Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects
Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely exe...
Uloženo v:
| Vydáno v: | PeerJ. Computer science Ročník 10; s. e2128 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
PeerJ. Ltd
17.06.2024
PeerJ Inc |
| Témata: | |
| ISSN: | 2376-5992, 2376-5992 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains. |
|---|---|
| AbstractList | Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains. Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains. |
| ArticleNumber | e2128 |
| Audience | Academic |
| Author | Alsadie, Deafallah |
| Author_xml | – sequence: 1 givenname: Deafallah surname: Alsadie fullname: Alsadie, Deafallah |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38983206$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1v1DAQxSNUREvpkSuKxAUOWfyxjm0uaFUBXakSEpSz5djjrJfEDnFSwX-Pd7etugjsg63J7z3NOO95cRJigKJ4idGCc8zfDQDjtjJpQTART4ozQnldMSnJyaP7aXGR0hYhhBnOSz4rTqmQghJUnxVxZW91MNBDmFLpQ7mBefRp8qacdPpRJrMBO3c-tKWLY7mON6Uehs4bPfkY9goX28p0cbalif0wT5l9X5qN7joILaRSB1sOY0wDmCm9KJ463SW4uDvPi--fPt5cXlXXXz6vL1fXlWGMTZWU3ABhVAjAnCLHBOJmWVtqkdZiKZdNIy2ieQYnUU0NcYI0DSXS5LrNlfNiffC1UW_VMPpej79V1F7tC3FslR7zlB0ox5gjNUOI4HrJG9kI4I41ErEGiHU8e304eA1z04M1-alG3R2ZHn8JfqPaeKswJpTU-27e3DmM8ecMaVK9Twa6TgeIc1IUcS4lFYRk9PUBbXXuzQcXs6XZ4WolMOVoydCOWvyDyttC700OifO5fiR4eyTIzAS_plbPKan1t6_H7KvH8z4Mep-aDFQHwOTfmkZwDwhGahdMtQ-mMkntgpl5-hdv_LQPUO7ad_9R_QEPcegH |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06853_9 crossref_primary_10_1016_j_future_2025_108050 crossref_primary_10_1109_ACCESS_2024_3463791 crossref_primary_10_1007_s11831_025_10227_6 crossref_primary_10_1109_ACCESS_2024_3505546 crossref_primary_10_1016_j_suscom_2024_101068 crossref_primary_10_32604_cmes_2025_059786 crossref_primary_10_3390_computers14040149 crossref_primary_10_1007_s42979_025_03757_0 crossref_primary_10_62050_fscp2024_481 |
| Cites_doi | 10.1016/j.future.2021.05.026 10.1109/TETC.2019.2902661 10.1145/3513002 10.1007/s10586-021-03481-3 10.1016/j.eswa.2024.123192 10.1016/j.jocs.2022.101828 10.1109/JIOT.2018.2876279 10.1016/j.suscom.2022.100834 10.1016/j.knosys.2023.111009 10.1007/s00521-022-07596-5 10.1016/j.hcc.2023.100149 10.1007/s00607-021-00935-9 10.1016/j.suscom.2022.100787 10.1007/s10586-022-03765-2 10.1007/s10586-020-03230-y 10.1016/j.comnet.2022.108957 10.1016/j.future.2023.10.012 10.1007/s12083-021-01271-7 10.1109/TCC.2020.3032386 10.1109/TNSM.2023.3282795 10.3390/en15134571 10.1002/cpe.6432 10.3390/electronics12163450 10.1007/s11277-017-5200-5 10.1007/s11277-023-10310-w 10.1007/s11235-019-00549-9 10.1109/JSAC.2020.2986615 10.1007/s40815-023-01605-y 10.1109/TEVC.2020.2987804 10.1016/j.engappai.2022.105345 10.1007/s13198-021-01084-0 10.1080/17517575.2019.1605001 10.1109/TCE.2023.3321708 10.1007/s11227-019-03032-z 10.1007/s11235-023-01049-7 10.1016/j.ijsu.2021.105906 10.1016/j.adhoc.2023.103098 10.1109/ACCESS.2020.3015993 10.1109/TCC.2018.2889482 10.1016/j.suscom.2023.100890 10.1016/j.cogsys.2021.07.004 10.1016/j.jpdc.2022.09.006 10.1109/ACCESS.2023.3241240 10.3390/electronics12092064 10.1007/s11042-023-16399-2 10.1109/JIOT.2020.3012617 10.1007/s13369-022-06918-y 10.1002/ett.4523 10.1016/j.future.2019.09.060 10.1007/s00607-023-01215-4 10.1007/s10586-023-04041-7 10.1016/j.jpdc.2020.04.008 10.1016/j.jnca.2022.103333 10.1109/TCC.2022.3188926 10.1016/j.jksuci.2022.10.002 10.1007/s12083-021-01125-2 10.1016/j.future.2022.06.012 10.1109/ACCESS.2022.3200035 10.1007/s11277-021-08714-7 10.1016/j.future.2022.11.012 10.1002/cpe.7376 10.1109/ACCESS.2023.3337034 10.1007/978-3-031-05528-7_5 10.1186/s13677-021-00264-4 10.1016/j.iot.2024.101112 10.1109/ACCESS.2021.3111130 10.1007/s00607-022-01147-5 10.1007/s11227-021-03868-4 10.1109/ACCESS.2019.2949863 10.1109/TVT.2020.3041929 10.1007/s11227-021-04018-6 10.1109/TII.2023.3280314 10.1016/j.dcan.2018.10.003 10.1007/s10922-022-09696-y 10.1016/j.knosys.2023.110563 10.1007/s11042-023-16971-w 10.1007/s10922-022-09664-6 10.1186/s13677-021-00276-0 10.1016/j.comnet.2021.108752 10.1007/s42979-023-01702-7 10.1016/j.comnet.2023.109603 10.1007/s10462-020-09933-3 10.1109/ACCESS.2020.2975741 10.1016/j.jnca.2023.103617 10.1109/JIOT.2023.3240007 10.1016/j.future.2023.10.024 10.1007/s10922-023-09774-9 |
| ContentType | Journal Article |
| Copyright | 2024 Alsadie. COPYRIGHT 2024 PeerJ. Ltd. 2024 Alsadie 2024 Alsadie |
| Copyright_xml | – notice: 2024 Alsadie. – notice: COPYRIGHT 2024 PeerJ. Ltd. – notice: 2024 Alsadie 2024 Alsadie |
| DBID | AAYXX CITATION NPM ISR 7X8 5PM DOA |
| DOI | 10.7717/peerj-cs.2128 |
| DatabaseName | CrossRef PubMed Science in Context MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_f55f2650021647b9b8e7f5b905be2df7 PMC11232606 A813704502 38983206 10_7717_peerj_cs_2128 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM H13 NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c555t-997ce25388e1730f5807c46d3d0aa8494bb9d03320f9063c2f82bb329cb9dd063 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249165400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2376-5992 |
| IngestDate | Tue Oct 14 14:58:23 EDT 2025 Tue Nov 04 02:05:35 EST 2025 Sun Nov 09 13:26:31 EST 2025 Tue Nov 11 10:54:12 EST 2025 Tue Nov 04 18:18:32 EST 2025 Thu Nov 13 16:11:40 EST 2025 Thu Apr 03 06:57:16 EDT 2025 Tue Nov 18 21:49:55 EST 2025 Sat Nov 29 06:22:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fog computing Task scheduling Cloud computing IoT applications Heuristic methods Optimization |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2024 Alsadie. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c555t-997ce25388e1730f5807c46d3d0aa8494bb9d03320f9063c2f82bb329cb9dd063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f55f2650021647b9b8e7f5b905be2df7 |
| PMID | 38983206 |
| PQID | 3077993822 |
| PQPubID | 23479 |
| PageCount | e2128 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f55f2650021647b9b8e7f5b905be2df7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11232606 proquest_miscellaneous_3077993822 gale_infotracmisc_A813704502 gale_infotracacademiconefile_A813704502 gale_incontextgauss_ISR_A813704502 pubmed_primary_38983206 crossref_primary_10_7717_peerj_cs_2128 crossref_citationtrail_10_7717_peerj_cs_2128 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-17 |
| PublicationDateYYYYMMDD | 2024-06-17 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2024 |
| Publisher | PeerJ. Ltd PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
| References | Huang (10.7717/peerj-cs.2128/ref-38) 2019; 5 Usman (10.7717/peerj-cs.2128/ref-90) 2019; 71 Wang (10.7717/peerj-cs.2128/ref-91) 2024; 152 Yadav (10.7717/peerj-cs.2128/ref-97) 2022a; 78 Ali (10.7717/peerj-cs.2128/ref-10) 2020; 10 Chhabra (10.7717/peerj-cs.2128/ref-19) 2022; 15 Sethi (10.7717/peerj-cs.2128/ref-81) 2023; 141 Saif (10.7717/peerj-cs.2128/ref-78) 2023; 11 Mishra (10.7717/peerj-cs.2128/ref-67) 2021; 15 Aron (10.7717/peerj-cs.2128/ref-13) 2022; 116 Raju (10.7717/peerj-cs.2128/ref-75) 2023; 224 Chen (10.7717/peerj-cs.2128/ref-18) 2023; 142 Liu (10.7717/peerj-cs.2128/ref-62) 2016 Jayanetti (10.7717/peerj-cs.2128/ref-48) 2022; 137 Keshavarznejad (10.7717/peerj-cs.2128/ref-53) 2021; 24 Dev (10.7717/peerj-cs.2128/ref-22) 2022 Ramezani Shahidani (10.7717/peerj-cs.2128/ref-76) 2023; 105 Nazeri (10.7717/peerj-cs.2128/ref-71) 2024; 247 Zheng (10.7717/peerj-cs.2128/ref-103) 2022a; 11 Azizi (10.7717/peerj-cs.2128/ref-14) 2022; 201 Hussein (10.7717/peerj-cs.2128/ref-42) 2020; 8 Chen (10.7717/peerj-cs.2128/ref-17) 2018; 6 Khiat (10.7717/peerj-cs.2128/ref-57) 2024; 32 Fahimullah (10.7717/peerj-cs.2128/ref-26) 2023; 83 Khaledian (10.7717/peerj-cs.2128/ref-55) 2023; 37 Sun (10.7717/peerj-cs.2128/ref-87) 2018; 102 Salehnia (10.7717/peerj-cs.2128/ref-79) 2023; 83 Adewojo (10.7717/peerj-cs.2128/ref-7) 2023; 4 Devarajan (10.7717/peerj-cs.2128/ref-23) 2023; 39 Mishra (10.7717/peerj-cs.2128/ref-66) 2023; 20 Farhat (10.7717/peerj-cs.2128/ref-27) 2020; 76 Hussain (10.7717/peerj-cs.2128/ref-41) 2022; 64 Jain (10.7717/peerj-cs.2128/ref-44) 2023; 31 Kishor (10.7717/peerj-cs.2128/ref-58) 2022; 127 Tang (10.7717/peerj-cs.2128/ref-89) 2023; 26 Hosseinioun (10.7717/peerj-cs.2128/ref-37) 2020; 143 Mousavi (10.7717/peerj-cs.2128/ref-68) 2022; 11 Abd Elaziz (10.7717/peerj-cs.2128/ref-1) 2021; 124 Choudhari (10.7717/peerj-cs.2128/ref-20) 2018 Zavieh (10.7717/peerj-cs.2128/ref-101) 2023; 26 Wang (10.7717/peerj-cs.2128/ref-93) 2019b Movahedi (10.7717/peerj-cs.2128/ref-69) 2021; 10 Ibrahim (10.7717/peerj-cs.2128/ref-43) 2023; 11 Guevara (10.7717/peerj-cs.2128/ref-31) 2022 Jamil (10.7717/peerj-cs.2128/ref-46) 2022; 54 Abohamama (10.7717/peerj-cs.2128/ref-6) 2022; 30 Dubey (10.7717/peerj-cs.2128/ref-24) 2023; 14 Khan (10.7717/peerj-cs.2128/ref-56) 2019; 7 Gupta (10.7717/peerj-cs.2128/ref-32) 2023 Shi (10.7717/peerj-cs.2128/ref-84) 2020; 69 Sellami (10.7717/peerj-cs.2128/ref-80) 2022; 210 Hosseini (10.7717/peerj-cs.2128/ref-36) 2022; 206 Mtshali (10.7717/peerj-cs.2128/ref-70) 2019 Wang (10.7717/peerj-cs.2128/ref-92) 2019a; 9 Saif (10.7717/peerj-cs.2128/ref-77) 2022 Liao (10.7717/peerj-cs.2128/ref-60) 2023; 171 Subbaraj (10.7717/peerj-cs.2128/ref-86) 2021; 70 Jalilvand Aghdam Bonab (10.7717/peerj-cs.2128/ref-45) 2022; 15 Hoseiny (10.7717/peerj-cs.2128/ref-35) 2021 Yadav (10.7717/peerj-cs.2128/ref-98) 2022b; 25 Xiong (10.7717/peerj-cs.2128/ref-96) 2020; 38 Yeganeh (10.7717/peerj-cs.2128/ref-100) 2023; 214 Nguyen (10.7717/peerj-cs.2128/ref-73) 2020 Madhura (10.7717/peerj-cs.2128/ref-63) 2021; 103 Baek (10.7717/peerj-cs.2128/ref-15) 2019 Matrouk (10.7717/peerj-cs.2128/ref-64) 2023; 130 Jie (10.7717/peerj-cs.2128/ref-50) 2021 Javaheri (10.7717/peerj-cs.2128/ref-47) 2022; 36 Yadav (10.7717/peerj-cs.2128/ref-99) 2023; 48 Abdel-Basset (10.7717/peerj-cs.2128/ref-4) 2023; 280 Zheng (10.7717/peerj-cs.2128/ref-104) 2022b Fahad (10.7717/peerj-cs.2128/ref-25) 2022; 34 Kaur (10.7717/peerj-cs.2128/ref-51) 2021; 33 Tahmasebi-Pouya (10.7717/peerj-cs.2128/ref-88) 2023; 84 Huang (10.7717/peerj-cs.2128/ref-40) 2023; 12 Kaushik (10.7717/peerj-cs.2128/ref-52) 2022; 10 Bansal (10.7717/peerj-cs.2128/ref-16) 2022; 33 Fellir (10.7717/peerj-cs.2128/ref-28) 2020 Wu (10.7717/peerj-cs.2128/ref-95) 2022; 34 Agarwal (10.7717/peerj-cs.2128/ref-8) 2023; 272 Dabiri (10.7717/peerj-cs.2128/ref-21) 2022; 34 Memari (10.7717/peerj-cs.2128/ref-65) 2022; 78 Abd Elaziz (10.7717/peerj-cs.2128/ref-2) 2021; 54 Huang (10.7717/peerj-cs.2128/ref-39) 2020; 24 Nematollahi (10.7717/peerj-cs.2128/ref-72) 2023; 27 Abdel-Basset (10.7717/peerj-cs.2128/ref-3) 2020; 8 Zhao (10.7717/peerj-cs.2128/ref-102) 2023 Gao (10.7717/peerj-cs.2128/ref-29) 2020; 8 Liu (10.7717/peerj-cs.2128/ref-61) 2022 Siyadatzadeh (10.7717/peerj-cs.2128/ref-85) 2023; 10 Gazori (10.7717/peerj-cs.2128/ref-30) 2020; 110 Alqahtani (10.7717/peerj-cs.2128/ref-11) 2021; 14 Jiang (10.7717/peerj-cs.2128/ref-49) 2024; 152 Shao (10.7717/peerj-cs.2128/ref-82) 2023; 12 Sharma (10.7717/peerj-cs.2128/ref-83) 2024; 25 Khaledian (10.7717/peerj-cs.2128/ref-54) 2024; 106 Haja (10.7717/peerj-cs.2128/ref-33) 2019 Leena (10.7717/peerj-cs.2128/ref-59) 2020 Apat (10.7717/peerj-cs.2128/ref-12) 2019 Hajam (10.7717/peerj-cs.2128/ref-34) 2023; 3 Abdel-Basset (10.7717/peerj-cs.2128/ref-5) 2021; 9 Ahmadabadi (10.7717/peerj-cs.2128/ref-9) 2023; 70 Page (10.7717/peerj-cs.2128/ref-74) 2021; 88 Wu (10.7717/peerj-cs.2128/ref-94) 2018; 9 |
| References_xml | – volume: 124 start-page: 142 issue: 9 year: 2021 ident: 10.7717/peerj-cs.2128/ref-1 article-title: Advanced optimization technique for scheduling iot tasks in cloud-fog computing environments publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2021.05.026 – volume: 9 start-page: 1529 issue: 3 year: 2019a ident: 10.7717/peerj-cs.2128/ref-92 article-title: Smart resource allocation for mobile edge computing: a deep reinforcement learning approach publication-title: IEEE Transactions on Emerging Topics in Computing doi: 10.1109/TETC.2019.2902661 – volume: 54 start-page: 1 issue: 11s year: 2022 ident: 10.7717/peerj-cs.2128/ref-46 article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: a taxonomy, review, and future directions publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3513002 – volume: 25 start-page: 983 issue: 2 year: 2022b ident: 10.7717/peerj-cs.2128/ref-98 article-title: An enhanced multi-objective fireworks algorithm for task scheduling in fog computing environment publication-title: Cluster Computing doi: 10.1007/s10586-021-03481-3 – volume: 247 start-page: 123192 issue: 9 year: 2024 ident: 10.7717/peerj-cs.2128/ref-71 article-title: A predictive energy-aware scheduling strategy for scientific workflows in fog computing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123192 – volume: 64 start-page: 101828 issue: 8 year: 2022 ident: 10.7717/peerj-cs.2128/ref-41 article-title: Hybrid heuristic algorithm for cost-efficient qos aware task scheduling in fog–cloud environment publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2022.101828 – volume: 6 start-page: 4005 issue: 3 year: 2018 ident: 10.7717/peerj-cs.2128/ref-17 article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2018.2876279 – volume: 37 start-page: 100834 issue: 4 year: 2023 ident: 10.7717/peerj-cs.2128/ref-55 article-title: Ikh-eft: an improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2022.100834 – volume: 280 start-page: 111009 issue: 10 year: 2023 ident: 10.7717/peerj-cs.2128/ref-4 article-title: Multi-objective task scheduling method for cyber–physical–social systems in fog computing publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.111009 – start-page: 1451 year: 2016 ident: 10.7717/peerj-cs.2128/ref-62 article-title: Delay-optimal computation task scheduling for mobile-edge computing systems – volume: 34 start-page: 21157 issue: 23 year: 2022 ident: 10.7717/peerj-cs.2128/ref-21 article-title: Optimizing deadline violation time and energy consumption of iot jobs in fog–cloud computing publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07596-5 – volume: 3 start-page: 100149 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2128/ref-34 article-title: Spider monkey optimization based resource allocation and scheduling in fog computing environment publication-title: High-Confidence Computing doi: 10.1016/j.hcc.2023.100149 – volume: 103 start-page: 1353 issue: 7 year: 2021 ident: 10.7717/peerj-cs.2128/ref-63 article-title: An improved list-based task scheduling algorithm for fog computing environment publication-title: Computing doi: 10.1007/s00607-021-00935-9 – start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2128/ref-73 article-title: Modeling multi-constrained fog-cloud environment for task scheduling problem – volume: 36 start-page: 100787 year: 2022 ident: 10.7717/peerj-cs.2128/ref-47 article-title: An improved discrete harris hawk optimization algorithm for efficient workflow scheduling in multi-fog computing publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2022.100787 – volume: 26 start-page: 3689 issue: 6 year: 2023 ident: 10.7717/peerj-cs.2128/ref-89 article-title: Container-based task scheduling in cloud-edge collaborative environment using priority-aware greedy strategy publication-title: Cluster Computing doi: 10.1007/s10586-022-03765-2 – volume: 24 start-page: 1825 issue: 3 year: 2021 ident: 10.7717/peerj-cs.2128/ref-53 article-title: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms publication-title: Cluster Computing doi: 10.1007/s10586-020-03230-y – volume: 210 start-page: 108957 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2128/ref-80 article-title: Energy-aware task scheduling and offloading using deep reinforcement learning in sdn-enabled iot network publication-title: Computer Networks doi: 10.1016/j.comnet.2022.108957 – volume: 152 start-page: 55 issue: 6 year: 2024 ident: 10.7717/peerj-cs.2128/ref-91 article-title: Deep reinforcement learning-based scheduling for optimizing system load and response time in edge and fog computing environments publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2023.10.012 – volume: 15 start-page: 1328 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2128/ref-45 article-title: Qos-aware resource allocation in mobile edge computing networks: using intelligent offloading and caching strategy publication-title: Peer-to-Peer Networking and Applications doi: 10.1007/s12083-021-01271-7 – volume: 10 start-page: 2294 issue: 4 year: 2020 ident: 10.7717/peerj-cs.2128/ref-10 article-title: An automated task scheduling model using non-dominated sorting genetic algorithm ii for fog-cloud systems publication-title: IEEE Transactions on Cloud Computing doi: 10.1109/TCC.2020.3032386 – volume: 20 start-page: 4600 issue: 4 year: 2023 ident: 10.7717/peerj-cs.2128/ref-66 article-title: A collaborative computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-enabled vehicular fog computing: a federated deep q-learning approach publication-title: IEEE Transactions on Network and Service Management doi: 10.1109/TNSM.2023.3282795 – volume: 15 start-page: 4571 issue: 13 year: 2022 ident: 10.7717/peerj-cs.2128/ref-19 article-title: Energy-aware bag-of-tasks scheduling in the cloud computing system using hybrid oppositional differential evolution-enabled whale optimization algorithm publication-title: Energies doi: 10.3390/en15134571 – volume: 33 start-page: e6432 issue: 21 year: 2021 ident: 10.7717/peerj-cs.2128/ref-51 article-title: A systematic review on task scheduling in fog computing: taxonomy, tools, challenges, and future directions publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.6432 – volume: 12 start-page: 3450 issue: 16 year: 2023 ident: 10.7717/peerj-cs.2128/ref-82 article-title: An efficient combination of genetic algorithm and particle swarm optimization for scheduling data-intensive tasks in heterogeneous cloud computing publication-title: Electronics doi: 10.3390/electronics12163450 – start-page: 271 year: 2023 ident: 10.7717/peerj-cs.2128/ref-32 article-title: Heuristics and meta-heuristics based algorithms for resource optimization in fog computing environment: a comparative study – volume: 102 start-page: 1369 issue: 2 year: 2018 ident: 10.7717/peerj-cs.2128/ref-87 article-title: Multi-objective optimization of resource scheduling in fog computing using an improved nsga-ii publication-title: Wireless Personal Communications doi: 10.1007/s11277-017-5200-5 – volume: 130 start-page: 801 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2128/ref-64 article-title: Mobility aware-task scheduling and virtual fog for offloading in iot-fog-cloud environment publication-title: Wireless Personal Communications doi: 10.1007/s11277-023-10310-w – volume: 71 start-page: 275 issue: 2 year: 2019 ident: 10.7717/peerj-cs.2128/ref-90 article-title: Energy-efficient nature-inspired techniques in cloud computing datacenters publication-title: Telecommunication Systems doi: 10.1007/s11235-019-00549-9 – volume: 38 start-page: 1133 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2128/ref-96 article-title: Resource allocation based on deep reinforcement learning in iot edge computing publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2020.2986615 – volume: 26 start-page: 368 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2128/ref-101 article-title: Enhanced efficiency in fog computing: a fuzzy data-driven machine selection strategy publication-title: International Journal of Fuzzy Systems doi: 10.1007/s40815-023-01605-y – volume: 24 start-page: 1150 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2128/ref-39 article-title: A framework for scalable bilevel optimization: identifying and utilizing the interactions between upper-level and lower-level variables publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2020.2987804 – volume: 116 start-page: 105345 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2128/ref-13 article-title: Resource scheduling methods for cloud computing environment: the role of meta-heuristics and artificial intelligence publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105345 – volume: 14 start-page: 774 issue: Suppl 3 year: 2023 ident: 10.7717/peerj-cs.2128/ref-24 article-title: A hybrid multi-faceted task scheduling algorithm for cloud computing environment publication-title: International Journal of System Assurance Engineering and Management doi: 10.1007/s13198-021-01084-0 – volume: 15 start-page: 174 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2128/ref-67 article-title: Nature-inspired cost optimisation for enterprise cloud systems using joint allocation of resources publication-title: Enterprise Information Systems doi: 10.1080/17517575.2019.1605001 – volume: 70 start-page: 907 year: 2023 ident: 10.7717/peerj-cs.2128/ref-9 article-title: Star-quake: a new operator in multi-objective gravitational search algorithm for task scheduling in iot based cloud-fog computing system publication-title: IEEE Transactions on Consumer Electronics doi: 10.1109/TCE.2023.3321708 – volume: 76 start-page: 388 issue: 1 year: 2020 ident: 10.7717/peerj-cs.2128/ref-27 article-title: Reinforcement r-learning model for time scheduling of on-demand fog placement publication-title: The Journal of Supercomputing doi: 10.1007/s11227-019-03032-z – volume: 84 start-page: 321 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2128/ref-88 article-title: A reinforcement learning-based load balancing algorithm for fog computing publication-title: Telecommunication Systems doi: 10.1007/s11235-023-01049-7 – volume: 88 start-page: 105906 issue: Suppl 1 year: 2021 ident: 10.7717/peerj-cs.2128/ref-74 article-title: The prisma 2020 statement: an updated guideline for reporting systematic reviews publication-title: International Journal of Surgery doi: 10.1016/j.ijsu.2021.105906 – volume: 142 start-page: 103098 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2128/ref-18 article-title: A multi-aerial base station assisted joint computation offloading algorithm based on d3qn in edge vanets publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2023.103098 – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.2128/ref-70 article-title: Multi-objective optimization approach for task scheduling in fog computing – volume: 8 year: 2020 ident: 10.7717/peerj-cs.2128/ref-29 article-title: Q-learning-based task offloading and resources optimization for a collaborative computing system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015993 – volume: 9 start-page: 641 issue: 2 year: 2018 ident: 10.7717/peerj-cs.2128/ref-94 article-title: Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things publication-title: IEEE Transactions on Cloud Computing doi: 10.1109/TCC.2018.2889482 – start-page: 1 year: 2021 ident: 10.7717/peerj-cs.2128/ref-35 article-title: Pga: a priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing – volume: 39 start-page: 100890 issue: 4 year: 2023 ident: 10.7717/peerj-cs.2128/ref-23 article-title: Ddnsas: deep reinforcement learning based deep q-learning network for smart agriculture system publication-title: Sustainable Computing: Informatics and Systems doi: 10.1016/j.suscom.2023.100890 – volume: 70 start-page: 40 issue: 5 year: 2021 ident: 10.7717/peerj-cs.2128/ref-86 article-title: Performance oriented task-resource mapping and scheduling in fog computing environment publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2021.07.004 – start-page: 223 year: 2022 ident: 10.7717/peerj-cs.2128/ref-22 article-title: Task scheduling in fog assisted cloud environment using hybrid metaheuristic algorithm – volume: 171 start-page: 28 year: 2023 ident: 10.7717/peerj-cs.2128/ref-60 article-title: Online computation offloading with double reinforcement learning algorithm in mobile edge computing publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2022.09.006 – volume: 11 start-page: 20635 year: 2023 ident: 10.7717/peerj-cs.2128/ref-78 article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241240 – volume: 12 start-page: 2064 issue: 9 year: 2023 ident: 10.7717/peerj-cs.2128/ref-40 article-title: An improved genetic algorithm with swarm intelligence for security-aware task scheduling in hybrid clouds publication-title: Electronics doi: 10.3390/electronics12092064 – volume: 83 start-page: 1 issue: 8 year: 2023 ident: 10.7717/peerj-cs.2128/ref-26 article-title: Machine learning-based solutions for resource management in fog computing publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-16399-2 – volume: 8 start-page: 12638 issue: 16 year: 2020 ident: 10.7717/peerj-cs.2128/ref-3 article-title: Energy-aware metaheuristic algorithm for industrial-internet-of-things task scheduling problems in fog computing applications publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2020.3012617 – volume: 48 start-page: 1547 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2128/ref-99 article-title: An opposition-based hybrid evolutionary approach for task scheduling in fog computing network publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-022-06918-y – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.2128/ref-15 article-title: Managing fog networks using reinforcement learning based load balancing algorithm – volume: 33 start-page: e4523 issue: 9 year: 2022 ident: 10.7717/peerj-cs.2128/ref-16 article-title: A systematic review of task scheduling approaches in fog computing publication-title: Transactions on Emerging Telecommunications Technologies doi: 10.1002/ett.4523 – start-page: 1 year: 2022b ident: 10.7717/peerj-cs.2128/ref-104 article-title: Sac-based computation offloading and resource allocation in vehicular edge computing – start-page: 160 year: 2019 ident: 10.7717/peerj-cs.2128/ref-12 article-title: An optimal task scheduling towards minimized cost and response time in fog computing infrastructure – volume: 110 start-page: 1098 issue: 10 year: 2020 ident: 10.7717/peerj-cs.2128/ref-30 article-title: Saving time and cost on the scheduling of fog-based iot applications using deep reinforcement learning approach publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.09.060 – start-page: 1 year: 2019b ident: 10.7717/peerj-cs.2128/ref-93 article-title: Task offloading in noma-based fog computing networks: a deep q-learning approach – volume: 106 start-page: 109 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2128/ref-54 article-title: An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment publication-title: Computing doi: 10.1007/s00607-023-01215-4 – volume: 27 start-page: 1775 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2128/ref-72 article-title: Task and resource allocation in the internet of things based on an improved version of the moth-flame optimization algorithm publication-title: Cluster Computing doi: 10.1007/s10586-023-04041-7 – start-page: 377 year: 2020 ident: 10.7717/peerj-cs.2128/ref-28 article-title: A multi-agent based model for task scheduling in cloud-fog computing platform – volume: 143 start-page: 88 year: 2020 ident: 10.7717/peerj-cs.2128/ref-37 article-title: A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2020.04.008 – volume: 201 start-page: 103333 issue: 10 year: 2022 ident: 10.7717/peerj-cs.2128/ref-14 article-title: Deadline-aware and energy-efficient iot task scheduling in fog computing systems: a semi-greedy approach publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2022.103333 – volume: 11 start-page: 2144 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2128/ref-68 article-title: Directed search: a new operator in nsga-ii for task scheduling in iot based on cloud-fog computing publication-title: IEEE Transactions on Cloud Computing doi: 10.1109/TCC.2022.3188926 – volume: 34 start-page: 10010 issue: 10 year: 2022 ident: 10.7717/peerj-cs.2128/ref-95 article-title: Optimal deploying iot services on the fog computing: a metaheuristic-based multi-objective approach publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2022.10.002 – volume: 14 start-page: 1905 issue: 4 year: 2021 ident: 10.7717/peerj-cs.2128/ref-11 article-title: Reliable scheduling and load balancing for requests in cloud-fog computing publication-title: Peer-to-Peer Networking and Applications doi: 10.1007/s12083-021-01125-2 – start-page: 16 year: 2022 ident: 10.7717/peerj-cs.2128/ref-77 article-title: Hybrid meta-heuristic genetic algorithm: differential evolution algorithms for scientific workflow scheduling in heterogeneous cloud environment – volume: 137 start-page: 14 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2128/ref-48 article-title: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2022.06.012 – volume: 10 start-page: 87974 year: 2022 ident: 10.7717/peerj-cs.2128/ref-52 article-title: A hybrid latency-and power-aware approach for beyond fifth-generation internet-of-things edge systems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3200035 – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.2128/ref-33 article-title: Towards making big data applications network-aware in edge-cloud systems – volume: 127 start-page: 1683 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2128/ref-58 article-title: Task offloading in fog computing for using smart ant colony optimization publication-title: Wireless Personal Communications doi: 10.1007/s11277-021-08714-7 – volume: 141 start-page: 96 issue: 8 year: 2023 ident: 10.7717/peerj-cs.2128/ref-81 article-title: Feddove: a federated deep q-learning-based offloading for vehicular fog computing publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2022.11.012 – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.2128/ref-20 article-title: Prioritized task scheduling in fog computing – volume: 34 start-page: e7376 issue: 28 year: 2022 ident: 10.7717/peerj-cs.2128/ref-25 article-title: A multi-queue priority-based task scheduling algorithm in fog computing environment publication-title: Concurrency and Computation: Practice and Experience doi: 10.1002/cpe.7376 – volume: 11 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2128/ref-43 article-title: An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3337034 – start-page: 133 volume-title: New Frontiers in Cloud Computing and Internet of Things year: 2022 ident: 10.7717/peerj-cs.2128/ref-61 article-title: Dynamic resource-efficient scheduling in data stream management systems deployed on computing clouds doi: 10.1007/978-3-031-05528-7_5 – volume: 10 start-page: 53 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2128/ref-69 article-title: An efficient population-based multi-objective task scheduling approach in fog computing systems publication-title: Journal of Cloud Computing doi: 10.1186/s13677-021-00264-4 – volume: 25 start-page: 101112 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2128/ref-83 article-title: Intelligent service placement algorithm based on ddqn and prioritized experience replay in iot-fog computing environment publication-title: Internet of Things doi: 10.1016/j.iot.2024.101112 – volume: 9 year: 2021 ident: 10.7717/peerj-cs.2128/ref-5 article-title: Multi-objective task scheduling approach for fog computing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111130 – volume: 105 start-page: 1337 issue: 6 year: 2023 ident: 10.7717/peerj-cs.2128/ref-76 article-title: Task scheduling in edge-fog-cloud architecture: a multi-objective load balancing approach using reinforcement learning algorithm publication-title: Computing doi: 10.1007/s00607-022-01147-5 – volume: 78 start-page: 93 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2128/ref-65 article-title: A latency-aware task scheduling algorithm for allocating virtual machines in a cost-effective and time-sensitive fog-cloud architecture publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-03868-4 – volume: 7 year: 2019 ident: 10.7717/peerj-cs.2128/ref-56 article-title: Energy management in smart sectors using fog based environment and meta-heuristic algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949863 – volume: 69 start-page: 16067 issue: 12 year: 2020 ident: 10.7717/peerj-cs.2128/ref-84 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2020.3041929 – start-page: 169 year: 2021 ident: 10.7717/peerj-cs.2128/ref-50 article-title: A dqn-based approach for online service placement in mobile edge computing – volume: 78 start-page: 4236 issue: 3 year: 2022a ident: 10.7717/peerj-cs.2128/ref-97 article-title: A bi-objective task scheduling approach in fog computing using hybrid fireworks algorithm publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-04018-6 – start-page: 1 year: 2023 ident: 10.7717/peerj-cs.2128/ref-102 article-title: Secure video offloading in MEC-enabled IoT networks: a multi-cell federated deep reinforcement learning approach publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2023.3280314 – volume: 5 start-page: 10 issue: 1 year: 2019 ident: 10.7717/peerj-cs.2128/ref-38 article-title: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing publication-title: Digital Communications and Networks doi: 10.1016/j.dcan.2018.10.003 – volume: 31 start-page: 7 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2128/ref-44 article-title: Qos-aware task offloading in fog environment using multi-agent deep reinforcement learning publication-title: Journal of Network and Systems Management doi: 10.1007/s10922-022-09696-y – volume: 272 start-page: 110563 issue: 5 year: 2023 ident: 10.7717/peerj-cs.2128/ref-8 article-title: Multiprocessor task scheduling using multi-objective hybrid genetic algorithm in fog–cloud computing publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110563 – volume: 83 start-page: 1 issue: 12 year: 2023 ident: 10.7717/peerj-cs.2128/ref-79 article-title: An optimal task scheduling method in iot-fog-cloud network using multi-objective moth-flame algorithm publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-16971-w – volume: 30 start-page: 54 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2128/ref-6 article-title: Real-time task scheduling algorithm for iot-based applications in the cloud–fog environment publication-title: Journal of Network and Systems Management doi: 10.1007/s10922-022-09664-6 – start-page: 2328 year: 2022 ident: 10.7717/peerj-cs.2128/ref-31 article-title: Qos-aware task scheduling based on reinforcement learning for the cloud-fog continuum – volume: 11 start-page: 3 issue: 1 year: 2022a ident: 10.7717/peerj-cs.2128/ref-103 article-title: Deep reinforcement learning-based workload scheduling for edge computing publication-title: Journal of Cloud Computing doi: 10.1186/s13677-021-00276-0 – volume: 206 start-page: 108752 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2128/ref-36 article-title: Optimized task scheduling for cost-latency trade-off in mobile fog computing using fuzzy analytical hierarchy process publication-title: Computer Networks doi: 10.1016/j.comnet.2021.108752 – volume: 4 start-page: 270 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2128/ref-7 article-title: A novel weight-assignment load balancing algorithm for cloud applications publication-title: SN Computer Science doi: 10.1007/s42979-023-01702-7 – volume: 224 start-page: 109603 issue: 5 year: 2023 ident: 10.7717/peerj-cs.2128/ref-75 article-title: Delay and energy aware task scheduling mechanism for fog-enabled iot applications: a reinforcement learning approach publication-title: Computer Networks doi: 10.1016/j.comnet.2023.109603 – volume: 54 start-page: 3599 issue: 5 year: 2021 ident: 10.7717/peerj-cs.2128/ref-2 article-title: An improved henry gas solubility optimization algorithm for task scheduling in cloud computing publication-title: Artificial Intelligence Review doi: 10.1007/s10462-020-09933-3 – volume: 8 start-page: 37191 year: 2020 ident: 10.7717/peerj-cs.2128/ref-42 article-title: Efficient task offloading for iot-based applications in fog computing using ant colony optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975741 – volume: 214 start-page: 103617 issue: 6 year: 2023 ident: 10.7717/peerj-cs.2128/ref-100 article-title: A novel q-learning-based hybrid algorithm for the optimal offloading and scheduling in mobile edge computing environments publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2023.103617 – volume: 10 start-page: 10752 issue: 12 year: 2023 ident: 10.7717/peerj-cs.2128/ref-85 article-title: Relief: a reinforcement learning-based real-time task assignment strategy in emerging fault-tolerant fog computing publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3240007 – start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2128/ref-59 article-title: Intelligent scheduling in fog environment based on improved hybrid heuristics – volume: 152 start-page: 207 issue: 11 year: 2024 ident: 10.7717/peerj-cs.2128/ref-49 article-title: Metsm: multiobjective energy-efficient task scheduling model for an edge heterogeneous multiprocessor system publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2023.10.024 – volume: 32 start-page: 3 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2128/ref-57 article-title: Genetic-based algorithm for task scheduling in fog–cloud environment publication-title: Journal of Network and Systems Management doi: 10.1007/s10922-023-09774-9 |
| SSID | ssj0001511119 |
| Score | 2.3394816 |
| Snippet | Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e2128 |
| SubjectTerms | Algorithms Algorithms and Analysis of Algorithms Cloud computing Computer Networks and Communications Distributed and Parallel Computing Energy efficiency Fog computing Heuristic methods Internet Of Things IoT applications Machine learning Optimization Task scheduling Technology application |
| Title | Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38983206 https://www.proquest.com/docview/3077993822 https://pubmed.ncbi.nlm.nih.gov/PMC11232606 https://doaj.org/article/f55f2650021647b9b8e7f5b905be2df7 |
| Volume | 10 |
| WOSCitedRecordID | wos001249165400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: P5Z dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: K7- dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: PIMPY dateStart: 20150527 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgcODC90dgVAYhuJAtceLa5tahTlSwqhpDKlws27G3wpRMTcORv51nJ60SIcSFiw_2a-WP9_F7it_PCL0yngIlsSI2hSJxTogBm0t0nClOFWMQo0ygzP_E5nO-XIpF76kvfyespQduN-7QUeoIwAiIReOcaaG5ZY5qkVBtSeFCHTmgnl4y1dYHe1cgWlJNBinL4ZW16--xqQ_AV_NBEApc_X965F5IGl6X7MWf47vodgcc8aSd8D10zZb30Z3towy4s9EHqJq0X_VD6RpelfjCNi0bM96o-geGbBaiiy9Cx4BX8aw6w_2P2P4XrjqPzWXVFNiEvwfZd9hsX12psSoLDPMPRZr1Q_TleHr2_kPcvaoQG0rpJhaCGUvAz3Gbgnk7yhNm8nGRFYlSPBe51qJIsowkTgB-McRxonVGhIH-Anoeob2yKu0ThAuR6NyztxCiIE8zWoN1q8ylWZ45nY4j9Ha7zdJ0lOP-5YtLCamHPxUZTkWaWvpTidDrnfhVy7XxN8Ejf2Y7IU-RHTpAcWSnOPJfihOhl_7EpSfBKP0tm3PV1LWcfT6VE55mDLBuQiL0phNyFczcqK5oAdbvebMGkvsDSbBSMxh-sVUs6Yf81bbSVk0twckyAIkA1CL0uFW03cIATYLHTWAj-UAFBysfjpSri0ASnnqsDNnp0_-xV8_QLQJgzl-RS9k-2tusG_sc3TQ_N6t6PULX2ZKP0I2j6XxxOgqGCO1HFkN78msK7YJ-g_HF7GTx9Tc1sDz5 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+heuristic+task+scheduling+for+IoT+applications+in+fog-cloud+computing%3A+challenges+and+prospects&rft.jtitle=PeerJ.+Computer+science&rft.au=Alsadie%2C+Deafallah&rft.date=2024-06-17&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2128&rft_id=info:doi/10.7717%2Fpeerj-cs.2128&rft.externalDocID=A813704502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |