Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method

We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. W...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics Vol. 14; no. 5; pp. 1044 - 1053
Main Authors: Zhang, Song, Correia, Stephen, Laidlaw, David H.
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1077-2626, 1941-0506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. We first employ a sampling and culling strategy for generating DTI integral curves and then constrain the curves so that they terminate in gray matter. We then employ a clustering method based on a proximity measure calculated between every pair of curves. We interactively selected a proximity threshold to achieve visually optimal clustering in models from four DTI datasets. An expert rater then assigned a confidence rating about bundle presence and accuracy for each of 12 target fiber bundles of varying calibers and type in each dataset. We then created a fiber bundle template to cluster and label the fiber bundles automatically in new datasets. According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on large and coherent clusters. This work has the potential to provide an automatic and robust way to find and study neural fiber bundles within DTI.
AbstractList We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. We first employ a sampling and culling strategy for generating DTI integral curves and then constrain the curves so that they terminate in gray matter. We then employ a clustering method based on a proximity measure calculated between every pair of curves. We interactively selected a proximity threshold to achieve visually optimal clustering in models from four DTI datasets. An expert rater then assigned a confidence rating about bundle presence and accuracy for each of 12 target fiber bundles of varying calibers and type in each dataset. We then created a fiber bundle template to cluster and label the fiber bundles automatically in new datasets. According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on large and coherent clusters. This work has the potential to provide an automatic and robust way to find and study neural fiber bundles within DTI.
We present a method for clustering diffusion-tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. Our approach is guided by assumptions about the proximity of fibers comprising discrete white-matter bundles and proceeds as follows: We first employ a sampling and culling strategy for generating DTI integral curves and then constrain the curves so that they terminate in gray matter. This approach seems likely to retain anatomically plausible fibers. We then employ a clustering method based on a proximity measure calculated between every pair of curves. We interactively selected a proximity threshold to achieve visually optimal clustering in models from four DTI data sets. An expert rater then assigned a confidence rating about bundle presence and accuracy for each of the 12 target fiber bundles of varying calibers and types (i.e., commissural, association, and projection) in each data set. The interactive clustering and evaluation information was incorporated to create a fiber-bundle template. We then used the template to cluster and label the fiber bundles automatically in new data sets. According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles, although fiber bundles with smaller calibers and those that are not highly directionally coherent are identified with lower confidence. This work has the potential to provide an automatic and robust way to find and study neural fiber bundles within DTI.
According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on large and coherent clusters.
We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. We first employ a sampling and culling strategy for generating DTI integral curves and then constrain the curves so that they terminate in gray matter. We then employ a clustering method based on a proximity measure calculated between every pair of curves. We interactively selected a proximity threshold to achieve visually optimal clustering in models from four DTI datasets. An expert rater then assigned a confidence rating about bundle presence and accuracy for each of 12 target fiber bundles of varying calibers and type in each dataset. We then created a fiber bundle template to cluster and label the fiber bundles automatically in new datasets. According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on large and coherent clusters. This work has the potential to provide an automatic and robust way to find and study neural fiber bundles within DTI.We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical accuracy of the bundles. We also evaluated the method by applying an experimental cross-subject labeling method to the clustering results. We first employ a sampling and culling strategy for generating DTI integral curves and then constrain the curves so that they terminate in gray matter. We then employ a clustering method based on a proximity measure calculated between every pair of curves. We interactively selected a proximity threshold to achieve visually optimal clustering in models from four DTI datasets. An expert rater then assigned a confidence rating about bundle presence and accuracy for each of 12 target fiber bundles of varying calibers and type in each dataset. We then created a fiber bundle template to cluster and label the fiber bundles automatically in new datasets. According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on large and coherent clusters. This work has the potential to provide an automatic and robust way to find and study neural fiber bundles within DTI.
Author Zhang, Song
Correia, Stephen
Laidlaw, David H.
Author_xml – sequence: 1
  givenname: Song
  surname: Zhang
  fullname: Zhang, Song
  email: szhang@cse.msstate.edu
  organization: Mississppi State University, Mississippi State
– sequence: 2
  givenname: Stephen
  surname: Correia
  fullname: Correia, Stephen
  email: stephen_correia@brown.edu
  organization: Brown Medical School, Providence
– sequence: 3
  givenname: David H.
  surname: Laidlaw
  fullname: Laidlaw, David H.
  email: dhl@cs.brown.edu
  organization: Brown University, Providence
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18599916$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-wY4eEIhawIcP1O94gtVNaRmoFiyksLSdxOq4Su40d1Pn3dZhSoBLMxg_5u-c-fPazHeedybKXCGYIgfyw_DY_nWGAcsbwk2wPSYoKYMB30hmEKDDHfDfbD-EKAFFaymfZLiqZlBLxvaxfNMZF266tu8y_r2w0xbmO0Qz5ia3SejS6pjMhty4_Xi7yYx11fhEmWLv8cIy-19E0-dfB39rexnVxpEO6_wwu5t0YktREn5u48s3z7Gmru2Be3O8H2cXJp-X8c3H25XQxPzwrasZYLCRuKtNK3DJScWKkJhRqXXFesSr1xyskuKRAa9rQlrUEypbqkmIpuBCmkuQg-7jRvR6r3jR1anHQnboebK-HtfLaqr9fnF2pS_9DYcGEKHkSeHcvMPib0YSoehtq03XaGT8GJYFwjARBW8lSMCAAfCrq7X9JLrHkINhWkFCKEZJ8K4iBEyBsKvLNI_DKj4NLX6BKjkFwwqe0r_8c2sO0fpklAe83QD34EAbT_kZATV5UkxfV5EXFcMLxI7y2UUfrp5Hb7l9BrzZB1hjzoE-pkJQxcgf_Q-j8
CODEN ITVGEA
CitedBy_id crossref_primary_10_1016_j_jneumeth_2020_108626
crossref_primary_10_1016_j_cag_2015_06_003
crossref_primary_10_1111_jon_12854
crossref_primary_10_1016_j_neuroimage_2010_07_038
crossref_primary_10_1109_TMI_2019_2932681
crossref_primary_10_1007_s11604_010_0460_y
crossref_primary_10_1109_TVCG_2011_155
crossref_primary_10_1109_TVCG_2009_112
crossref_primary_10_1109_TVCG_2016_2582158
crossref_primary_10_1118_1_4811155
crossref_primary_10_1109_ACCESS_2020_2981451
crossref_primary_10_1016_j_neuroimage_2012_02_071
crossref_primary_10_1016_j_ins_2015_04_045
crossref_primary_10_1007_s10439_010_0073_8
crossref_primary_10_1016_j_compbiomed_2017_01_016
crossref_primary_10_1016_j_neuroimage_2020_116673
crossref_primary_10_1109_TMI_2009_2016337
crossref_primary_10_1109_TVCG_2012_150
crossref_primary_10_1111_cgf_142647
crossref_primary_10_1007_s12650_019_00552_x
crossref_primary_10_1109_TVCG_2011_78
crossref_primary_10_1109_TVCG_2015_2403323
crossref_primary_10_1016_j_neuroimage_2013_04_066
crossref_primary_10_1109_TVCG_2013_2297914
crossref_primary_10_1109_TVCG_2019_2940935
crossref_primary_10_1016_j_knosys_2019_06_028
crossref_primary_10_1002_hbm_22051
crossref_primary_10_1007_s12021_022_09593_4
crossref_primary_10_1016_j_mri_2011_07_012
crossref_primary_10_1016_j_neuroimage_2022_119197
crossref_primary_10_1016_j_artmed_2016_09_003
crossref_primary_10_1007_s12021_015_9264_7
crossref_primary_10_1371_journal_pone_0083847
crossref_primary_10_3389_fnins_2016_00554
crossref_primary_10_1007_s10618_015_0408_z
crossref_primary_10_1007_s12021_011_9118_x
crossref_primary_10_1093_neuros_nyaa463
crossref_primary_10_1097_RMR_0000000000000212
crossref_primary_10_1109_TVCG_2011_82
crossref_primary_10_3389_fninf_2014_00087
crossref_primary_10_1109_TBME_2014_2360797
crossref_primary_10_1007_s12021_020_09488_2
crossref_primary_10_1016_j_compbiomed_2016_07_015
crossref_primary_10_21300_18_1_2016_31
crossref_primary_10_1109_TVCG_2015_2467204
crossref_primary_10_1016_j_artmed_2019_03_002
crossref_primary_10_1016_j_media_2013_01_004
crossref_primary_10_1371_journal_pone_0093344
Cites_doi 10.1007/978-3-540-73273-0_31
10.1006/nimg.2002.1136
10.1002/mrm.1910400117
10.1007/11566465_18
10.1016/S1361-8415(01)00036-6
10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1142/S0218195995000064
10.1109/VISUAL.2005.1532779
10.1002/mrm.10415
10.1007/11866763_30
10.1109/ISBI.2004.1398545
10.1016/s0003-2670(00)82860-3
10.1016/S1361-8415(02)00053-1
10.1007/978-3-540-30135-6_45
10.1148/radiol.2301021640
10.1109/TVCG.2003.1260740
10.1109/42.906424
10.1007/11566465_24
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
2008 IEEE 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
– notice: 2008 IEEE 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7QO
7TK
FR3
P64
F28
7X8
5PM
DOI 10.1109/TVCG.2008.52
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Neurosciences Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
Biotechnology Research Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE
Technology Research Database
Engineering Research Database

Technology Research Database
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 1053
ExternalDocumentID PMC2757786
2320844741
18599916
10_1109_TVCG_2008_52
4479455
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: EB004155
– fundername: NIBIB NIH HHS
  grantid: R01 EB004155
– fundername: NIMH NIH HHS
  grantid: R01 MH074368
– fundername: NINDS NIH HHS
  grantid: R01 NS052470
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7QO
7TK
FR3
P64
F28
7X8
5PM
ID FETCH-LOGICAL-c555t-92dbef92f53b63e9a340cab66b5b1946b1769404c4d4f5f308f4a84297677eb93
IEDL.DBID RIE
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257371400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
IngestDate Tue Sep 30 16:05:12 EDT 2025
Sat Sep 27 21:59:08 EDT 2025
Wed Oct 01 13:59:38 EDT 2025
Sun Sep 28 02:20:58 EDT 2025
Sun Sep 28 11:23:30 EDT 2025
Tue Oct 07 09:22:53 EDT 2025
Sun Nov 09 06:48:56 EST 2025
Mon Jul 21 05:36:26 EDT 2025
Sat Nov 29 07:51:32 EST 2025
Tue Nov 18 22:18:35 EST 2025
Wed Aug 27 01:47:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords DTI
cluster
DT-MRI
clustering
Diffusion Tensor Imaging
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-92dbef92f53b63e9a340cab66b5b1946b1769404c4d4f5f308f4a84297677eb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1109/TVCG.2008.52
PMID 18599916
PQID 862076365
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_20630351
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2757786
proquest_miscellaneous_875030069
ieee_primary_4479455
proquest_journals_862076365
proquest_miscellaneous_69296075
pubmed_primary_18599916
crossref_primary_10_1109_TVCG_2008_52
proquest_miscellaneous_903621731
proquest_miscellaneous_34421196
crossref_citationtrail_10_1109_TVCG_2008_52
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
Zhang (ref19)
ref14
ref20
ref11
Duda (ref8) 2000
ref2
Zhang (ref22)
ref1
ref17
ref16
Lee (ref10)
ref18
ref7
ref9
ref4
ref3
ref6
ref5
Zhang (ref21) 2002
References_xml – ident: ref11
  doi: 10.1007/978-3-540-73273-0_31
– volume-title: technical report, Dept. of Computer Science, Brown Univ.
  year: 2002
  ident: ref21
  article-title: Hierarchical Clustering of Streamtubes
– ident: ref5
  doi: 10.1006/nimg.2002.1136
– ident: ref1
  doi: 10.1002/mrm.1910400117
– volume-title: Pattern Classification
  year: 2000
  ident: ref8
– ident: ref14
  doi: 10.1007/11566465_18
– ident: ref9
  doi: 10.1016/S1361-8415(01)00036-6
– ident: ref3
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– start-page: 283
  volume-title: Proc. Int’l Soc. for Magnetic Resonance in Medicine (ISMRM ’06)
  ident: ref10
  article-title: Quantitative Tract-of-Interest Metrics for White-Matter Integrity Based on Diffusion Tensor MRI Data
– ident: ref2
  doi: 10.1142/S0218195995000064
– ident: ref13
  doi: 10.1109/VISUAL.2005.1532779
– ident: ref7
  doi: 10.1002/mrm.10415
– ident: ref15
  doi: 10.1007/11866763_30
– volume-title: Proc. Int’l Soc. for Magnetic Resonance in Medicine (ISMRM ’05)
  ident: ref22
  article-title: DTI Fiber Clustering and Cross-Subject Cluster Analysis
– ident: ref6
  doi: 10.1109/ISBI.2004.1398545
– ident: ref16
  doi: 10.1016/s0003-2670(00)82860-3
– ident: ref18
  doi: 10.1016/S1361-8415(02)00053-1
– ident: ref4
  doi: 10.1007/978-3-540-30135-6_45
– ident: ref17
  doi: 10.1148/radiol.2301021640
– ident: ref20
  doi: 10.1109/TVCG.2003.1260740
– ident: ref23
  doi: 10.1109/42.906424
– ident: ref12
  doi: 10.1007/11566465_24
– volume-title: Proc. Int’l Soc. for Magnetic Resonance in Medicine (ISMRM)
  ident: ref19
  article-title: Correlating DTI Fiber Clusters with White-Matter Anatomy
SSID ssj0014489
Score 2.238898
Snippet We present a method for clustering diffusion tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical...
According to expert evaluation, the automated proximity-based clustering and labeling algorithm consistently yields anatomically plausible fiber bundles on...
We present a method for clustering diffusion-tensor imaging (DTI) integral curves into anatomically plausible bundles. An expert rater evaluated the anatomical...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1044
SubjectTerms Accuracy
Algorithms
Anatomy
Artificial Intelligence
Brain - cytology
Bundles
cluster
Cluster Analysis
Clustering
Clustering algorithms
Clustering methods
Clusters
Diffusion Magnetic Resonance Imaging - methods
Diffusion tensor imaging
DT-MRI
DTI
Female
Fibers
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Labeling
Magnetic resonance imaging
Male
Marking
Mathematical models
Middle Aged
Nerve Fibers, Myelinated - ultrastructure
Optical fiber testing
Pattern Recognition, Automated - methods
Proximity
Reproducibility of Results
Robustness
Sampling methods
Sensitivity and Specificity
Termination of employment
Title Identifying White-Matter Fiber Bundles in DTI Data Using an Automated Proximity-Based Fiber-Clustering Method
URI https://ieeexplore.ieee.org/document/4479455
https://www.ncbi.nlm.nih.gov/pubmed/18599916
https://www.proquest.com/docview/862076365
https://www.proquest.com/docview/20630351
https://www.proquest.com/docview/34421196
https://www.proquest.com/docview/69296075
https://www.proquest.com/docview/875030069
https://www.proquest.com/docview/903621731
https://pubmed.ncbi.nlm.nih.gov/PMC2757786
Volume 14
WOSCitedRecordID wos000257371400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4lEd5hELxAU5gmsSv-NhuWUCiVQ8L2tvKThyxUkmq3QTBv2fsZEMXNQdukfwlsjKezOd45huA16YsMs21oyYXmmLEQ5cSRtC4RPZvcm5TF7qWfFEXF9l8ri934N1QC-OcC8ln7r2_DGf5RZ23_lfZMfdy6ELswq5SqqvVGk4McJuhu_xCRVNk6UOSuz6efZt87LImRWhek4nAirYiUWitchvL_DdZ8kb0md7_v3k_gP2eZZKTblk8hB1XPYJ7N7QHD-BHV6IbypxIaJNHz4PWJpn6JBJy2nr5hTVZVuRs9pmcmcaQkF9ATEVO2qZGqusKcrmqf_kaqd_0FONh0d1MJ1etF2Dw6PPQovoxfJ1-mE0-0b73As2FEA3VaWFdqdNSMCuZ04bxODdWSitsorm0iZKaxzznBS9FyeKs5CbD4KakUs5q9gT2qrpyz4DIxDLGZOE0S7i1yhalEzJzKT7JSBZH8HZjh0XeC5P7_hhXi7BBifXCG7DrlynSCN4M6OtOkGMEd-ANMWB6G0RwuDHxovfW9QJ3dTF-ZyWOvhpG0c382YmpXN2u8ak4UyaScQTj3KvlyXGERCoqkaJFQEYQmT9V9uLR4xDtKUeiGM7kabcw_76GfmFHoLaW7ADwUuLbI9Xye5AUT5XwQoLPb39ph3B3kyYTJy9gr1m17iXcyX82y_XqCL1xnh0Fb_wDo-sypQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQcyqM8QoH6ACdwm8Sv-NhuWVqxu-phQb1FduKIlUqCdhPU_ntsJ5t2UXPgFslfIiszznyOZ74B-KCKPJFUGqwyJrGNeHZJMcVwWFj2rzKqY-O7lkzEbJZcXMjzLfjc18IYY3zymTlwl_4sP6-yxv0qO6RODp2xe3CfURpHbbVWf2ZgNxqyzTAUOLY8vU9zl4fzH6Ovbd4k8-1rEuZ50UYs8s1V7uKZ_6ZL3oo_4yf_N_OnsNPxTHTUOsYz2DLlc3h8S31wF361Rbq-0An5Rnl46tU20dilkaDjxgkwrNCiRCfzM3SiaoV8hgFSJTpq6sqSXZOj82V15aqkrvGxjYh5ezMeXTZOgsGhp75J9Qv4Pv4yH53irvsCzhhjNZZxrk0h44IRzYmRitAwU5pzzXQkKdeR4JKGNKM5LVhBwqSgKrHhTXAhjJbkJWyXVWleA-KRJoTw3EgSUa2FzgvDeGJi-yTFSRjAp7Ud0qyTJncdMi5Tv0UJZeoM2HbMZHEAH3v071aSYwC36wzRYzobBLC3NnHarddVavd1of3Scju634_aheZOT1RpqmZln2pnSlg0jCDOKe0XbRjBLRnllqQFgAYQiTtXdvLRwxDpSEckiJ3Jq9Yxb15D59gBiA2X7QFOTHxzpFz89KLisWBOSvDN3S9tHx6ezqeTdHI2-7YHj9ZJM2H0FrbrZWPewYPsT71YLd_7NfkXb0s1BA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+White-Matter+Fiber+Bundles+in+DTI+Data+Using+an+Automated+Proximity-Based+Fiber+Clustering+Method&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Zhang%2C+Song&rft.au=Correia%2C+Stephen&rft.au=Laidlaw%2C+David+H.&rft.date=2008-09-01&rft.issn=1077-2626&rft.volume=14&rft.issue=5&rft.spage=1044&rft.epage=1053&rft_id=info:doi/10.1109%2FTVCG.2008.52&rft_id=info%3Apmid%2F18599916&rft.externalDocID=PMC2757786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon