Automated image analysis for tracking cargo transport in axons
The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps...
Uložené v:
| Vydané v: | Microscopy research and technique Ročník 74; číslo 7; s. 605 - 613 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2011
|
| Predmet: | |
| ISSN: | 1059-910X, 1097-0029, 1097-0029 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time‐lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back‐projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal‐to‐noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore‐labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time‐lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back‐projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal‐to‐noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore‐labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc. The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This paper presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution and minimal human intervention. The method is based on novel applications of several algorithms including 2-D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons. The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons.The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons. The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons. Microsc. Res. Tech., 2011. ? 2010 Wiley-Liss, Inc. The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a central problem in understanding many neurodegenerative diseases. Quantitative analysis of cargo dynamics in axons usually includes three steps: (1) acquiring time-lapse image series, (2) localizing individual cargos at each time step, and (3) constructing dynamic trajectories for kinetic analysis. Currently, the later two steps are usually carried out with substantial human intervention. This article presents a method of automatic image analysis aiming for constructing cargo trajectories with higher data processing throughput, better spatial resolution, and minimal human intervention. The method is based on novel applications of several algorithms including 2D kymograph construction, seed points detection, trajectory curve tracing, back-projection to extract spatial information, and position refining using a 2D Gaussian fitting. This method is sufficiently robust for usage on images with low signal-to-noise ratio, such as those from single molecule experiments. The method was experimentally validated by tracking the axonal transport of quantum dot and DiI fluorophore-labeled vesicles in dorsal root ganglia neurons. |
| Author | Cui, Bianxiao Osakada, Yasuko Xie, Wenjun Zhang, Kai |
| Author_xml | – sequence: 1 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Department of Chemistry, Stanford University, Stanford, California 94305 – sequence: 2 givenname: Yasuko surname: Osakada fullname: Osakada, Yasuko organization: Department of Chemistry, Stanford University, Stanford, California 94305 – sequence: 3 givenname: Wenjun surname: Xie fullname: Xie, Wenjun organization: Department of Chemistry, Stanford University, Stanford, California 94305 – sequence: 4 givenname: Bianxiao surname: Cui fullname: Cui, Bianxiao email: bcui@stanford.edu organization: Department of Chemistry, Stanford University, Stanford, California 94305 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20945466$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1PFDEYhRuDEVi98QeYudOYDLTTdjq9ISGEL7OoFxiMN023885amGmXtqvsv6fDwkaN4apfzzk5fc8u2nLeAUJvCd4jGFf71zCkvQpLyl6gHYKlKPOt3Br3XJaS4O_baDfGa4wJ4YS9QtsZZpzV9Q46OFwmP-gEbWEHPYdCO92voo1F50ORgjY31s0Lo8Pcj0cXFz6kwrpC33kXX6OXne4jvHlcJ-jbyfHl0Vk5_XJ6fnQ4LQ3nNStb3REgkghGO5AtZVIQ0hgBwCjthK4F5S0QqM2sqeqKV5wTnOEZsFmjTUsn6GDtu1jOBmgNuJylV4uQQ4eV8tqqv1-c_anm_peiuKpktp-g948Gwd8uISY12Gig77UDv4yqEVRg3lQj-eFZkmTHRmAiaEbf_ZlqE-dpvBn4uAZM8DEG6DYIwWrsTo3dqYfuMoz_gY1NOlk__sj2_5eQteS37WH1jLn6dHxx-aQp1xobE9xtNDrcqDwnwdXV51PVfP2Br06mXGF6D6NmuzA |
| CitedBy_id | crossref_primary_10_1159_000358092 crossref_primary_10_1016_j_neulet_2015_10_066 crossref_primary_10_1007_s00249_011_0722_3 crossref_primary_10_1016_j_nano_2015_03_005 crossref_primary_10_1111_tra_12127 crossref_primary_10_1111_tra_12710 crossref_primary_10_1111_tra_12456 crossref_primary_10_1007_s13238_016_0268_3 crossref_primary_10_1091_mbc_e15_06_0404 crossref_primary_10_1111_tra_12428 crossref_primary_10_1016_j_media_2015_06_006 crossref_primary_10_1109_TIP_2018_2867946 crossref_primary_10_1002_cm_21411 crossref_primary_10_3389_fnmol_2017_00004 crossref_primary_10_1016_j_neuron_2015_02_023 crossref_primary_10_1109_TMI_2011_2165554 |
| Cites_doi | 10.1038/nmeth1006-781 10.1016/S0092-8674(03)00111-9 10.1111/j.1600-0854.2007.00636.x 10.1016/j.jsb.2005.06.002 10.1016/j.tcb.2004.03.009 10.1007/400_2009_2 10.1088/1478-3967/2/1/008 10.1038/35074539 10.1016/S0006-3495(01)75884-5 10.1523/JNEUROSCI.21-21-08473.2001 10.1126/science.1105681 10.1109/4233.767088 10.1109/TIP.2010.2045031 10.1007/s00249-009-0458-5 10.1021/ac0600959 10.1242/jcs.01130 10.1002/cphc.200900555 10.1016/j.neuron.2006.05.022 10.1109/34.659930 10.1073/pnas.0706192104 10.1073/pnas.0808084105 10.1091/mbc.9.9.2463 10.1016/j.jneumeth.2006.07.028 10.1523/JNEUROSCI.23-08-03209.2003 10.1126/science.1084398 10.1007/s006070050027 10.1007/s00401-004-0952-x 10.1038/375061a0 10.1111/j.1365-2818.2007.01723.x 10.1006/jcis.1996.0217 10.1016/j.str.2009.09.008 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright © 2010 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright © 2010 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
| DOI | 10.1002/jemt.20934 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-0029 |
| EndPage | 613 |
| ExternalDocumentID | PMC3022967 20945466 10_1002_jemt_20934 JEMT20934 ark_67375_WNG_8PZ0WFL5_0 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Health (NIH) funderid: NS057906 – fundername: Dreyfus New Faculty Award, Searle Scholar Award, Packard Fellowship – fundername: NINDS NIH HHS grantid: R00 NS057906 – fundername: NINDS NIH HHS grantid: NS057906 – fundername: NINDS NIH HHS grantid: K99 NS057906 |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 RYL SAMSI SUPJJ SV3 TWZ UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIK WJL WOHZO WQJ WVDHM WXSBR X7M XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
| ID | FETCH-LOGICAL-c5564-daf1e191743fe9d3497118c7ee433f7a6735de1e6cb8262525510743be4b8acd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292570900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1059-910X 1097-0029 |
| IngestDate | Tue Nov 04 01:59:46 EST 2025 Thu Oct 02 11:23:05 EDT 2025 Thu Jul 10 23:29:20 EDT 2025 Mon Jul 21 06:04:07 EDT 2025 Sat Nov 29 07:08:52 EST 2025 Tue Nov 18 21:37:37 EST 2025 Sun Sep 21 06:23:42 EDT 2025 Sun Sep 21 06:19:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2010 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5564-daf1e191743fe9d3497118c7ee433f7a6735de1e6cb8262525510743be4b8acd3 |
| Notes | istex:B8C2FE39CE334C38EC78C92C2E7CC2D32006FCDB Dreyfus New Faculty Award, Searle Scholar Award, Packard Fellowship ArticleID:JEMT20934 National Institute of Health (NIH) - No. NS057906 ark:/67375/WNG-8PZ0WFL5-0 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3022967 |
| PMID | 20945466 |
| PQID | 1022870173 |
| PQPubID | 23500 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3022967 proquest_miscellaneous_873705827 proquest_miscellaneous_1022870173 pubmed_primary_20945466 crossref_primary_10_1002_jemt_20934 crossref_citationtrail_10_1002_jemt_20934 wiley_primary_10_1002_jemt_20934_JEMT20934 istex_primary_ark_67375_WNG_8PZ0WFL5_0 |
| PublicationCentury | 2000 |
| PublicationDate | July 2011 |
| PublicationDateYYYYMMDD | 2011-07-01 |
| PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Microscopy research and technique |
| PublicationTitleAlternate | Microsc. Res. Tech |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Cui B,Wu C,Chen L,Ramirez A,Bearer EL,Li WP,Mobley WC,Chu S. 2007. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104: 13666-13671. Falnikar A,Baas PW. 2009. Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ 48: 47-64. Roy S,Zhang B,Lee VM,Trojanowski JQ. 2005. Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathol 109: 5-13. Steger C. 1998. An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20: 113-125. Mudrakola HV,Zhang K,Cui B. 2009. Optically resolving individual microtubules in live axons. Structure 17: 1433-1441. Pelzl C,Arcizet D,Piontek G,Schlegel J,Heinrich D. 2009. Axonal guidance by surface microstructuring for intracellular transport investigations. Chemphyschem 10: 2884-2890. Stokin GB,Lillo C,Falzone TL,Brusch RG,Rockenstein E,Mount SL,Raman R,Davies P,Masliah E,Williams DS,Goldstein LS. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288. Zhang K,Osakada Y,Vrljic M,Chen L,Mudrakola HV,Cui B. 2010. Single molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip, in press. DOI 10.1039/C003385E. Miller KE,Sheetz MP. 2004. Axonal mitochondrial transport and potential are correlated. J Cell Sci 117: 2791-2804. Crocker JC,Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179: 298-310. Moerner WE. 2006. Single-molecule mountains yield nanoscale cell images. Nat Methods 3: 781-782. Can A,Shen H,Turner JN,Tanenbaum HL,Roysam B. 1999. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3: 125-138. Smal I,Grigoriev I,Akhmanova A,Niessen W,Meijering E. 2010. Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans Image Process 19:1861-1876. Chetverikov D,Verestoy J. 1999. Feature point tracking for incomplete trajectories. Computing 62: 321-338. Welzel O,Boening D,Stroebel A,Reulbach U,Klingauf J,Kornhuber J,Groemer TW. 2009. Determination of axonal transport velocities via image cross- and autocorrelation. Eur Biophys J 38: 883-889. Yildiz A,Forkey JN,McKinney SA,Ha T,Goldman YE,Selvin PR. 2003. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300: 2061-2065. Pelkmans L,Kartenbeck J,Helenius A. 2001. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473-483. Kannan B,Har JY,Liu P,Maruyama I,Ding JL,Wohland T. 2006. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78: 3444-3451. Li H,Li SH,Yu ZX,Shelbourne P,Li XJ. 2001. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21: 8473-8481. Salehi A,Delcroix JD,Belichenko PV,Zhan K,Wu C,Valletta JS,Takimoto-Kimura R,Kleschevnikov AM,Sambamurti K,Chung PP,Xia W,Villar A,Campbell WA,Kulnane LS,Nixon RA,Lamb BT,Epstein CJ,Stokin GB,Goldstein LS,Mobley WC. 2006. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51: 29-42. Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112: 467-480. Lochner JE,Kingma M,Kuhn S,Meliza CD,Cutler B,Scalettar BA. 1998. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463-2476. Sbalzarini IF,Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195. Bronfman FC,Tcherpakov M,Jovin TM,Fainzilber M. 2003. Ligand-induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome. J Neurosci 23: 3209-3220. Cheezum MK,Walker WF,Guilford WH. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81: 2378-2388. Wu C,Ramirez A,Cui B,Ding J,Delcroix JD,Valletta JS,Liu JJ,Yang Y,Chu S,Mobley WC. 2007. A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway. Traffic 8: 1503-1520. Collard JF,Cote F,Julien JP. 1995. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375: 61-64. Taylor AM,Rhee SW,Jeon NL. 2006. Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol 321: 167-177. Zhang Y,Zhou X,Degterev A,Lipinski M,Adjeroh D,Yuan J,Wong ST. 2007. A novel tracing algorithm for high throughput imaging screening of neuron-based assays. J Neurosci Methods 160: 149-162. Carter BC,Shubeita GT,Gross SP. 2005. Tracking single particles: A user-friendly quantitative evaluation. Phys Biol 2: 60-72. Holzbaur EL. 2004. Motor neurons rely on motor proteins. Trends Cell Biol 14: 233-240. Ittner LM,Fath T,Ke YD,Bi M,van Eersel J,Li KM,Gunning P,Gotz J. 2008. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105: 15997-16002. Racine V,Sachse M,Salamero J,Fraisier V,Trubuil A,Sibarita JB. 2007. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc Oxford 225: 214-228. 2007; 104 2007; 225 2005; 151 2006; 51 2006; 78 2010; 19 2007; 160 2008; 105 2006; 3 1999; 3 1999; 62 1995; 375 1998; 20 2003; 112 2009; 48 2001; 21 2001; 81 2009; 10 2004; 14 2007; 8 2005; 109 2005; 307 2001; 3 2005; 2 1996; 179 2003; 300 2004; 117 2006; 321 2009; 38 1998; 9 2003; 23 2009; 17 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 Zhang K (e_1_2_5_33_1) e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Taylor AM (e_1_2_5_28_1) 2006; 321 e_1_2_5_30_1 e_1_2_5_31_1 |
| References_xml | – reference: Zhang Y,Zhou X,Degterev A,Lipinski M,Adjeroh D,Yuan J,Wong ST. 2007. A novel tracing algorithm for high throughput imaging screening of neuron-based assays. J Neurosci Methods 160: 149-162. – reference: Collard JF,Cote F,Julien JP. 1995. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375: 61-64. – reference: Mudrakola HV,Zhang K,Cui B. 2009. Optically resolving individual microtubules in live axons. Structure 17: 1433-1441. – reference: Smal I,Grigoriev I,Akhmanova A,Niessen W,Meijering E. 2010. Microtubule dynamics analysis using kymographs and variable-rate particle filters. IEEE Trans Image Process 19:1861-1876. – reference: Miller KE,Sheetz MP. 2004. Axonal mitochondrial transport and potential are correlated. J Cell Sci 117: 2791-2804. – reference: Holzbaur EL. 2004. Motor neurons rely on motor proteins. Trends Cell Biol 14: 233-240. – reference: Can A,Shen H,Turner JN,Tanenbaum HL,Roysam B. 1999. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inf Technol Biomed 3: 125-138. – reference: Chetverikov D,Verestoy J. 1999. Feature point tracking for incomplete trajectories. Computing 62: 321-338. – reference: Sbalzarini IF,Koumoutsakos P. 2005. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151: 182-195. – reference: Li H,Li SH,Yu ZX,Shelbourne P,Li XJ. 2001. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 21: 8473-8481. – reference: Pelzl C,Arcizet D,Piontek G,Schlegel J,Heinrich D. 2009. Axonal guidance by surface microstructuring for intracellular transport investigations. Chemphyschem 10: 2884-2890. – reference: Taylor AM,Rhee SW,Jeon NL. 2006. Microfluidic chambers for cell migration and neuroscience research. Methods Mol Biol 321: 167-177. – reference: Racine V,Sachse M,Salamero J,Fraisier V,Trubuil A,Sibarita JB. 2007. Visualization and quantification of vesicle trafficking on a three-dimensional cytoskeleton network in living cells. J Microsc Oxford 225: 214-228. – reference: Kannan B,Har JY,Liu P,Maruyama I,Ding JL,Wohland T. 2006. Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy. Anal Chem 78: 3444-3451. – reference: Ittner LM,Fath T,Ke YD,Bi M,van Eersel J,Li KM,Gunning P,Gotz J. 2008. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105: 15997-16002. – reference: Steger C. 1998. An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20: 113-125. – reference: Falnikar A,Baas PW. 2009. Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ 48: 47-64. – reference: Lochner JE,Kingma M,Kuhn S,Meliza CD,Cutler B,Scalettar BA. 1998. Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9: 2463-2476. – reference: Roy S,Zhang B,Lee VM,Trojanowski JQ. 2005. Axonal transport defects: A common theme in neurodegenerative diseases. Acta Neuropathol 109: 5-13. – reference: Bronfman FC,Tcherpakov M,Jovin TM,Fainzilber M. 2003. Ligand-induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome. J Neurosci 23: 3209-3220. – reference: Stokin GB,Lillo C,Falzone TL,Brusch RG,Rockenstein E,Mount SL,Raman R,Davies P,Masliah E,Williams DS,Goldstein LS. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288. – reference: Carter BC,Shubeita GT,Gross SP. 2005. Tracking single particles: A user-friendly quantitative evaluation. Phys Biol 2: 60-72. – reference: Cheezum MK,Walker WF,Guilford WH. 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81: 2378-2388. – reference: Pelkmans L,Kartenbeck J,Helenius A. 2001. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3: 473-483. – reference: Salehi A,Delcroix JD,Belichenko PV,Zhan K,Wu C,Valletta JS,Takimoto-Kimura R,Kleschevnikov AM,Sambamurti K,Chung PP,Xia W,Villar A,Campbell WA,Kulnane LS,Nixon RA,Lamb BT,Epstein CJ,Stokin GB,Goldstein LS,Mobley WC. 2006. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51: 29-42. – reference: Welzel O,Boening D,Stroebel A,Reulbach U,Klingauf J,Kornhuber J,Groemer TW. 2009. Determination of axonal transport velocities via image cross- and autocorrelation. Eur Biophys J 38: 883-889. – reference: Crocker JC,Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179: 298-310. – reference: Vale RD. 2003. The molecular motor toolbox for intracellular transport. Cell 112: 467-480. – reference: Wu C,Ramirez A,Cui B,Ding J,Delcroix JD,Valletta JS,Liu JJ,Yang Y,Chu S,Mobley WC. 2007. A functional dynein-microtubule network is required for NGF signaling through the Rap1/MAPK pathway. Traffic 8: 1503-1520. – reference: Moerner WE. 2006. Single-molecule mountains yield nanoscale cell images. Nat Methods 3: 781-782. – reference: Yildiz A,Forkey JN,McKinney SA,Ha T,Goldman YE,Selvin PR. 2003. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300: 2061-2065. – reference: Cui B,Wu C,Chen L,Ramirez A,Bearer EL,Li WP,Mobley WC,Chu S. 2007. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci USA 104: 13666-13671. – reference: Zhang K,Osakada Y,Vrljic M,Chen L,Mudrakola HV,Cui B. 2010. Single molecule imaging of NGF axonal transport in microfluidic devices. Lab Chip, in press. DOI 10.1039/C003385E. – volume: 105 start-page: 15997 year: 2008 end-page: 16002 article-title: Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia publication-title: Proc Natl Acad Sci USA – article-title: 2010. Single molecule imaging of NGF axonal transport in microfluidic devices publication-title: Lab Chip – volume: 151 start-page: 182 year: 2005 end-page: 195 article-title: Feature point tracking and trajectory analysis for video imaging in cell biology publication-title: J Struct Biol – volume: 62 start-page: 321 year: 1999 end-page: 338 article-title: Feature point tracking for incomplete trajectories publication-title: Computing – volume: 81 start-page: 2378 year: 2001 end-page: 2388 article-title: Quantitative comparison of algorithms for tracking single fluorescent particles publication-title: Biophys J – volume: 78 start-page: 3444 year: 2006 end-page: 3451 article-title: Electron multiplying charge‐coupled device camera based fluorescence correlation spectroscopy publication-title: Anal Chem – volume: 17 start-page: 1433 year: 2009 end-page: 1441 article-title: Optically resolving individual microtubules in live axons publication-title: Structure – volume: 48 start-page: 47 year: 2009 end-page: 64 article-title: Critical roles for microtubules in axonal development and disease publication-title: Results Probl Cell Differ – volume: 14 start-page: 233 year: 2004 end-page: 240 article-title: Motor neurons rely on motor proteins publication-title: Trends Cell Biol – volume: 300 start-page: 2061 year: 2003 end-page: 2065 article-title: Myosin V walks hand‐over‐hand: Single fluorophore imaging with 1.5‐nm localization publication-title: Science – volume: 117 start-page: 2791 year: 2004 end-page: 2804 article-title: Axonal mitochondrial transport and potential are correlated publication-title: J Cell Sci – volume: 3 start-page: 781 year: 2006 end-page: 782 article-title: Single‐molecule mountains yield nanoscale cell images publication-title: Nat Methods – volume: 3 start-page: 125 year: 1999 end-page: 138 article-title: Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms publication-title: IEEE Trans Inf Technol Biomed – volume: 9 start-page: 2463 year: 1998 end-page: 2476 article-title: Real‐time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid publication-title: Mol Biol Cell – volume: 19 start-page: 1861 year: 2010 end-page: 1876 article-title: Microtubule dynamics analysis using kymographs and variable‐rate particle filters publication-title: IEEE Trans Image Process – volume: 104 start-page: 13666 year: 2007 end-page: 13671 article-title: One at a time, live tracking of NGF axonal transport using quantum dots publication-title: Proc Natl Acad Sci USA – volume: 375 start-page: 61 year: 1995 end-page: 64 article-title: Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis publication-title: Nature – volume: 160 start-page: 149 year: 2007 end-page: 162 article-title: A novel tracing algorithm for high throughput imaging screening of neuron‐based assays publication-title: J Neurosci Methods – volume: 179 start-page: 298 year: 1996 end-page: 310 article-title: Methods of digital video microscopy for colloidal studies publication-title: J Colloid Interface Sci – volume: 112 start-page: 467 year: 2003 end-page: 480 article-title: The molecular motor toolbox for intracellular transport publication-title: Cell – volume: 3 start-page: 473 year: 2001 end-page: 483 article-title: Caveolar endocytosis of simian virus 40 reveals a new two‐step vesicular‐transport pathway to the ER publication-title: Nat Cell Biol – volume: 21 start-page: 8473 year: 2001 end-page: 8481 article-title: Huntingtin aggregate‐associated axonal degeneration is an early pathological event in Huntington's disease mice publication-title: J Neurosci – volume: 307 start-page: 1282 year: 2005 end-page: 1288 article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease publication-title: Science – volume: 321 start-page: 167 year: 2006 end-page: 177 article-title: Microfluidic chambers for cell migration and neuroscience research publication-title: Methods Mol Biol – volume: 109 start-page: 5 year: 2005 end-page: 13 article-title: Axonal transport defects: A common theme in neurodegenerative diseases publication-title: Acta Neuropathol – volume: 225 start-page: 214 year: 2007 end-page: 228 article-title: Visualization and quantification of vesicle trafficking on a three‐dimensional cytoskeleton network in living cells publication-title: J Microsc Oxford – volume: 51 start-page: 29 year: 2006 end-page: 42 article-title: Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration publication-title: Neuron – volume: 8 start-page: 1503 year: 2007 end-page: 1520 article-title: A functional dynein‐microtubule network is required for NGF signaling through the Rap1/MAPK pathway publication-title: Traffic – volume: 2 start-page: 60 year: 2005 end-page: 72 article-title: Tracking single particles: A user‐friendly quantitative evaluation publication-title: Phys Biol – volume: 38 start-page: 883 year: 2009 end-page: 889 article-title: Determination of axonal transport velocities via image cross‐ and autocorrelation publication-title: Eur Biophys J – volume: 23 start-page: 3209 year: 2003 end-page: 3220 article-title: Ligand‐induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome publication-title: J Neurosci – volume: 10 start-page: 2884 year: 2009 end-page: 2890 article-title: Axonal guidance by surface microstructuring for intracellular transport investigations publication-title: Chemphyschem – volume: 20 start-page: 113 year: 1998 end-page: 125 article-title: An unbiased detector of curvilinear structures publication-title: IEEE Trans Pattern Anal Mach Intell – ident: e_1_2_5_17_1 doi: 10.1038/nmeth1006-781 – ident: e_1_2_5_29_1 doi: 10.1016/S0092-8674(03)00111-9 – ident: e_1_2_5_31_1 doi: 10.1111/j.1600-0854.2007.00636.x – ident: e_1_2_5_24_1 doi: 10.1016/j.jsb.2005.06.002 – ident: e_1_2_5_11_1 doi: 10.1016/j.tcb.2004.03.009 – ident: e_1_2_5_10_1 doi: 10.1007/400_2009_2 – ident: e_1_2_5_4_1 doi: 10.1088/1478-3967/2/1/008 – ident: e_1_2_5_19_1 doi: 10.1038/35074539 – ident: e_1_2_5_5_1 doi: 10.1016/S0006-3495(01)75884-5 – ident: e_1_2_5_14_1 doi: 10.1523/JNEUROSCI.21-21-08473.2001 – ident: e_1_2_5_27_1 doi: 10.1126/science.1105681 – ident: e_1_2_5_3_1 doi: 10.1109/4233.767088 – ident: e_1_2_5_25_1 doi: 10.1109/TIP.2010.2045031 – ident: e_1_2_5_30_1 doi: 10.1007/s00249-009-0458-5 – ident: e_1_2_5_13_1 doi: 10.1021/ac0600959 – ident: e_1_2_5_16_1 doi: 10.1242/jcs.01130 – ident: e_1_2_5_20_1 doi: 10.1002/cphc.200900555 – ident: e_1_2_5_23_1 doi: 10.1016/j.neuron.2006.05.022 – ident: e_1_2_5_26_1 doi: 10.1109/34.659930 – ident: e_1_2_5_9_1 doi: 10.1073/pnas.0706192104 – ident: e_1_2_5_12_1 doi: 10.1073/pnas.0808084105 – ident: e_1_2_5_15_1 doi: 10.1091/mbc.9.9.2463 – ident: e_1_2_5_33_1 article-title: 2010. Single molecule imaging of NGF axonal transport in microfluidic devices publication-title: Lab Chip – ident: e_1_2_5_34_1 doi: 10.1016/j.jneumeth.2006.07.028 – ident: e_1_2_5_2_1 doi: 10.1523/JNEUROSCI.23-08-03209.2003 – volume: 321 start-page: 167 year: 2006 ident: e_1_2_5_28_1 article-title: Microfluidic chambers for cell migration and neuroscience research publication-title: Methods Mol Biol – ident: e_1_2_5_32_1 doi: 10.1126/science.1084398 – ident: e_1_2_5_6_1 doi: 10.1007/s006070050027 – ident: e_1_2_5_22_1 doi: 10.1007/s00401-004-0952-x – ident: e_1_2_5_7_1 doi: 10.1038/375061a0 – ident: e_1_2_5_21_1 doi: 10.1111/j.1365-2818.2007.01723.x – ident: e_1_2_5_8_1 doi: 10.1006/jcis.1996.0217 – ident: e_1_2_5_18_1 doi: 10.1016/j.str.2009.09.008 |
| SSID | ssj0011514 |
| Score | 2.1284306 |
| Snippet | The dynamics of cargo movement in axons encodes crucial information about the underlying regulatory mechanisms of the axonal transport process in neurons, a... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 605 |
| SubjectTerms | Algorithms Animals axonal transport Axonal Transport - physiology Axons Axons - physiology Cells, Cultured Construction curve tracing Dynamic tests Dynamics image processing Image Processing, Computer-Assisted - methods kymograph Kymography Microscopy, Fluorescence Neurons - physiology particle tracking Rats Rats, Sprague-Dawley time series analysis Time-Lapse Imaging - methods Tracking Trajectories Two dimensional |
| Title | Automated image analysis for tracking cargo transport in axons |
| URI | https://api.istex.fr/ark:/67375/WNG-8PZ0WFL5-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjemt.20934 https://www.ncbi.nlm.nih.gov/pubmed/20945466 https://www.proquest.com/docview/1022870173 https://www.proquest.com/docview/873705827 https://pubmed.ncbi.nlm.nih.gov/PMC3022967 |
| Volume | 74 |
| WOSCitedRecordID | wos000292570900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011514 issn: 1059-910X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB_anoJfrO-ujxJRBIWlu5tskgURivYUOY8irT36JSTZrJ61e3IPaf97M5u9rYdVEL_tsrN5TGaSmcnkF4CnzniblWodJ4Wk3kHRAq950TFn0vBS6tQ0oexPAzEcytGo2F-Dl8uzMAEfogu4oWY08zUquDaznQvQ0K_uFHMhC8rWoYenqrzr1XvzsX846HYR0oDtjSaEV-pk1MGTZjsXf68sSD3k7dll1ubvSZO_GrPNatTf_L9-3IDrrRVKdoPY3IQ1V9-Cq-FeyvPb8Gp3MZ94U9aVZHzqJxyiW-gS4k1c4ttlMcBOrJ5-nuBrgEcn45roMy_Fd-Cwv3fw-l3cXrQQ2zznLC51lTp03BitXFFSVgjvd1jhHKO0EpoLmpcuddziyGa5d0Mwj5Max4zUtqR3YaOe1G4LiLceU9zMEXllmdXGZKbkNtWG2kpXLo3g-ZLbyrYo5HgZxjcV8JMzhfxQDT8ieNLRfg_YG5dSPWsGrSPR0xPMVhO5Ohq-VXL_ODnqD3KVRPB4OarK6xBujOjaTRYzhV6vn7dSQSMgf6CRvsQkl5mI4F4QhK5C3wyWM84jECsi0hEghPfql3r8pYHypr7mgvsyXzQi8pduqvd7Hw6ap_v_QvwAroUoOCYYP4SN-XThHsEV-2M-nk23YV2M5HarNj8B70IbRg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BC9pe-B5kfBmBkECKlsSOnbwgTbAyIKsm1G0VL5btOFDY0qlr0fjv8cVZRsVAQrwlysWxz3f23fnyO4BnVjublSoVRnlGnYOiBJZ5USFnmeZlpmLdhLL3CzEcZuNxvtvm5uC_MB4fogu4oWY06zUqOAakN85RQ7_aI0yGzCm7DH3Gqch60H_zcbBXdMcIsQf3RhvCaXU07vBJk43zt5d2pD4y9_Qic_P3rMlfrdlmOxpc_8-B3IBrrR1KNr3g3IRLtr4FV31lyh-34dXmYj51xqwtyeTILTlEteAlxBm5xHXMYIidGDX7PMVbD5BOJjVRp06O78DeYGv0ejtsSy2EJk05C0tVxRZdN0Yrm5eU5cJ5HkZYyyithOKCpqWNLTc4t0nqHBHM5KTaMp0pU9I16NXT2t4D4uzHGI9zRFoZZpTWiS65iZWmplKVjQN4ccZuaVocciyHcSg9gnIikR-y4UcATzvaY4--cSHV82bWOhI1-4b5aiKVB8O3Mtv9FB0MilRGATw5m1bptAiPRlRtp4sTiX6vW7liQQMgf6DJXItRmiUigLteEroPum6wlHEegFiSkY4AQbyXn9STLw2YN3Vfzrlr82UjI38Zpny_tTNqrtb_hfgxrGyPdgpZvBt-uA-rPiaO6cYPoDefLexDuGK-zycns0et9vwEJgceTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED9BCxNfeG4sPI1ASEyKlsSv5AvSxBZeparQHhVfLNtxoIylU9ei8d_jS7KMioGE-JYoF8c-39l358vvAJ45421WqnUYZSn1DoqWWOZFh4KlRhSpjk0dyt4fyOEwHY-zUZubg__CNPgQXcANNaNer1HB3XFRbp6jhn51R5gMmVF2GfqMZ5z1oL_9Md8bdMcIcQPujTaE1-po3OGTJpvnby_tSH1k7ulF5ubvWZO_WrP1dpTf-M-B3ITrrR1KthrBuQWXXHUbrjaVKX_cgZdbi_nUG7OuIJMjv-QQ3YKXEG_kEt8xiyF2YvXs8xRvG4B0MqmIPvVyvAp7-c7uqzdhW2ohtJwLFha6jB26boyWLisoy6T3PKx0jlFaSi0k5YWLnbA4twn3jghmclLjmEm1Lega9Kpp5daBePsxxuMcyUvLrDYmMYWwsTbUlrp0cQAvztitbItDjuUwvqkGQTlRyA9V8yOApx3tcYO-cSHV83rWOhI9O8R8NcnVwfC1SkefooN8wFUUwJOzaVVei_BoRFduujhR6Pf6lSuWNADyB5rUtxjxNJEB3G0kofug7wbjTIgA5JKMdAQI4r38pJp8qcG8qf9yJnybG7WM_GWY6t3Oh9366t6_ED-GldF2rgZvh-_vw7UmJI7Zxg-gN58t3EO4Yr_PJyezR63y_ASHKB3J |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+image+analysis+for+tracking+cargo+transport+in+axons&rft.jtitle=Microscopy+research+and+technique&rft.au=Zhang%2C+Kai&rft.au=Osakada%2C+Yasuko&rft.au=Xie%2C+Wenjun&rft.au=Cui%2C+Bianxiao&rft.date=2011-07-01&rft.issn=1097-0029&rft.volume=74&rft.issue=7&rft.spage=605&rft.epage=613&rft_id=info:doi/10.1002%2Fjemt.20934&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon |