Predicting the satisfiability of Boolean formulas by incorporating gated recurrent unit (GRU) in the Transformer framework
The Boolean satisfiability (SAT) problem exhibits different structural features in various domains. Neural network models can be used as more generalized algorithms that can be learned to solve specific problems based on different domain data than traditional rule-based approaches. How to accurately...
Gespeichert in:
| Veröffentlicht in: | PeerJ. Computer science Jg. 10; S. e2169 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
PeerJ. Ltd
08.08.2024
PeerJ Inc |
| Schlagworte: | |
| ISSN: | 2376-5992, 2376-5992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!