Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects

Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely exe...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science Vol. 10; p. e2128
Main Author: Alsadie, Deafallah
Format: Journal Article
Language:English
Published: United States PeerJ. Ltd 17.06.2024
PeerJ Inc
Subjects:
ISSN:2376-5992, 2376-5992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.
AbstractList Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.
Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud computing to the network edge. Task scheduling is pivotal in enhancing energy efficiency, optimizing resource utilization and ensuring the timely execution of tasks within fog computing environments. This article presents a comprehensive review of the advancements in task scheduling methodologies for fog computing systems, covering priority-based, greedy heuristics, metaheuristics, learning-based, hybrid heuristics, and nature-inspired heuristic approaches. Through a systematic analysis of relevant literature, we highlight the strengths and limitations of each approach and identify key challenges facing fog computing task scheduling, including dynamic environments, heterogeneity, scalability, resource constraints, security concerns, and algorithm transparency. Furthermore, we propose future research directions to address these challenges, including the integration of machine learning techniques for real-time adaptation, leveraging federated learning for collaborative scheduling, developing resource-aware and energy-efficient algorithms, incorporating security-aware techniques, and advancing explainable AI methodologies. By addressing these challenges and pursuing these research directions, we aim to facilitate the development of more robust, adaptable, and efficient task-scheduling solutions for fog computing environments, ultimately fostering trust, security, and sustainability in fog computing systems and facilitating their widespread adoption across diverse applications and domains.
ArticleNumber e2128
Audience Academic
Author Alsadie, Deafallah
Author_xml – sequence: 1
  givenname: Deafallah
  surname: Alsadie
  fullname: Alsadie, Deafallah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38983206$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1v1DAQxSNUREvpkSuKxAUOWfyxjm0uaFUBXakSEpSz5djjrJfEDnFSwX-Pd7etugjsg63J7z3NOO95cRJigKJ4idGCc8zfDQDjtjJpQTART4ozQnldMSnJyaP7aXGR0hYhhBnOSz4rTqmQghJUnxVxZW91MNBDmFLpQ7mBefRp8qacdPpRJrMBO3c-tKWLY7mON6Uehs4bPfkY9goX28p0cbalif0wT5l9X5qN7joILaRSB1sOY0wDmCm9KJ463SW4uDvPi--fPt5cXlXXXz6vL1fXlWGMTZWU3ABhVAjAnCLHBOJmWVtqkdZiKZdNIy2ieQYnUU0NcYI0DSXS5LrNlfNiffC1UW_VMPpej79V1F7tC3FslR7zlB0ox5gjNUOI4HrJG9kI4I41ErEGiHU8e304eA1z04M1-alG3R2ZHn8JfqPaeKswJpTU-27e3DmM8ecMaVK9Twa6TgeIc1IUcS4lFYRk9PUBbXXuzQcXs6XZ4WolMOVoydCOWvyDyttC700OifO5fiR4eyTIzAS_plbPKan1t6_H7KvH8z4Mep-aDFQHwOTfmkZwDwhGahdMtQ-mMkntgpl5-hdv_LQPUO7ad_9R_QEPcegH
CitedBy_id crossref_primary_10_1007_s11227_024_06853_9
crossref_primary_10_1016_j_future_2025_108050
crossref_primary_10_1109_ACCESS_2024_3463791
crossref_primary_10_1007_s11831_025_10227_6
crossref_primary_10_1109_ACCESS_2024_3505546
crossref_primary_10_1016_j_suscom_2024_101068
crossref_primary_10_32604_cmes_2025_059786
crossref_primary_10_3390_computers14040149
crossref_primary_10_1007_s42979_025_03757_0
crossref_primary_10_62050_fscp2024_481
Cites_doi 10.1016/j.future.2021.05.026
10.1109/TETC.2019.2902661
10.1145/3513002
10.1007/s10586-021-03481-3
10.1016/j.eswa.2024.123192
10.1016/j.jocs.2022.101828
10.1109/JIOT.2018.2876279
10.1016/j.suscom.2022.100834
10.1016/j.knosys.2023.111009
10.1007/s00521-022-07596-5
10.1016/j.hcc.2023.100149
10.1007/s00607-021-00935-9
10.1016/j.suscom.2022.100787
10.1007/s10586-022-03765-2
10.1007/s10586-020-03230-y
10.1016/j.comnet.2022.108957
10.1016/j.future.2023.10.012
10.1007/s12083-021-01271-7
10.1109/TCC.2020.3032386
10.1109/TNSM.2023.3282795
10.3390/en15134571
10.1002/cpe.6432
10.3390/electronics12163450
10.1007/s11277-017-5200-5
10.1007/s11277-023-10310-w
10.1007/s11235-019-00549-9
10.1109/JSAC.2020.2986615
10.1007/s40815-023-01605-y
10.1109/TEVC.2020.2987804
10.1016/j.engappai.2022.105345
10.1007/s13198-021-01084-0
10.1080/17517575.2019.1605001
10.1109/TCE.2023.3321708
10.1007/s11227-019-03032-z
10.1007/s11235-023-01049-7
10.1016/j.ijsu.2021.105906
10.1016/j.adhoc.2023.103098
10.1109/ACCESS.2020.3015993
10.1109/TCC.2018.2889482
10.1016/j.suscom.2023.100890
10.1016/j.cogsys.2021.07.004
10.1016/j.jpdc.2022.09.006
10.1109/ACCESS.2023.3241240
10.3390/electronics12092064
10.1007/s11042-023-16399-2
10.1109/JIOT.2020.3012617
10.1007/s13369-022-06918-y
10.1002/ett.4523
10.1016/j.future.2019.09.060
10.1007/s00607-023-01215-4
10.1007/s10586-023-04041-7
10.1016/j.jpdc.2020.04.008
10.1016/j.jnca.2022.103333
10.1109/TCC.2022.3188926
10.1016/j.jksuci.2022.10.002
10.1007/s12083-021-01125-2
10.1016/j.future.2022.06.012
10.1109/ACCESS.2022.3200035
10.1007/s11277-021-08714-7
10.1016/j.future.2022.11.012
10.1002/cpe.7376
10.1109/ACCESS.2023.3337034
10.1007/978-3-031-05528-7_5
10.1186/s13677-021-00264-4
10.1016/j.iot.2024.101112
10.1109/ACCESS.2021.3111130
10.1007/s00607-022-01147-5
10.1007/s11227-021-03868-4
10.1109/ACCESS.2019.2949863
10.1109/TVT.2020.3041929
10.1007/s11227-021-04018-6
10.1109/TII.2023.3280314
10.1016/j.dcan.2018.10.003
10.1007/s10922-022-09696-y
10.1016/j.knosys.2023.110563
10.1007/s11042-023-16971-w
10.1007/s10922-022-09664-6
10.1186/s13677-021-00276-0
10.1016/j.comnet.2021.108752
10.1007/s42979-023-01702-7
10.1016/j.comnet.2023.109603
10.1007/s10462-020-09933-3
10.1109/ACCESS.2020.2975741
10.1016/j.jnca.2023.103617
10.1109/JIOT.2023.3240007
10.1016/j.future.2023.10.024
10.1007/s10922-023-09774-9
ContentType Journal Article
Copyright 2024 Alsadie.
COPYRIGHT 2024 PeerJ. Ltd.
2024 Alsadie 2024 Alsadie
Copyright_xml – notice: 2024 Alsadie.
– notice: COPYRIGHT 2024 PeerJ. Ltd.
– notice: 2024 Alsadie 2024 Alsadie
DBID AAYXX
CITATION
NPM
ISR
7X8
5PM
DOA
DOI 10.7717/peerj-cs.2128
DatabaseName CrossRef
PubMed
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_f55f2650021647b9b8e7f5b905be2df7
PMC11232606
A813704502
38983206
10_7717_peerj_cs_2128
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
H13
NPM
7X8
5PM
ID FETCH-LOGICAL-c555t-997ce25388e1730f5807c46d3d0aa8494bb9d03320f9063c2f82bb329cb9dd063
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001249165400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2376-5992
IngestDate Tue Oct 14 14:58:23 EDT 2025
Tue Nov 04 02:05:35 EST 2025
Sun Nov 09 13:26:31 EST 2025
Tue Nov 11 10:54:12 EST 2025
Tue Nov 04 18:18:32 EST 2025
Thu Nov 13 16:11:40 EST 2025
Thu Apr 03 06:57:16 EDT 2025
Tue Nov 18 21:49:55 EST 2025
Sat Nov 29 06:22:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fog computing
Task scheduling
Cloud computing
IoT applications
Heuristic methods
Optimization
Language English
License https://creativecommons.org/licenses/by/4.0
2024 Alsadie.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-997ce25388e1730f5807c46d3d0aa8494bb9d03320f9063c2f82bb329cb9dd063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/f55f2650021647b9b8e7f5b905be2df7
PMID 38983206
PQID 3077993822
PQPubID 23479
PageCount e2128
ParticipantIDs doaj_primary_oai_doaj_org_article_f55f2650021647b9b8e7f5b905be2df7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11232606
proquest_miscellaneous_3077993822
gale_infotracmisc_A813704502
gale_infotracacademiconefile_A813704502
gale_incontextgauss_ISR_A813704502
pubmed_primary_38983206
crossref_primary_10_7717_peerj_cs_2128
crossref_citationtrail_10_7717_peerj_cs_2128
PublicationCentury 2000
PublicationDate 2024-06-17
PublicationDateYYYYMMDD 2024-06-17
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2024
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Huang (10.7717/peerj-cs.2128/ref-38) 2019; 5
Usman (10.7717/peerj-cs.2128/ref-90) 2019; 71
Wang (10.7717/peerj-cs.2128/ref-91) 2024; 152
Yadav (10.7717/peerj-cs.2128/ref-97) 2022a; 78
Ali (10.7717/peerj-cs.2128/ref-10) 2020; 10
Chhabra (10.7717/peerj-cs.2128/ref-19) 2022; 15
Sethi (10.7717/peerj-cs.2128/ref-81) 2023; 141
Saif (10.7717/peerj-cs.2128/ref-78) 2023; 11
Mishra (10.7717/peerj-cs.2128/ref-67) 2021; 15
Aron (10.7717/peerj-cs.2128/ref-13) 2022; 116
Raju (10.7717/peerj-cs.2128/ref-75) 2023; 224
Chen (10.7717/peerj-cs.2128/ref-18) 2023; 142
Liu (10.7717/peerj-cs.2128/ref-62) 2016
Jayanetti (10.7717/peerj-cs.2128/ref-48) 2022; 137
Keshavarznejad (10.7717/peerj-cs.2128/ref-53) 2021; 24
Dev (10.7717/peerj-cs.2128/ref-22) 2022
Ramezani Shahidani (10.7717/peerj-cs.2128/ref-76) 2023; 105
Nazeri (10.7717/peerj-cs.2128/ref-71) 2024; 247
Zheng (10.7717/peerj-cs.2128/ref-103) 2022a; 11
Azizi (10.7717/peerj-cs.2128/ref-14) 2022; 201
Hussein (10.7717/peerj-cs.2128/ref-42) 2020; 8
Chen (10.7717/peerj-cs.2128/ref-17) 2018; 6
Khiat (10.7717/peerj-cs.2128/ref-57) 2024; 32
Fahimullah (10.7717/peerj-cs.2128/ref-26) 2023; 83
Khaledian (10.7717/peerj-cs.2128/ref-55) 2023; 37
Sun (10.7717/peerj-cs.2128/ref-87) 2018; 102
Salehnia (10.7717/peerj-cs.2128/ref-79) 2023; 83
Adewojo (10.7717/peerj-cs.2128/ref-7) 2023; 4
Devarajan (10.7717/peerj-cs.2128/ref-23) 2023; 39
Mishra (10.7717/peerj-cs.2128/ref-66) 2023; 20
Farhat (10.7717/peerj-cs.2128/ref-27) 2020; 76
Hussain (10.7717/peerj-cs.2128/ref-41) 2022; 64
Jain (10.7717/peerj-cs.2128/ref-44) 2023; 31
Kishor (10.7717/peerj-cs.2128/ref-58) 2022; 127
Tang (10.7717/peerj-cs.2128/ref-89) 2023; 26
Hosseinioun (10.7717/peerj-cs.2128/ref-37) 2020; 143
Mousavi (10.7717/peerj-cs.2128/ref-68) 2022; 11
Abd Elaziz (10.7717/peerj-cs.2128/ref-1) 2021; 124
Choudhari (10.7717/peerj-cs.2128/ref-20) 2018
Zavieh (10.7717/peerj-cs.2128/ref-101) 2023; 26
Wang (10.7717/peerj-cs.2128/ref-93) 2019b
Movahedi (10.7717/peerj-cs.2128/ref-69) 2021; 10
Ibrahim (10.7717/peerj-cs.2128/ref-43) 2023; 11
Guevara (10.7717/peerj-cs.2128/ref-31) 2022
Jamil (10.7717/peerj-cs.2128/ref-46) 2022; 54
Abohamama (10.7717/peerj-cs.2128/ref-6) 2022; 30
Dubey (10.7717/peerj-cs.2128/ref-24) 2023; 14
Khan (10.7717/peerj-cs.2128/ref-56) 2019; 7
Gupta (10.7717/peerj-cs.2128/ref-32) 2023
Shi (10.7717/peerj-cs.2128/ref-84) 2020; 69
Sellami (10.7717/peerj-cs.2128/ref-80) 2022; 210
Hosseini (10.7717/peerj-cs.2128/ref-36) 2022; 206
Mtshali (10.7717/peerj-cs.2128/ref-70) 2019
Wang (10.7717/peerj-cs.2128/ref-92) 2019a; 9
Saif (10.7717/peerj-cs.2128/ref-77) 2022
Liao (10.7717/peerj-cs.2128/ref-60) 2023; 171
Subbaraj (10.7717/peerj-cs.2128/ref-86) 2021; 70
Jalilvand Aghdam Bonab (10.7717/peerj-cs.2128/ref-45) 2022; 15
Hoseiny (10.7717/peerj-cs.2128/ref-35) 2021
Yadav (10.7717/peerj-cs.2128/ref-98) 2022b; 25
Xiong (10.7717/peerj-cs.2128/ref-96) 2020; 38
Yeganeh (10.7717/peerj-cs.2128/ref-100) 2023; 214
Nguyen (10.7717/peerj-cs.2128/ref-73) 2020
Madhura (10.7717/peerj-cs.2128/ref-63) 2021; 103
Baek (10.7717/peerj-cs.2128/ref-15) 2019
Matrouk (10.7717/peerj-cs.2128/ref-64) 2023; 130
Jie (10.7717/peerj-cs.2128/ref-50) 2021
Javaheri (10.7717/peerj-cs.2128/ref-47) 2022; 36
Yadav (10.7717/peerj-cs.2128/ref-99) 2023; 48
Abdel-Basset (10.7717/peerj-cs.2128/ref-4) 2023; 280
Zheng (10.7717/peerj-cs.2128/ref-104) 2022b
Fahad (10.7717/peerj-cs.2128/ref-25) 2022; 34
Kaur (10.7717/peerj-cs.2128/ref-51) 2021; 33
Tahmasebi-Pouya (10.7717/peerj-cs.2128/ref-88) 2023; 84
Huang (10.7717/peerj-cs.2128/ref-40) 2023; 12
Kaushik (10.7717/peerj-cs.2128/ref-52) 2022; 10
Bansal (10.7717/peerj-cs.2128/ref-16) 2022; 33
Fellir (10.7717/peerj-cs.2128/ref-28) 2020
Wu (10.7717/peerj-cs.2128/ref-95) 2022; 34
Agarwal (10.7717/peerj-cs.2128/ref-8) 2023; 272
Dabiri (10.7717/peerj-cs.2128/ref-21) 2022; 34
Memari (10.7717/peerj-cs.2128/ref-65) 2022; 78
Abd Elaziz (10.7717/peerj-cs.2128/ref-2) 2021; 54
Huang (10.7717/peerj-cs.2128/ref-39) 2020; 24
Nematollahi (10.7717/peerj-cs.2128/ref-72) 2023; 27
Abdel-Basset (10.7717/peerj-cs.2128/ref-3) 2020; 8
Zhao (10.7717/peerj-cs.2128/ref-102) 2023
Gao (10.7717/peerj-cs.2128/ref-29) 2020; 8
Liu (10.7717/peerj-cs.2128/ref-61) 2022
Siyadatzadeh (10.7717/peerj-cs.2128/ref-85) 2023; 10
Gazori (10.7717/peerj-cs.2128/ref-30) 2020; 110
Alqahtani (10.7717/peerj-cs.2128/ref-11) 2021; 14
Jiang (10.7717/peerj-cs.2128/ref-49) 2024; 152
Shao (10.7717/peerj-cs.2128/ref-82) 2023; 12
Sharma (10.7717/peerj-cs.2128/ref-83) 2024; 25
Khaledian (10.7717/peerj-cs.2128/ref-54) 2024; 106
Haja (10.7717/peerj-cs.2128/ref-33) 2019
Leena (10.7717/peerj-cs.2128/ref-59) 2020
Apat (10.7717/peerj-cs.2128/ref-12) 2019
Hajam (10.7717/peerj-cs.2128/ref-34) 2023; 3
Abdel-Basset (10.7717/peerj-cs.2128/ref-5) 2021; 9
Ahmadabadi (10.7717/peerj-cs.2128/ref-9) 2023; 70
Page (10.7717/peerj-cs.2128/ref-74) 2021; 88
Wu (10.7717/peerj-cs.2128/ref-94) 2018; 9
References_xml – volume: 124
  start-page: 142
  issue: 9
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-1
  article-title: Advanced optimization technique for scheduling iot tasks in cloud-fog computing environments
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.05.026
– volume: 9
  start-page: 1529
  issue: 3
  year: 2019a
  ident: 10.7717/peerj-cs.2128/ref-92
  article-title: Smart resource allocation for mobile edge computing: a deep reinforcement learning approach
  publication-title: IEEE Transactions on Emerging Topics in Computing
  doi: 10.1109/TETC.2019.2902661
– volume: 54
  start-page: 1
  issue: 11s
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-46
  article-title: Resource allocation and task scheduling in fog computing and internet of everything environments: a taxonomy, review, and future directions
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3513002
– volume: 25
  start-page: 983
  issue: 2
  year: 2022b
  ident: 10.7717/peerj-cs.2128/ref-98
  article-title: An enhanced multi-objective fireworks algorithm for task scheduling in fog computing environment
  publication-title: Cluster Computing
  doi: 10.1007/s10586-021-03481-3
– volume: 247
  start-page: 123192
  issue: 9
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-71
  article-title: A predictive energy-aware scheduling strategy for scientific workflows in fog computing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.123192
– volume: 64
  start-page: 101828
  issue: 8
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-41
  article-title: Hybrid heuristic algorithm for cost-efficient qos aware task scheduling in fog–cloud environment
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2022.101828
– volume: 6
  start-page: 4005
  issue: 3
  year: 2018
  ident: 10.7717/peerj-cs.2128/ref-17
  article-title: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2018.2876279
– volume: 37
  start-page: 100834
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-55
  article-title: Ikh-eft: an improved method of workflow scheduling using the krill herd algorithm in the fog-cloud environment
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2022.100834
– volume: 280
  start-page: 111009
  issue: 10
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-4
  article-title: Multi-objective task scheduling method for cyber–physical–social systems in fog computing
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.111009
– start-page: 1451
  year: 2016
  ident: 10.7717/peerj-cs.2128/ref-62
  article-title: Delay-optimal computation task scheduling for mobile-edge computing systems
– volume: 34
  start-page: 21157
  issue: 23
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-21
  article-title: Optimizing deadline violation time and energy consumption of iot jobs in fog–cloud computing
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07596-5
– volume: 3
  start-page: 100149
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-34
  article-title: Spider monkey optimization based resource allocation and scheduling in fog computing environment
  publication-title: High-Confidence Computing
  doi: 10.1016/j.hcc.2023.100149
– volume: 103
  start-page: 1353
  issue: 7
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-63
  article-title: An improved list-based task scheduling algorithm for fog computing environment
  publication-title: Computing
  doi: 10.1007/s00607-021-00935-9
– start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-73
  article-title: Modeling multi-constrained fog-cloud environment for task scheduling problem
– volume: 36
  start-page: 100787
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-47
  article-title: An improved discrete harris hawk optimization algorithm for efficient workflow scheduling in multi-fog computing
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2022.100787
– volume: 26
  start-page: 3689
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-89
  article-title: Container-based task scheduling in cloud-edge collaborative environment using priority-aware greedy strategy
  publication-title: Cluster Computing
  doi: 10.1007/s10586-022-03765-2
– volume: 24
  start-page: 1825
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-53
  article-title: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms
  publication-title: Cluster Computing
  doi: 10.1007/s10586-020-03230-y
– volume: 210
  start-page: 108957
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-80
  article-title: Energy-aware task scheduling and offloading using deep reinforcement learning in sdn-enabled iot network
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2022.108957
– volume: 152
  start-page: 55
  issue: 6
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-91
  article-title: Deep reinforcement learning-based scheduling for optimizing system load and response time in edge and fog computing environments
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2023.10.012
– volume: 15
  start-page: 1328
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-45
  article-title: Qos-aware resource allocation in mobile edge computing networks: using intelligent offloading and caching strategy
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-021-01271-7
– volume: 10
  start-page: 2294
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-10
  article-title: An automated task scheduling model using non-dominated sorting genetic algorithm ii for fog-cloud systems
  publication-title: IEEE Transactions on Cloud Computing
  doi: 10.1109/TCC.2020.3032386
– volume: 20
  start-page: 4600
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-66
  article-title: A collaborative computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-enabled vehicular fog computing: a federated deep q-learning approach
  publication-title: IEEE Transactions on Network and Service Management
  doi: 10.1109/TNSM.2023.3282795
– volume: 15
  start-page: 4571
  issue: 13
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-19
  article-title: Energy-aware bag-of-tasks scheduling in the cloud computing system using hybrid oppositional differential evolution-enabled whale optimization algorithm
  publication-title: Energies
  doi: 10.3390/en15134571
– volume: 33
  start-page: e6432
  issue: 21
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-51
  article-title: A systematic review on task scheduling in fog computing: taxonomy, tools, challenges, and future directions
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.6432
– volume: 12
  start-page: 3450
  issue: 16
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-82
  article-title: An efficient combination of genetic algorithm and particle swarm optimization for scheduling data-intensive tasks in heterogeneous cloud computing
  publication-title: Electronics
  doi: 10.3390/electronics12163450
– start-page: 271
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-32
  article-title: Heuristics and meta-heuristics based algorithms for resource optimization in fog computing environment: a comparative study
– volume: 102
  start-page: 1369
  issue: 2
  year: 2018
  ident: 10.7717/peerj-cs.2128/ref-87
  article-title: Multi-objective optimization of resource scheduling in fog computing using an improved nsga-ii
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-5200-5
– volume: 130
  start-page: 801
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-64
  article-title: Mobility aware-task scheduling and virtual fog for offloading in iot-fog-cloud environment
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-023-10310-w
– volume: 71
  start-page: 275
  issue: 2
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-90
  article-title: Energy-efficient nature-inspired techniques in cloud computing datacenters
  publication-title: Telecommunication Systems
  doi: 10.1007/s11235-019-00549-9
– volume: 38
  start-page: 1133
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-96
  article-title: Resource allocation based on deep reinforcement learning in iot edge computing
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2020.2986615
– volume: 26
  start-page: 368
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-101
  article-title: Enhanced efficiency in fog computing: a fuzzy data-driven machine selection strategy
  publication-title: International Journal of Fuzzy Systems
  doi: 10.1007/s40815-023-01605-y
– volume: 24
  start-page: 1150
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-39
  article-title: A framework for scalable bilevel optimization: identifying and utilizing the interactions between upper-level and lower-level variables
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2987804
– volume: 116
  start-page: 105345
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-13
  article-title: Resource scheduling methods for cloud computing environment: the role of meta-heuristics and artificial intelligence
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105345
– volume: 14
  start-page: 774
  issue: Suppl 3
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-24
  article-title: A hybrid multi-faceted task scheduling algorithm for cloud computing environment
  publication-title: International Journal of System Assurance Engineering and Management
  doi: 10.1007/s13198-021-01084-0
– volume: 15
  start-page: 174
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-67
  article-title: Nature-inspired cost optimisation for enterprise cloud systems using joint allocation of resources
  publication-title: Enterprise Information Systems
  doi: 10.1080/17517575.2019.1605001
– volume: 70
  start-page: 907
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-9
  article-title: Star-quake: a new operator in multi-objective gravitational search algorithm for task scheduling in iot based cloud-fog computing system
  publication-title: IEEE Transactions on Consumer Electronics
  doi: 10.1109/TCE.2023.3321708
– volume: 76
  start-page: 388
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-27
  article-title: Reinforcement r-learning model for time scheduling of on-demand fog placement
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-019-03032-z
– volume: 84
  start-page: 321
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-88
  article-title: A reinforcement learning-based load balancing algorithm for fog computing
  publication-title: Telecommunication Systems
  doi: 10.1007/s11235-023-01049-7
– volume: 88
  start-page: 105906
  issue: Suppl 1
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-74
  article-title: The prisma 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: International Journal of Surgery
  doi: 10.1016/j.ijsu.2021.105906
– volume: 142
  start-page: 103098
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-18
  article-title: A multi-aerial base station assisted joint computation offloading algorithm based on d3qn in edge vanets
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2023.103098
– start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-70
  article-title: Multi-objective optimization approach for task scheduling in fog computing
– volume: 8
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-29
  article-title: Q-learning-based task offloading and resources optimization for a collaborative computing system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015993
– volume: 9
  start-page: 641
  issue: 2
  year: 2018
  ident: 10.7717/peerj-cs.2128/ref-94
  article-title: Hybrid evolutionary scheduling for energy-efficient fog-enhanced internet of things
  publication-title: IEEE Transactions on Cloud Computing
  doi: 10.1109/TCC.2018.2889482
– start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-35
  article-title: Pga: a priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing
– volume: 39
  start-page: 100890
  issue: 4
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-23
  article-title: Ddnsas: deep reinforcement learning based deep q-learning network for smart agriculture system
  publication-title: Sustainable Computing: Informatics and Systems
  doi: 10.1016/j.suscom.2023.100890
– volume: 70
  start-page: 40
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-86
  article-title: Performance oriented task-resource mapping and scheduling in fog computing environment
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2021.07.004
– start-page: 223
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-22
  article-title: Task scheduling in fog assisted cloud environment using hybrid metaheuristic algorithm
– volume: 171
  start-page: 28
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-60
  article-title: Online computation offloading with double reinforcement learning algorithm in mobile edge computing
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2022.09.006
– volume: 11
  start-page: 20635
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-78
  article-title: Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3241240
– volume: 12
  start-page: 2064
  issue: 9
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-40
  article-title: An improved genetic algorithm with swarm intelligence for security-aware task scheduling in hybrid clouds
  publication-title: Electronics
  doi: 10.3390/electronics12092064
– volume: 83
  start-page: 1
  issue: 8
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-26
  article-title: Machine learning-based solutions for resource management in fog computing
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-16399-2
– volume: 8
  start-page: 12638
  issue: 16
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-3
  article-title: Energy-aware metaheuristic algorithm for industrial-internet-of-things task scheduling problems in fog computing applications
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3012617
– volume: 48
  start-page: 1547
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-99
  article-title: An opposition-based hybrid evolutionary approach for task scheduling in fog computing network
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-022-06918-y
– start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-15
  article-title: Managing fog networks using reinforcement learning based load balancing algorithm
– volume: 33
  start-page: e4523
  issue: 9
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-16
  article-title: A systematic review of task scheduling approaches in fog computing
  publication-title: Transactions on Emerging Telecommunications Technologies
  doi: 10.1002/ett.4523
– start-page: 1
  year: 2022b
  ident: 10.7717/peerj-cs.2128/ref-104
  article-title: Sac-based computation offloading and resource allocation in vehicular edge computing
– start-page: 160
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-12
  article-title: An optimal task scheduling towards minimized cost and response time in fog computing infrastructure
– volume: 110
  start-page: 1098
  issue: 10
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-30
  article-title: Saving time and cost on the scheduling of fog-based iot applications using deep reinforcement learning approach
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.09.060
– start-page: 1
  year: 2019b
  ident: 10.7717/peerj-cs.2128/ref-93
  article-title: Task offloading in noma-based fog computing networks: a deep q-learning approach
– volume: 106
  start-page: 109
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-54
  article-title: An energy-efficient and deadline-aware workflow scheduling algorithm in the fog and cloud environment
  publication-title: Computing
  doi: 10.1007/s00607-023-01215-4
– volume: 27
  start-page: 1775
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-72
  article-title: Task and resource allocation in the internet of things based on an improved version of the moth-flame optimization algorithm
  publication-title: Cluster Computing
  doi: 10.1007/s10586-023-04041-7
– start-page: 377
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-28
  article-title: A multi-agent based model for task scheduling in cloud-fog computing platform
– volume: 143
  start-page: 88
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-37
  article-title: A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2020.04.008
– volume: 201
  start-page: 103333
  issue: 10
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-14
  article-title: Deadline-aware and energy-efficient iot task scheduling in fog computing systems: a semi-greedy approach
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2022.103333
– volume: 11
  start-page: 2144
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-68
  article-title: Directed search: a new operator in nsga-ii for task scheduling in iot based on cloud-fog computing
  publication-title: IEEE Transactions on Cloud Computing
  doi: 10.1109/TCC.2022.3188926
– volume: 34
  start-page: 10010
  issue: 10
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-95
  article-title: Optimal deploying iot services on the fog computing: a metaheuristic-based multi-objective approach
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2022.10.002
– volume: 14
  start-page: 1905
  issue: 4
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-11
  article-title: Reliable scheduling and load balancing for requests in cloud-fog computing
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-021-01125-2
– start-page: 16
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-77
  article-title: Hybrid meta-heuristic genetic algorithm: differential evolution algorithms for scientific workflow scheduling in heterogeneous cloud environment
– volume: 137
  start-page: 14
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-48
  article-title: Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.06.012
– volume: 10
  start-page: 87974
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-52
  article-title: A hybrid latency-and power-aware approach for beyond fifth-generation internet-of-things edge systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3200035
– start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-33
  article-title: Towards making big data applications network-aware in edge-cloud systems
– volume: 127
  start-page: 1683
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-58
  article-title: Task offloading in fog computing for using smart ant colony optimization
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-021-08714-7
– volume: 141
  start-page: 96
  issue: 8
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-81
  article-title: Feddove: a federated deep q-learning-based offloading for vehicular fog computing
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.11.012
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.2128/ref-20
  article-title: Prioritized task scheduling in fog computing
– volume: 34
  start-page: e7376
  issue: 28
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-25
  article-title: A multi-queue priority-based task scheduling algorithm in fog computing environment
  publication-title: Concurrency and Computation: Practice and Experience
  doi: 10.1002/cpe.7376
– volume: 11
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-43
  article-title: An intelligent scheduling strategy in fog computing system based on multi-objective deep reinforcement learning algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3337034
– start-page: 133
  volume-title: New Frontiers in Cloud Computing and Internet of Things
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-61
  article-title: Dynamic resource-efficient scheduling in data stream management systems deployed on computing clouds
  doi: 10.1007/978-3-031-05528-7_5
– volume: 10
  start-page: 53
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-69
  article-title: An efficient population-based multi-objective task scheduling approach in fog computing systems
  publication-title: Journal of Cloud Computing
  doi: 10.1186/s13677-021-00264-4
– volume: 25
  start-page: 101112
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-83
  article-title: Intelligent service placement algorithm based on ddqn and prioritized experience replay in iot-fog computing environment
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2024.101112
– volume: 9
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-5
  article-title: Multi-objective task scheduling approach for fog computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111130
– volume: 105
  start-page: 1337
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-76
  article-title: Task scheduling in edge-fog-cloud architecture: a multi-objective load balancing approach using reinforcement learning algorithm
  publication-title: Computing
  doi: 10.1007/s00607-022-01147-5
– volume: 78
  start-page: 93
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-65
  article-title: A latency-aware task scheduling algorithm for allocating virtual machines in a cost-effective and time-sensitive fog-cloud architecture
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-03868-4
– volume: 7
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-56
  article-title: Energy management in smart sectors using fog based environment and meta-heuristic algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949863
– volume: 69
  start-page: 16067
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-84
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2020.3041929
– start-page: 169
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-50
  article-title: A dqn-based approach for online service placement in mobile edge computing
– volume: 78
  start-page: 4236
  issue: 3
  year: 2022a
  ident: 10.7717/peerj-cs.2128/ref-97
  article-title: A bi-objective task scheduling approach in fog computing using hybrid fireworks algorithm
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-04018-6
– start-page: 1
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-102
  article-title: Secure video offloading in MEC-enabled IoT networks: a multi-cell federated deep reinforcement learning approach
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2023.3280314
– volume: 5
  start-page: 10
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.2128/ref-38
  article-title: Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing
  publication-title: Digital Communications and Networks
  doi: 10.1016/j.dcan.2018.10.003
– volume: 31
  start-page: 7
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-44
  article-title: Qos-aware task offloading in fog environment using multi-agent deep reinforcement learning
  publication-title: Journal of Network and Systems Management
  doi: 10.1007/s10922-022-09696-y
– volume: 272
  start-page: 110563
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-8
  article-title: Multiprocessor task scheduling using multi-objective hybrid genetic algorithm in fog–cloud computing
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2023.110563
– volume: 83
  start-page: 1
  issue: 12
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-79
  article-title: An optimal task scheduling method in iot-fog-cloud network using multi-objective moth-flame algorithm
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-16971-w
– volume: 30
  start-page: 54
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-6
  article-title: Real-time task scheduling algorithm for iot-based applications in the cloud–fog environment
  publication-title: Journal of Network and Systems Management
  doi: 10.1007/s10922-022-09664-6
– start-page: 2328
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-31
  article-title: Qos-aware task scheduling based on reinforcement learning for the cloud-fog continuum
– volume: 11
  start-page: 3
  issue: 1
  year: 2022a
  ident: 10.7717/peerj-cs.2128/ref-103
  article-title: Deep reinforcement learning-based workload scheduling for edge computing
  publication-title: Journal of Cloud Computing
  doi: 10.1186/s13677-021-00276-0
– volume: 206
  start-page: 108752
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2128/ref-36
  article-title: Optimized task scheduling for cost-latency trade-off in mobile fog computing using fuzzy analytical hierarchy process
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.108752
– volume: 4
  start-page: 270
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-7
  article-title: A novel weight-assignment load balancing algorithm for cloud applications
  publication-title: SN Computer Science
  doi: 10.1007/s42979-023-01702-7
– volume: 224
  start-page: 109603
  issue: 5
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-75
  article-title: Delay and energy aware task scheduling mechanism for fog-enabled iot applications: a reinforcement learning approach
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2023.109603
– volume: 54
  start-page: 3599
  issue: 5
  year: 2021
  ident: 10.7717/peerj-cs.2128/ref-2
  article-title: An improved henry gas solubility optimization algorithm for task scheduling in cloud computing
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09933-3
– volume: 8
  start-page: 37191
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-42
  article-title: Efficient task offloading for iot-based applications in fog computing using ant colony optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975741
– volume: 214
  start-page: 103617
  issue: 6
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-100
  article-title: A novel q-learning-based hybrid algorithm for the optimal offloading and scheduling in mobile edge computing environments
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2023.103617
– volume: 10
  start-page: 10752
  issue: 12
  year: 2023
  ident: 10.7717/peerj-cs.2128/ref-85
  article-title: Relief: a reinforcement learning-based real-time task assignment strategy in emerging fault-tolerant fog computing
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2023.3240007
– start-page: 1
  year: 2020
  ident: 10.7717/peerj-cs.2128/ref-59
  article-title: Intelligent scheduling in fog environment based on improved hybrid heuristics
– volume: 152
  start-page: 207
  issue: 11
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-49
  article-title: Metsm: multiobjective energy-efficient task scheduling model for an edge heterogeneous multiprocessor system
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2023.10.024
– volume: 32
  start-page: 3
  issue: 1
  year: 2024
  ident: 10.7717/peerj-cs.2128/ref-57
  article-title: Genetic-based algorithm for task scheduling in fog–cloud environment
  publication-title: Journal of Network and Systems Management
  doi: 10.1007/s10922-023-09774-9
SSID ssj0001511119
Score 2.3394816
Snippet Fog computing has emerged as a prospective paradigm to address the computational requirements of IoT applications, extending the capabilities of cloud...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2128
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
Cloud computing
Computer Networks and Communications
Distributed and Parallel Computing
Energy efficiency
Fog computing
Heuristic methods
Internet Of Things
IoT applications
Machine learning
Optimization
Task scheduling
Technology application
Title Advancements in heuristic task scheduling for IoT applications in fog-cloud computing: challenges and prospects
URI https://www.ncbi.nlm.nih.gov/pubmed/38983206
https://www.proquest.com/docview/3077993822
https://pubmed.ncbi.nlm.nih.gov/PMC11232606
https://doaj.org/article/f55f2650021647b9b8e7f5b905be2df7
Volume 10
WOSCitedRecordID wos001249165400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: P5Z
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: K7-
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: PIMPY
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cCF9yOwVAYhuGA2deLY5tZFXVHBVtWyoMLFsh17t7BKVk3Dkd_OOEmrRAhx4eKDPYn8GM98I3s-I_RC2iQNxHMEAmRG0oQbAm7BkZyaRKepzrPmoP3LRz6fi-VSLnpPfYU7YS09cDtxB54xTwFGgC_KUm6kEY57ZmTMjKO5b_LIAfX0gqk2PziYAtmSanIIWQ4unVt_J7Z6A7ZaDJxQw9X_p0XuuaThdcme_zm6jW52wBFP2g7fQVdccRfd2j7KgLs9eg-Vk_ZUv0ldw6sCn7u6ZWPGG139wBDNgncJSegY8Cqelae4f4gdvvDlGbEXZZ1j2_weZN9iu311pcK6yDH0v0nSrO6jz0fT03fvSfeqArGMsQ2RkltHwc4JN4bt7ZmIuU2zPMljrUUqU2NkHicJjb0E_GKpF9SYhEoL9TnUPEB7RVm4RwgbzrinUlMOHxonAGplJtOAybLEGckj9Ho7zcp2lOPh5YsLBaFHWBXVrIqylQqrEqGXO_HLlmvjb4KHYc12QoEiu6kAxVGd4qh_KU6EnocVV4EEowi3bM50XVVq9ulETcQ44YB1YxqhV52QL6HnVndJCzD-wJs1kNwfSMIutYPmZ1vFUqEpXG0rXFlXCowsB5AIQC1CD1tF2w0M0CRY3DiLkBio4GDkw5Zidd6QhI8DVobo9PH_mKsn6AYFMBeuyI35PtrbrGv3FF23Pzeraj1CV_lSjNC1w-l8cTJqNiKUHziB8vjXFMoF-wbti9nx4utva2U84g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+heuristic+task+scheduling+for+IoT+applications+in+fog-cloud+computing%3A+challenges+and+prospects&rft.jtitle=PeerJ.+Computer+science&rft.au=Alsadie%2C+Deafallah&rft.date=2024-06-17&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2128&rft_id=info:doi/10.7717%2Fpeerj-cs.2128&rft.externalDBID=ISR&rft.externalDocID=A813704502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon