Predicting the satisfiability of Boolean formulas by incorporating gated recurrent unit (GRU) in the Transformer framework

The Boolean satisfiability (SAT) problem exhibits different structural features in various domains. Neural network models can be used as more generalized algorithms that can be learned to solve specific problems based on different domain data than traditional rule-based approaches. How to accurately...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science Jg. 10; S. e2169
Hauptverfasser: Chang, Wenjing, Guo, Mengyu, Luo, Junwei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States PeerJ. Ltd 08.08.2024
PeerJ Inc
Schlagworte:
ISSN:2376-5992, 2376-5992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!