284306
Snippet The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 605
SubjectTerms Algorithms
Animals
axonal transport
Axonal Transport - physiology
Axons
Axons - physiology
Cells, Cultured
Construction
curve tracing
Dynamic tests
Dynamics
image processing
Image Processing, Computer-Assisted - methods
kymograph
Kymography
Microscopy, Fluorescence
Neurons - physiology
particle tracking
Rats
Rats, Sprague-Dawley
time series analysis
Time-Lapse Imaging - methods
Tracking
Trajectories
Two dimensional
Title Automated image analysis for tracking cargo transport in axons
URI https://api.istex.fr/ark:/67375/WNG-8PZ0WFL5-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.20934
https://www.ncbi.nlm.nih.gov/pubmed/20945466
https://www.proquest.com/docview/1022870173
https://www.proquest.com/docview/873705827
https://pubmed.ncbi.nlm.nih.gov/PMC3022967
Volume 74
WOSCitedRecordID wos000292570900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011514
  issn: 1059-910X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB_anoJfrO-ujxJRBIWlu5tskgURivYUOY8irT36JSTZrJ61e3IPaf97M5u9rYdVEL_tsrN5TGaSmcnkF4CnzniblWodJ4Wk3kHRAq950TFn0vBS6tQ0oexPAzEcytGo2F-Dl8uzMAEfogu4oWY08zUquDaznQvQ0K_uFHMhC8rWoYenqrzr1XvzsX846HYR0oDtjSaEV-pk1MGTZjsXf68sSD3k7dll1ubvSZO_GrPNatTf_L9-3IDrrRVKdoPY3IQ1V9-Cq-FeyvPb8Gp3MZ94U9aVZHzqJxyiW-gS4k1c4ttlMcBOrJ5-nuBrgEcn45roMy_Fd-Cwv3fw-l3cXrQQ2zznLC51lTp03BitXFFSVgjvd1jhHKO0EpoLmpcuddziyGa5d0Mwj5Max4zUtqR3YaOe1G4LiLceU9zMEXllmdXGZKbkNtWG2kpXLo3g-ZLbyrYo5HgZxjcV8JMzhfxQDT8ieNLRfg_YG5dSPWsGrSPR0xPMVhO5Ohq-VXL_ODnqD3KVRPB4OarK6xBujOjaTRYzhV6vn7dSQSMgf6CRvsQkl5mI4F4QhK5C3wyWM84jECsi0hEghPfql3r8pYHypr7mgvsyXzQi8pduqvd7Hw6ap_v_QvwAroUoOCYYP4SN-XThHsEV-2M-nk23YV2M5HarNj8B70IbRg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BC9pe-B5kfBmBkECKlsSOnbwgTbAyIKsm1G0VL5btOFDY0qlr0fjv8cVZRsVAQrwlysWxz3f23fnyO4BnVjublSoVRnlGnYOiBJZ5USFnmeZlpmLdhLL3CzEcZuNxvtvm5uC_MB4fogu4oWY06zUqOAakN85RQ7_aI0yGzCm7DH3Gqch60H_zcbBXdMcIsQf3RhvCaXU07vBJk43zt5d2pD4y9_Qic_P3rMlfrdlmOxpc_8-B3IBrrR1KNr3g3IRLtr4FV31lyh-34dXmYj51xqwtyeTILTlEteAlxBm5xHXMYIidGDX7PMVbD5BOJjVRp06O78DeYGv0ejtsSy2EJk05C0tVxRZdN0Yrm5eU5cJ5HkZYyyithOKCpqWNLTc4t0nqHBHM5KTaMp0pU9I16NXT2t4D4uzHGI9zRFoZZpTWiS65iZWmplKVjQN4ccZuaVocciyHcSg9gnIikR-y4UcATzvaY4--cSHV82bWOhI1-4b5aiKVB8O3Mtv9FB0MilRGATw5m1bptAiPRlRtp4sTiX6vW7liQQMgf6DJXItRmiUigLteEroPum6wlHEegFiSkY4AQbyXn9STLw2YN3Vfzrlr82UjI38Zpny_tTNqrtb_hfgxrGyPdgpZvBt-uA-rPiaO6cYPoDefLexDuGK-zycns0et9vwEJgceTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED9BCxNfeG4sPI1ASEyKlsSv5AvSxBZeparQHhVfLNtxoIylU9ei8d_jS7KMioGE-JYoF8c-39l358vvAJ45421WqnUYZSn1DoqWWOZFh4KlRhSpjk0dyt4fyOEwHY-zUZubg__CNPgQXcANNaNer1HB3XFRbp6jhn51R5gMmVF2GfqMZ5z1oL_9Md8bdMcIcQPujTaE1-po3OGTJpvnby_tSH1k7ulF5ubvWZO_WrP1dpTf-M-B3ITrrR1KthrBuQWXXHUbrjaVKX_cgZdbi_nUG7OuIJMjv-QQ3YKXEG_kEt8xiyF2YvXs8xRvG4B0MqmIPvVyvAp7-c7uqzdhW2ohtJwLFha6jB26boyWLisoy6T3PKx0jlFaSi0k5YWLnbA4twn3jghmclLjmEm1Lega9Kpp5daBePsxxuMcyUvLrDYmMYWwsTbUlrp0cQAvztitbItDjuUwvqkGQTlRyA9V8yOApx3tcYO-cSHV83rWOhI9O8R8NcnVwfC1SkefooN8wFUUwJOzaVVei_BoRFduujhR6Pf6lSuWNADyB5rUtxjxNJEB3G0kofug7wbjTIgA5JKMdAQI4r38pJp8qcG8qf9yJnybG7WM_GWY6t3Oh9366t6_ED-GldF2rgZvh-_vw7UmJI7Zxg-gN58t3EO4Yr_PJyezR63y_ASHKB3J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+image+analysis+for+tracking+cargo+transport+in+axons&rft.jtitle=Microscopy+research+and+technique&rft.au=Zhang%2C+Kai&rft.au=Osakada%2C+Yasuko&rft.au=Xie%2C+Wenjun&rft.au=Cui%2C+Bianxiao&rft.date=2011-07-01&rft.issn=1097-0029&rft.volume=74&rft.issue=7&rft.spage=605&rft.epage=613&rft_id=info:doi/10.1002%2Fjemt.20934&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon