Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest be...
Saved in:
| Published in: | Frontiers in microbiology Vol. 10; p. 1604 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Research Foundation
12.07.2019
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1664-302X, 1664-302X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of
-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested. |
|---|---|
| AbstractList | Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N- -lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N- -lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested. Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of -𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested. Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested. Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-ε-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested. |
| Author | Xie, Xueshu Byrnes, James Schilling, Birgit Wolfe, Alan J. Basisty, Nathan McSweeney, Sean Christensen, David G. |
| AuthorAffiliation | 1 Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL , United States 3 Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, NY , United States 2 Buck Institute for Research on Aging , Novato, CA , United States |
| AuthorAffiliation_xml | – name: 1 Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL , United States – name: 2 Buck Institute for Research on Aging , Novato, CA , United States – name: 3 Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, NY , United States |
| Author_xml | – sequence: 1 givenname: David G. surname: Christensen fullname: Christensen, David G. – sequence: 2 givenname: Xueshu surname: Xie fullname: Xie, Xueshu – sequence: 3 givenname: Nathan surname: Basisty fullname: Basisty, Nathan – sequence: 4 givenname: James surname: Byrnes fullname: Byrnes, James – sequence: 5 givenname: Sean surname: McSweeney fullname: McSweeney, Sean – sequence: 6 givenname: Birgit surname: Schilling fullname: Schilling, Birgit – sequence: 7 givenname: Alan J. surname: Wolfe fullname: Wolfe, Alan J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31354686$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1542482$$D View this record in Osti.gov |
| BookMark | eNp1kt9rFDEQxxep2Fr77pMEn3y5M5tfu_FBOGurhYpFFHwLk2z2mpJLapIV7r83d9tKK5hAEibf-cwwM8-bgxCDbZqXLV5S2su348YZvSS4lUvcCsyeNEetEGxBMfl58OB92JzkfIPrYpjU81lzSFvKmejFUTNdxVwWJUHIHoqLATy6SrFYF9DK2LKdre_QKqAzb9cQCvpizTUElzdojAl9AFNscoBKRB-3AWpW4P0WfbPrqTrbKi-go3cGnU_B7Gj5RfN0BJ_tyd193Pw4P_t--nlx-fXTxenqcmE452XRw9BpkJLjuuUw4J4S6PTItex0h4nWI9NW2Ha0LdFSwiAoFbrrGAfGR06Pm4uZO0S4UbfJbSBtVQSn9oaY1gpSccZb1dOOcqtJBWo2Mi6hw2bQGFhvGZNdZb2fWbeT3tjB2FCr5h9BH_8Ed63W8beqfaj9IRXwegbUijuVjSu1jiaGYE1RLWeE9TvRm7soKf6abC5q47Kx3kOwccqKECEok6zrq_TVw4T-ZnLf3CoQs8CkmHOyo6ox9-2s-TmvWqx2g6T2g6R2g6T2g1Qd8T-O9-z_uvwBQSLNsg |
| CitedBy_id | crossref_primary_10_1128_msphere_00452_22 crossref_primary_10_3389_fmicb_2020_516315 crossref_primary_10_1111_tpj_70205 crossref_primary_10_1093_bib_bbab376 crossref_primary_10_1371_journal_pone_0287973 crossref_primary_10_3390_neurolint17090134 crossref_primary_10_1007_s00253_022_12060_4 crossref_primary_10_1136_rmdopen_2024_004411 crossref_primary_10_1016_j_micres_2024_127635 crossref_primary_10_1016_j_ijbiomac_2023_123407 crossref_primary_10_1111_pce_14034 crossref_primary_10_1002_prca_202300212 crossref_primary_10_1093_nar_gkaa011 crossref_primary_10_3389_fmicb_2022_1018220 crossref_primary_10_1007_s00253_022_12185_6 crossref_primary_10_3389_fphar_2021_807742 crossref_primary_10_1016_j_ejmech_2023_115746 crossref_primary_10_1371_journal_ppat_1010056 crossref_primary_10_1038_s41467_024_45765_3 crossref_primary_10_1002_cbin_11983 crossref_primary_10_3389_fmolb_2023_1117921 crossref_primary_10_1093_bbb_zbaa114 crossref_primary_10_3389_fmicb_2022_1004074 crossref_primary_10_3390_ijms232214028 crossref_primary_10_1038_s41594_024_01315_5 crossref_primary_10_1111_jcmm_16332 crossref_primary_10_1021_acs_accounts_5c00158 crossref_primary_10_15252_msb_20209464 crossref_primary_10_1016_j_molcel_2022_10_027 crossref_primary_10_1093_femsml_uqae018 crossref_primary_10_3390_pathogens13010033 crossref_primary_10_1249_JES_0000000000000307 crossref_primary_10_1093_nar_gkad494 crossref_primary_10_3389_fmicb_2021_782815 crossref_primary_10_3390_v12090976 crossref_primary_10_1007_s12275_020_0483_8 crossref_primary_10_1111_mmi_15052 crossref_primary_10_1038_s41467_024_49952_0 crossref_primary_10_1007_s10238_020_00647_y crossref_primary_10_3390_ijms222212477 crossref_primary_10_1080_07391102_2023_2231553 crossref_primary_10_1021_acs_biomac_5c00584 crossref_primary_10_1186_s12864_025_11652_4 crossref_primary_10_1073_pnas_2210115119 crossref_primary_10_3390_proteomes11020021 crossref_primary_10_1016_j_ijbiomac_2024_131763 crossref_primary_10_3389_fmicb_2024_1356733 crossref_primary_10_1128_jb_00542_24 crossref_primary_10_1177_0036850420964317 crossref_primary_10_3389_fmicb_2021_740555 crossref_primary_10_1111_mmi_14998 crossref_primary_10_1111_acel_13706 crossref_primary_10_3390_antiox12061163 crossref_primary_10_1093_clinchem_hvac147 crossref_primary_10_1124_pharmrev_123_001111 crossref_primary_10_3390_microorganisms12081581 crossref_primary_10_1128_spectrum_02011_24 crossref_primary_10_1128_msystems_00422_21 crossref_primary_10_1038_s41467_020_17916_9 crossref_primary_10_1016_j_bbadis_2020_165992 crossref_primary_10_1080_17501911_2024_2351788 crossref_primary_10_1021_acs_chemrev_5c00001 crossref_primary_10_3390_microorganisms9020365 crossref_primary_10_1128_JB_00143_21 crossref_primary_10_1007_s12017_023_08736_3 crossref_primary_10_1016_j_ymben_2025_01_004 crossref_primary_10_3389_fmicb_2024_1366336 crossref_primary_10_3389_fcimb_2021_725043 crossref_primary_10_15212_AMM_2023_0010 crossref_primary_10_1007_s12275_022_2095_y crossref_primary_10_1002_pro_4845 crossref_primary_10_1002_psc_3603 crossref_primary_10_1021_acs_jmedchem_5c00479 crossref_primary_10_1007_s12010_024_05176_y crossref_primary_10_1002_pmic_202100389 crossref_primary_10_3390_v16010131 crossref_primary_10_3389_fendo_2021_731648 crossref_primary_10_1038_s41467_024_48251_y crossref_primary_10_1186_s40659_025_00613_6 crossref_primary_10_3390_ijms22168529 crossref_primary_10_3390_molecules29020383 crossref_primary_10_1016_j_chemosphere_2021_131373 crossref_primary_10_3389_fmicb_2020_01453 crossref_primary_10_1128_mmbr_00030_17 crossref_primary_10_3389_fcimb_2024_1408947 crossref_primary_10_3390_v14112356 crossref_primary_10_3389_fmicb_2021_805181 crossref_primary_10_1128_IAI_00588_20 crossref_primary_10_3389_fpls_2020_00181 crossref_primary_10_1042_BST20241037 crossref_primary_10_1073_pnas_2419096122 crossref_primary_10_1128_msystems_00510_23 crossref_primary_10_1016_j_isci_2021_103730 crossref_primary_10_1038_s41467_023_43825_8 crossref_primary_10_1128_spectrum_03539_22 crossref_primary_10_1038_s41598_024_60602_9 crossref_primary_10_1128_JB_00231_21 crossref_primary_10_1128_spectrum_02528_23 crossref_primary_10_3390_ijms231911648 crossref_primary_10_1007_s12272_022_01409_y crossref_primary_10_1128_iai_00090_24 crossref_primary_10_1016_j_bbagen_2021_130021 crossref_primary_10_3389_fcell_2023_1236271 crossref_primary_10_1007_s10238_025_01771_3 crossref_primary_10_1128_MMBR_00090_19 crossref_primary_10_1128_JB_00333_21 crossref_primary_10_1016_j_biotechadv_2021_107842 crossref_primary_10_3389_fmicb_2021_757179 crossref_primary_10_1016_j_bej_2021_108255 crossref_primary_10_1111_omi_12452 crossref_primary_10_1038_s41467_024_46039_8 crossref_primary_10_1111_febs_70014 |
| Cites_doi | 10.1073/pnas.96.16.8931 10.1021/acschembio.8b00213 10.3390/genes9100473 10.1016/j.molcel.2011.06.037 10.1016/j.jmb.2006.03.033 10.1016/j.abb.2014.04.004 10.1074/mcp.M114.045922 10.1128/JB.00433-17 10.1074/jbc.m205670200 10.1074/jbc.274.26.18157 10.1074/jbc.M113.495549 10.1016/S0021-9258(18)93148-0 10.1128/jb.00215-06 10.1002/pro.2546 10.1038/38304 10.1126/science.1077650 10.1371/journal.pone.0204687 10.1126/science.1126867 10.1128/JB.111.1.24-32.1972 10.3389/fmicb.2016.01918 10.1021/acs.jproteome.7b00429 10.1074/jbc.m303666200 10.1128/mBio.00708-17 10.1038/nrmicro2836 10.1038/s41426-018-0032-2 10.1016/j.vetmic.2018.09.024 10.1128/JB.01502-12 10.1371/journal.pone.0015123 10.1016/S0021-9258(18)71161-7 10.1371/journal.pone.0189689 10.1016/j.molcel.2005.02.022 10.1016/j.molcel.2015.02.029 10.1128/jb.01780-05 10.1074/jbc.M111.282863 10.1016/j.biocel.2014.11.010 10.1016/s0968-0004(97)01034-7 10.1038/384641a0 10.1371/journal.pone.0094816 10.1251/bpo141 10.1073/pnas.1525654113 10.1073/pnas.51.5.786 10.1128/IAI.00224-18 10.1186/gb-2009-10-6-r63 10.1016/s0022-2836(02)01269-x 10.1128/JB.01961-14 10.1016/s1471-4914(03)00031-5 10.1111/j.1365-2958.2008.06252.x 10.1073/pnas.1815511116 10.1016/j.molcel.2013.06.003 10.1128/JB.00004-14 10.1074/jbc.m704409200 10.1021/bi034959l 10.1111/j.1364-3703.2011.00719.x 10.1016/bs.mie.2016.09.029 10.3389/fmolb.2016.00038 10.1111/mmi.13874 10.1126/sciadv.aao1478 10.1128/MR.57.1.138-163.1993 10.1093/infdis/jix102 10.1128/JB.162.3.1156-1161.1985 10.1074/jbc.m306552200 10.1038/21922 10.1046/j.1365-2958.2003.03442.x 10.1074/jbc.M112.352104 10.1146/annurev.biochem.73.011303.073651 10.3389/fcimb.2017.00537 10.1111/mmi.13161 10.1016/j.molcel.2013.06.001 10.1073/pnas.1514974112 10.1073/pnas.1008203109 10.1128/mBio.01905-18 10.1093/jn/133.7.2485S 10.1016/j.mib.2010.01.002 10.1016/j.jprot.2014.11.006 10.1007/bf02464895 10.1074/jbc.R116.751164 10.1128/JB.00995-10 10.1074/jbc.m116.744532 10.1111/mmi.13339 10.1016/j.molcel.2008.07.002 10.1006/bbrc.2000.3000 10.1016/j.mib.2003.09.002 10.1021/cb500904b 10.1016/j.cmet.2014.03.014 10.1016/s0092-8674(00)81821-8 10.1016/0076-6879(86)31051-6 10.1111/mmi.13627 10.1128/MMBR.00036-16 10.1074/jbc.C113.511261 10.1016/s0959-437x(00)00173-8 10.1128/JB.01674-08 10.1016/j.bbrc.2011.06.076 10.1016/j.bbrc.2016.04.045 10.1074/jbc.m407484200 10.1128/JB.00588-08 10.1021/pr2002325 10.1038/srep30837 10.1021/ja01129a035 10.1371/journal.ppat.1005458 10.1038/srep44826 10.1093/abbs/gmw066 10.1146/annurev.biophys.29.1.81 10.1074/mcp.M113.031567 10.1007/s00792-019-01090-y 10.1074/mcp.M111.012658 10.1002/pmic.200400906 10.1111/mmi.13901 10.1074/mcp.RA117.000372 10.1146/annurev.micro.58.030603.123818 10.1007/bf00331153 10.1016/j.jmb.2017.03.027 10.1128/MR.50.3.314-352.1986 10.2337/diabetes.54.6.1615 10.1261/rna.030213.111 10.1128/JB.00107-17 10.1111/j.1365-2958.2010.07148.x 10.1074/jbc.M116.770826 10.1093/nar/gkv800 10.1111/j.1574-6976.2010.00213.x 10.1128/jb.00564-07 10.1042/bj0870258 10.1016/j.molcel.2016.05.002 10.3390/ijms17071018 10.1128/mSphere.00501-18 10.1111/j.1365-2958.2011.07742.x 10.1371/journal.pone.0179621 10.1021/acs.jproteome.8b00210 10.1074/mcp.M800187-MCP200 10.1101/sqb.1998.63.501 10.1016/j.molcel.2006.06.026 10.1038/382319a0 10.1093/femsle/fnu051 10.1128/mmbr.00032-16 10.1074/jbc.M112.365502 10.1016/j.cell.2011.08.008 10.1128/jb.184.16.4334-4342.2002 10.1007/s13361-016-1476-z 10.1128/JB.157.3.758-763.1984 10.1002/mbo3.320 10.1016/j.abb.2004.09.003 10.1074/jbc.M115.649806 10.1093/nar/gkw053 10.1111/mmi.12088 10.1016/j.gene.2005.09.010 10.1186/1471-2229-8-121 10.1128/JB.00340-08 10.1155/2014/730725 10.1099/mic.0.000737 10.1038/nchembio.607 10.3389/fmicb.2016.01864 10.1074/jbc.M113.463992 10.1074/jbc.M114.581843 10.1099/00221287-102-2-327 10.1021/bi200156t 10.1002/mbo3.223 10.1128/mSystems.00005-16 10.1111/mmi.13658 10.1074/mcp.m700021-mcp200 10.1128/jb.01198-07 10.1139/o11-086 10.1046/j.1365-2958.2001.02425.x 10.1128/jb.177.10.2878-2886.1995 10.1111/j.1365-2958.2010.07127.x 10.1021/acs.biochem.5b01269 10.1016/j.tibs.2010.10.001 10.1099/mic.0.28156-0 10.1039/c5md00344j 10.1128/JB.00385-18 10.1128/aac.41.5.956 10.1128/JB.00661-15 10.1083/jcb.201202056 10.1186/s12864-017-3676-8 10.1016/j.jmb.2004.05.010 10.3389/fmicb.2017.00699 10.1016/j.cell.2009.01.033 10.3390/ijms19051439 10.1021/cb500848p 10.1021/bi00683a018 10.1016/j.jprot.2018.02.005 10.1128/MMBR.00020-15 10.1073/pnas.1120251109 10.1093/infdis/jiw028 10.1016/j.tibs.2007.03.007 10.1074/jbc.M110.126581 10.1111/1758-2229.12639 10.1074/mcp.M900463-MCP200 10.1111/j.1365-2958.2011.07873.x 10.1074/mcp.M117.067587 10.1002/pmic.201800123 10.1021/bi201921a 10.1016/S0070-2137(01)80002-9 10.1073/pnas.0401057101 10.1093/nar/gkx250 10.1074/jbc.M111.241414 10.1021/cr500452k 10.1074/jbc.M110.118398 10.1128/JB.144.1.114-123.1980 10.15252/msb.156513 10.1002/msb.134974 10.1038/nchembio.495 10.1128/AEM.01009-15 10.1126/science.1207861 10.1073/pnas.1008685107 10.1093/genetics/163.2.545 10.1038/s41426-018-0112-3 10.1042/BSR20170157 10.1006/bbrc.1999.0897 10.1016/j.celrep.2015.10.029 10.1021/acs.jproteome.6b00798 10.1016/j.jprot.2016.12.006 10.3791/57209 10.1128/mBio.02708-18 10.1074/jbc.M114.579078 10.1016/S0092-8674(00)81585-8 10.1016/j.celrep.2013.07.024 10.1016/j.mad.2005.03.013 10.1021/pr400245k 10.1128/JB.00874-10 10.1016/j.mib.2010.12.013 10.1007/s11095-015-1637-y 10.1038/nrm2346 10.1074/mcp.M114.041962 10.1016/j.jmb.2007.07.075 10.1021/bi602513x 10.1016/S0021-9258(18)91985-X 10.1371/journal.pone.0054896 10.1128/IAI.02153-14 10.1038/nature06546 10.1371/journal.pone.0131169 10.1016/j.jprot.2013.06.036 10.1126/science.1179687 10.1002/9780470015902.a0000866.pub3 10.15252/msb.20145227 10.1074/jbc.m501280200 10.1099/00221287-94-1-159 10.1111/febs.12216 10.1007/s00253-007-0911-2 10.1021/pr1002609 10.1016/j.bbapap.2009.09.009 10.1016/j.sbi.2011.08.004 10.7554/eLife.02999 10.1128/AEM.01113-18 10.1111/j.1365-2958.2010.07125.x 10.1111/mmi.13595 10.1016/s0969-2126(01)00690-6 10.1016/s0966-842x(97)01033-0 10.1128/JB.00383-13 10.1074/jbc.M113.486753 10.1038/nchembio.1497 10.1016/j.jmb.2004.02.006 10.1016/j.biocel.2008.08.027 10.1074/jbc.m707878200 10.1074/jbc.M115.687269 10.1002/cbic.201700343 10.1080/20002297.2018.1487743 10.1128/AEM.03034-16 10.1111/mmi.13979 10.1021/acs.biochem.7b01089 10.3389/fmicb.2018.02036 10.1002/j.1460-2075.1988.tb02956.x 10.1128/aac.7.5.494 10.1016/j.jprot.2016.05.021 10.1128/mBio.01894-17 10.1016/j.tips.2004.12.009 10.1016/j.tim.2017.04.001 10.1016/s0968-0004(02)00005-1 10.1126/science.1175371 10.1099/mic.0.068585-0 10.1111/febs.13566 10.1128/jb.174.21.7003-7012.1992 10.1128/JB.00768-18 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe. 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe |
| Copyright_xml | – notice: Copyright © 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe. 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe |
| CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) |
| CorporateAuthor_xml | – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) |
| DBID | AAYXX CITATION NPM 7X8 OTOTI 5PM DOA |
| DOI | 10.3389/fmicb.2019.01604 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_83735eb24beb4f459a70cdb0a48e4497 PMC6640162 1542482 31354686 10_3389_fmicb_2019_01604 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM066130 – fundername: NIAID NIH HHS grantid: R01 AI108255 – fundername: NIGMS NIH HHS grantid: P41 GM111244 – fundername: NIH HHS grantid: S10 OD016281 – fundername: National Center for Research Resources – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases – fundername: National Institute of General Medical Sciences – fundername: U.S. Department of Energy |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 IAO IEA IHR OTOTI 5PM |
| ID | FETCH-LOGICAL-c555t-8ad7ba99505059dd0832a7bf5b97b702bbf4be6e1fe12b99ad6336b7745a45f53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 130 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475414100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:51:40 EDT 2025 Tue Sep 30 16:19:02 EDT 2025 Mon Nov 25 02:42:33 EST 2024 Sun Nov 09 10:01:48 EST 2025 Mon Jul 21 05:49:55 EDT 2025 Sat Nov 29 01:50:12 EST 2025 Tue Nov 18 20:51:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | acetylation mass spectrometry bacteria proteomics lysine acetyltransferase |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c555t-8ad7ba99505059dd0832a7bf5b97b702bbf4be6e1fe12b99ad6336b7745a45f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704 BNL-212006-2019-JAAM This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology Reviewed by: Feng Ge, Institute of Hydrobiology (CAS), China; Saori Kosono, The University of Tokyo, Japan Edited by: Boris Macek, University of Tübingen, Germany |
| OpenAccessLink | https://doaj.org/article/83735eb24beb4f459a70cdb0a48e4497 |
| PMID | 31354686 |
| PQID | 2266349478 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_83735eb24beb4f459a70cdb0a48e4497 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6640162 osti_scitechconnect_1542482 proquest_miscellaneous_2266349478 pubmed_primary_31354686 crossref_citationtrail_10_3389_fmicb_2019_01604 crossref_primary_10_3389_fmicb_2019_01604 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-12 |
| PublicationDateYYYYMMDD | 2019-07-12 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: United States |
| PublicationTitle | Frontiers in microbiology |
| PublicationTitleAlternate | Front Microbiol |
| PublicationYear | 2019 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Yang (B259) 2018; 7 Li (B114) 2010; 76 Feldman (B61) 2013; 288 Baeza (B6) 2014; 289 Dai (B44) 2014; 10 Barak (B10) 2001; 40 Kuhn (B105) 2014; 9 Nambi (B157) 2013; 288 Wolfe (B250) 2010; 13 VanDrisse (B227) 2018; 107 Roy-Chaudhuri (B187) 2008; 68 You (B267) 2017; 103 Ouidir (B167) 2015; 114 Tucker (B224) 2013; 87 Trievel (B222) 1999; 96 Wang (B238) 2010; 327 Becker (B13) 2017; 81 Li (B115) 2017; 8 Song (B202) 2016; 44 Starai (B207); 340 Ren (B182) 2015; 81 Madian (B135) 2010; 9 Keating (B96) 2008; 10 Okanishi (B165) 2013; 12 Yan (B258) 2002; 9 Starai (B209) 2003; 163 Gregoretti (B77) 2004; 338 Colak (B39) 2013; 12 Umehara (B225) 2018; 9 Carabetta (B28) 2019; 116 Davie (B47) 2003; 133 Dutnall (B57) 1998; 63 Berndsen (B15) 2007; 46 White-Ziegler (B246) 2002; 184 Salah Ud-Din (B190) 2016; 17 Klein (B101) 2007; 189 Sabari (B188) 2015; 58 Lanouette (B109) 2014; 10 Starai (B208) 2005; 151 Xu (B256); 13 Marmorstein (B138) 2001; 9 Hentchel (B83) 2015; 79 Okkels (B166) 2004; 4 Brown (B23) 2017; 18 Liu (B128) 2008; 451 Bernard (B14) 2011; 286 Garneau-Tsodikova (B68) 2016; 7 Mukherjee (B151) 2007; 32 Nambi (B156) 2010; 285 You (B268) 2014; 196 Gershey (B71) 1968; 243 Starai (B206); 61 Venkat (B231); 429 Di Sabato (B52) 1961; 83 Kentache (B97) 2016; 144 Spange (B203) 2009; 41 Weinert (B245) 2017; 16 Gallego-Jara (B64) 2017; 12 Porcu (B174) 2005; 26 Liszczak (B125) 2011; 286 Mishra (B146) 2018; 200 Ramponi (B179) 1975; 14 Sang (B192) 2016; 213 Christensen (B37) 2018; 9 Denu (B51) 2003; 28 Qin (B177) 2016; 7 Koshland (B102) 1952; 74 Doll (B54) 2015; 10 Jose (B94) 2016; 283 Smith (B201) 2007; 282 Frye (B63) 2000; 273 Chen (B32) 2007; 6 Venkat (B230); 18 Makowski (B137) 2008; 375 Bi (B17) 2017; 7 Crosby (B40) 2014; 196 Fan (B59) 2015; 43 Kosono (B103) 2015; 10 Mittal (B147) 2010; 285 Lima (B121) 2011; 81 Mizuno (B149) 2016; 5 Reeve (B180) 1984; 157 Li (B116) 2018; 10 Blander (B20) 2004; 73 Tan (B217) 2014; 19 Shaw (B198) 1993; 57 Jackson (B91) 2003; 278 Yang (B261) 1996; 382 Bulkley (B26) 2010; 107 Green (B76) 2018; 57 Lewis (B112) 2011; 12 Jencks (B92) 1969 Prüss (B176) 2006; 188 Zhou (B278) 2017; 45 Ringel (B185) 2014; 23 Tanner (B219) 1999; 274 Steinsiek (B210) 2012; 194 Lombardi (B130) 2011; 21 Xiong (B253) 2012; 198 Lynch (B132) 2015; 112 Ramos-Montañez (B178) 2010; 192 Barak (B11) 2006; 359 Polevoda (B173) 2003; 325 Shaw (B199) 1976; 94 Hood (B87) 2012; 10 Brown (B24) 1977; 102 Sang (B193) 2017; 216 Kuo (B107) 2013; 8 Wei (B240) 2018; 134 Reverdy (B184) 2018; 13 Zhang (B271) 2009; 8 Liu (B129) 2015; 198 Lin (B124) 2009; 136 Amin (B3) 2016; 3 Kim (B99) 2012; 109 Schilling (B196) 2015; 98 Xu (B254) 2011; 50 Yang (B263); 9 Choudhary (B34) 2009; 325 Sanders (B191) 2010; 1804 Phillips (B172) 1963; 87 Golubev (B74) 2017; 292 Yang (B260) 2015; 14 White-Ziegler (B247) 1992; 174 Zhang (B273) 2013; 280 AbouElfetouh (B1) 2015; 4 Birhanu (B18) 2017; 16 Nakayasu (B155) 2014; 2014 Ninfa (B160) 2000; 36 Christensen (B38) 2017; 83 Martin (B141) 2014 Navarro Llorens (B158) 2010; 34 Basisty (B12) 2018; 18 Voet (B236) 1990 Gardner (B65) 2008; 190 Ghosh (B72) 2016; 100 Nyström (B162) 2004; 58 Wang (B239) 2007; 189 Tanaka (B218) 1989; 217 Yang (B262); 31 Paquette (B168) 2012; 109 Park (B169) 2013; 50 Helsens (B82) 2011; 10 Bi (B16) 2018; 7 Li (B113) 2018; 226 Dancy (B46) 2015; 115 Hildmann (B84) 2007; 75 Nagano-Shoji (B153) 2017; 104 Bannister (B8) 1996; 384 Liang (B117) 2012; 18 Meyer (B144) 2016; 27 Yu (B270) 2008; 18 Lee (B111) 2015; 13 Gaviard (B70) 2018; 17 Liarzi (B119) 2010; 76 Bitterman (B19) 2002; 277 Vidali (B235) 1968; 243 Schmidt (B197) 2004; 279 Neuwald (B159) 1997; 22 Avalos (B5) 2005; 17 Zhang (B272) 2016; 6 Carabetta (B29) 2016; 1 Guarente (B78) 2005; 126 Yoshikawa (B266) 1987; 209 Crosby (B41) 2010; 76 Vasileva (B229) 2018; 10 Brownlee (B25) 2005; 54 Carabetta (B27) 2017; 199 Hu (B88) 2013 Frye (B62) 1999; 260 Zhang (B274) 2011; 7 Andersen (B4) 1980; 144 Spencer (B204) 1997; 389 Wimpenny (B248) 1972; 111 Vergnolle (B233) 2016; 291 Liu (B127) 2018; 86 Mizzen (B150) 1996; 87 Szewczak (B215) 2015; 32 Cunin (B43) 1986; 50 Ma (B133) 2016; 80 Ye (B264) 2017; 292 Castaño-Cerezo (B31) 2014; 10 Hebbes (B80) 1988; 7 Wolf (B249) 1998; 94 Schilling (B195) 2019; 201 Yoshida (B265) 2019; 23 Du (B55) 2011; 334 Thao (B220) 2010; 5 Peng (B170) 2011; 10 Wei (B241) 2017; 104 Thao (B221) 2011; 14 Ren (B183) 2016; 12 Cheverton (B33) 2016; 63 Weinert (B242) 2015; 11 Dalle-Donne (B45) 2003; 9 Helbig (B81) 2010; 9 Hu (B89) 2013; 195 Wright (B251) 1997; 41 Duan (B56) 2016; 473 Post (B175) 2017; 12 Peregrín-Alvarez (B171) 2009; 10 Zhou (B279) 2015; 362 Davis (B49) 2018; 107 Hollywood (B86) 1976; 17 Gardner (B67) 2006; 188 Suzuki (B214) 2019; 165 Ren (B181) 2017; 25 Dyda (B58) 2000; 29 Hockenberry (B85) 2018; 110 Nakayasu (B154) 2017; 8 Bontemps-Gallo (B21) 2018; 9 Davies (B48) 1997; 5 Sun (B213) 2018; 177 Zhao (B275) 2003; 278 Zhao (B276) 2004; 101 Castaño-Cerezo (B30) 2011; 82 Rose (B186) 1954; 211 Weinert (B243); 51 Ogura (B163) 2016; 7 Lange (B108) 2014; 97 Mukherjee (B152) 2006; 312 Christensen (B35) 2019 Liang (B118) 2011; 44 Crosby (B42) 2012; 287 Lima (B122) 2012; 287 Gardner (B66) 2009; 191 Vallari (B226) 1985; 162 Ma (B134) 2011; 410 Zhou (B277) 2018; 19 Noy (B161) 2014 You (B269) 2016; 113 Dickinson (B53) 2011; 7 Mikulik (B145) 2012; 90 Starai (B205) 2002; 298 Jers (B93) 2017; 7 Liimatta (B120) 2018; 84 Martínez-Antonio (B142) 2003; 6 de Diego Puente (B50) 2015; 290 Lu (B131) 2017; 37 Sauve (B194) 2003; 42 Kawabe (B95) 1975; 7 Kim (B98) 2011; 36 Mba Medie (B143) 2014; 82 VanDrisse (B228) 2017; 8 Marmorstein (B139) 2001; 11 Kossiakoff (B104) 1986; 131 Liu (B126) 2014; 13 Lin (B123) 1999; 400 Brinkman (B22) 2003; 48 Vergnolle (B232) 2013; 288 Ishigaki (B90) 2017; 155 Xu (B257) 2014; 289 Maisonneuve (B136) 2008; 190 Latrasse (B110) 2008; 8 Favrot (B60) 2016; 55 Tucker (B223) 2010; 192 Sakatos (B189) 2018; 4 Hayden (B79) 2013; 159 Miyagi (B148) 2017; 586 Wagner (B237) 2013; 288 Xu (B255); 17 Gottesman (B75) 2017; 199 Sun (B212); 15 Weinert (B244); 4 Bao (B9) 2014; 3 Xie (B252) 2015; 59 Tan (B216) 2011; 146 Allfrey (B2) 1964; 51 Christensen (B36) 2019; 10 Kumari (B106) 1995; 177 Marsh (B140) 2005; 280 Ogura (B164) 2018; 3 Sun (B211); 48 Kim (B100) 2006; 23 Vetting (B234) 2005; 433 Glozak (B73) 2005; 363 Baeza (B7) 2015; 10 Garrity (B69) 2007; 282 Singhal (B200) 2015; 290 |
| References_xml | – volume: 96 start-page: 8931 year: 1999 ident: B222 article-title: Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.16.8931 – volume: 13 start-page: 1588 ident: B256 article-title: Characterization of the lysine acylomes and the substrates regulated by Protein Acyltransferase in Mycobacterium smegmatis. publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00213 – volume: 9 year: 2018 ident: B225 article-title: Lysine acetylation regulates alanyl-tRNA synthetase activity in Escherichia coli. publication-title: Genes doi: 10.3390/genes9100473 – volume: 44 start-page: 160 year: 2011 ident: B118 article-title: Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.037 – volume: 359 start-page: 251 year: 2006 ident: B11 article-title: The chemotaxis response regulator CheY can catalyze its own acetylation. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.03.033 – start-page: 42 year: 2014 ident: B161 article-title: Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.04.004 – volume: 14 start-page: 796 year: 2015 ident: B260 article-title: Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.045922 – volume: 199 year: 2017 ident: B75 article-title: Stress reduction, bacterial style. publication-title: J. Bacteriol. doi: 10.1128/JB.00433-17 – volume: 277 start-page: 45099 year: 2002 ident: B19 article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast SIR2 and human SIRT1. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m205670200 – volume: 274 start-page: 18157 year: 1999 ident: B219 article-title: Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.26.18157 – volume: 288 start-page: 28116 year: 2013 ident: B232 article-title: Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.495549 – volume: 243 start-page: 6361 year: 1968 ident: B235 article-title: Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)93148-0 – volume: 188 start-page: 5460 year: 2006 ident: B67 article-title: Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis. publication-title: J. Bacteriol. doi: 10.1128/jb.00215-06 – volume: 23 start-page: 1686 year: 2014 ident: B185 article-title: Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. publication-title: Protein Sci. doi: 10.1002/pro.2546 – volume: 389 start-page: 194 year: 1997 ident: B204 article-title: Steroid receptor coactivator-1 is a histone acetyltransferase. publication-title: Nature doi: 10.1038/38304 – volume: 298 start-page: 2390 year: 2002 ident: B205 article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. publication-title: Science doi: 10.1126/science.1077650 – volume: 13 year: 2018 ident: B184 article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. publication-title: PLoS One doi: 10.1371/journal.pone.0204687 – volume: 312 start-page: 1211 year: 2006 ident: B152 article-title: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. publication-title: Science doi: 10.1126/science.1126867 – year: 1990 ident: B236 publication-title: Biochemistry. – volume: 111 start-page: 24 year: 1972 ident: B248 article-title: Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen. publication-title: J. Bacteriol. doi: 10.1128/JB.111.1.24-32.1972 – volume: 7 year: 2016 ident: B163 article-title: Glucose induces ECF sigma factor genes, sigX and sigM, independent of cognate anti-sigma factors through acetylation of CshA in Bacillus subtilis. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01918 – volume: 16 start-page: 4045 year: 2017 ident: B18 article-title: N - and O-acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 strains: proteins involved in bioenergetics, virulence and antimicrobial resistance are acetylated. publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00429 – volume: 278 start-page: 26071 year: 2003 ident: B275 article-title: Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m303666200 – volume: 8 year: 2017 ident: B228 article-title: A toxin involved in Salmonella persistence regulates its activity by acetylating its cognate antitoxin, a modification reversed by CobB sirtuin deacetylase. publication-title: mBio doi: 10.1128/mBio.00708-17 – volume: 10 start-page: 525 year: 2012 ident: B87 article-title: Nutritional immunity: transition metals at the pathogen-host interface. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2836 – volume: 7 year: 2018 ident: B259 article-title: Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. publication-title: Emerg. Microbes Infect. doi: 10.1038/s41426-018-0032-2 – volume: 226 start-page: 1 year: 2018 ident: B113 article-title: First acetyl-proteome pro?ling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance. publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2018.09.024 – volume: 194 start-page: 5897 year: 2012 ident: B210 article-title: Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. publication-title: J. Bacteriol. doi: 10.1128/JB.01502-12 – volume: 5 year: 2010 ident: B220 article-title: N -lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity. publication-title: PLoS One doi: 10.1371/journal.pone.0015123 – volume: 17 start-page: 23 year: 1976 ident: B86 article-title: Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12. publication-title: Microbios – volume: 211 start-page: 737 year: 1954 ident: B186 article-title: Enzymatic phosphorylation of acetate. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)71161-7 – volume: 12 year: 2017 ident: B64 article-title: Characterization of CobB kinetics and inhibition by nicotinamide. publication-title: PLoS One doi: 10.1371/journal.pone.0189689 – volume: 17 start-page: 855 year: 2005 ident: B5 article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.022 – year: 2013 ident: B88 publication-title: Understanding the Posttranslational Regulation of the Response Regulator RcsB and Acetyl Phosphate as an Acetyl Group Donor in E. coli. – volume: 58 start-page: 203 year: 2015 ident: B188 article-title: Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.029 – volume: 188 start-page: 3731 year: 2006 ident: B176 article-title: A complex transcription network controls the early stages of biofilm development by Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/jb.01780-05 – volume: 286 start-page: 37002 year: 2011 ident: B125 article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.282863 – volume: 59 start-page: 193 year: 2015 ident: B252 article-title: Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2014.11.010 – volume: 9 start-page: 862 year: 2002 ident: B258 article-title: The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. publication-title: Nat. Struct. Biol. – volume: 22 start-page: 154 year: 1997 ident: B159 article-title: GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. publication-title: Trends Biochem. Sci. doi: 10.1016/s0968-0004(97)01034-7 – volume: 384 start-page: 641 year: 1996 ident: B8 article-title: The CBP co-activator is a histone acetyltransferase. publication-title: Nature doi: 10.1038/384641a0 – volume: 9 year: 2014 ident: B105 article-title: Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. publication-title: PLoS One doi: 10.1371/journal.pone.0094816 – volume: 10 start-page: 36 year: 2008 ident: B96 article-title: Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules. publication-title: Biol. Proced. Online doi: 10.1251/bpo141 – volume: 113 start-page: 6653 year: 2016 ident: B269 article-title: Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1525654113 – volume: 51 start-page: 786 year: 1964 ident: B2 article-title: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.51.5.786 – volume: 86 year: 2018 ident: B127 article-title: Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis. publication-title: Infect. Immun. doi: 10.1128/IAI.00224-18 – volume: 10 year: 2009 ident: B171 article-title: The conservation and evolutionary modularity of metabolism. publication-title: Genome Biol. doi: 10.1186/gb-2009-10-6-r63 – volume: 325 start-page: 595 year: 2003 ident: B173 article-title: N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. publication-title: J. Mol. Biol. doi: 10.1016/s0022-2836(02)01269-x – volume: 196 start-page: 3169 year: 2014 ident: B268 article-title: Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea. publication-title: J. Bacteriol. doi: 10.1128/JB.01961-14 – volume: 9 start-page: 169 year: 2003 ident: B45 article-title: Protein carbonylation in human diseases. publication-title: Trends Mol. Med. doi: 10.1016/s1471-4914(03)00031-5 – volume: 68 start-page: 1547 year: 2008 ident: B187 article-title: Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06252.x – volume: 116 start-page: 3752 year: 2019 ident: B28 article-title: YfmK is an N -lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1815511116 – volume: 51 start-page: 265 ident: B243 article-title: Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.003 – volume: 196 start-page: 1496 year: 2014 ident: B40 article-title: The acetylation motif in AMP-forming Acyl coenzyme A synthetases contains residues critical for acetylation and recognition by the protein acetyltransferase Pat of Rhodopseudomonas palustris. publication-title: J. Bacteriol. doi: 10.1128/JB.00004-14 – volume: 282 start-page: 30239 year: 2007 ident: B69 article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m704409200 – volume: 42 start-page: 9249 year: 2003 ident: B194 article-title: Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. publication-title: Biochemistry doi: 10.1021/bi034959l – volume: 12 start-page: 928 year: 2011 ident: B112 article-title: The YopJ superfamily in plant-associated bacteria. publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2011.00719.x – volume: 586 start-page: 85 year: 2017 ident: B148 article-title: Site-specific quantification of lysine acetylation using isotopic labeling. publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.09.029 – volume: 3 year: 2016 ident: B3 article-title: Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145. publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2016.00038 – volume: 107 start-page: 116 year: 2018 ident: B49 article-title: An acetylatable lysine controls CRP function in E. coli. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13874 – volume: 4 year: 2018 ident: B189 article-title: Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. publication-title: Sci. Adv. doi: 10.1126/sciadv.aao1478 – volume: 57 start-page: 138 year: 1993 ident: B198 article-title: Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. publication-title: Microbiol. Rev. doi: 10.1128/MR.57.1.138-163.1993 – volume: 216 start-page: 1018 year: 2017 ident: B193 article-title: Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating Salmonella Typhimurium virulence. publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix102 – volume: 162 start-page: 1156 year: 1985 ident: B226 article-title: Pantothenate transport in Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/JB.162.3.1156-1161.1985 – volume: 278 start-page: 50985 year: 2003 ident: B91 article-title: Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m306552200 – volume: 400 start-page: 86 year: 1999 ident: B123 article-title: Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. publication-title: Nature doi: 10.1038/21922 – volume: 48 start-page: 287 year: 2003 ident: B22 article-title: The Lrp family of transcriptional regulators. publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2003.03442.x – volume: 287 start-page: 15590 year: 2012 ident: B42 article-title: System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.352104 – volume: 73 start-page: 417 year: 2004 ident: B20 article-title: The Sir2 family of protein deacetylases. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073651 – volume: 7 year: 2017 ident: B93 article-title: The global acetylome of the human pathogen Vibrio cholerae V52 reveals lysine acetylation of major transcriptional regulators. publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00537 – volume: 98 start-page: 847 year: 2015 ident: B196 article-title: Protein acetylation dynamics in response to carbon overflow in Escherichia coli. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13161 – volume: 50 start-page: 919 year: 2013 ident: B169 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.001 – volume: 112 start-page: 15690 year: 2015 ident: B132 article-title: The bioenergetic costs of a gene. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1514974112 – volume: 109 start-page: 12710 year: 2012 ident: B168 article-title: Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1008203109 – volume: 9 year: 2018 ident: B37 article-title: Identification of novel protein lysine acetyltransferases in Escherichia coli. publication-title: mBio doi: 10.1128/mBio.01905-18 – volume: 133 start-page: 2485S year: 2003 ident: B47 article-title: Inhibition of histone deacetylase activity by butyrate. publication-title: J. Nutr. doi: 10.1093/jn/133.7.2485S – volume: 13 start-page: 204 year: 2010 ident: B250 article-title: Physiologically relevant small phosphodonors link metabolism to signal transduction. publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2010.01.002 – volume: 114 start-page: 214 year: 2015 ident: B167 article-title: Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14. publication-title: J. Proteomics doi: 10.1016/j.jprot.2014.11.006 – volume: 217 start-page: 289 year: 1989 ident: B218 article-title: Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. publication-title: Mol. Gen. Genet. doi: 10.1007/bf02464895 – volume: 292 start-page: 6029 year: 2017 ident: B74 article-title: Non-enzymatic molecular damage as a prototypic driver of aging. publication-title: J. Biol. Chem. doi: 10.1074/jbc.R116.751164 – volume: 192 start-page: 6390 year: 2010 ident: B178 article-title: Instability of ackA (acetate kinase) mutations and their effects on acetyl phosphate and ATP amounts in Streptococcus pneumoniae D39. publication-title: J. Bacteriol. doi: 10.1128/JB.00995-10 – volume: 291 start-page: 22315 year: 2016 ident: B233 article-title: Post-translational acetylation of MbtA modulates mycobacterial siderophore biosynthesis. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m116.744532 – volume: 100 start-page: 577 year: 2016 ident: B72 article-title: Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13339 – volume: 31 start-page: 449 ident: B262 article-title: Lysine acetylation: codified crosstalk with other posttranslational modifications. publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.07.002 – volume: 273 start-page: 793 year: 2000 ident: B63 article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3000 – volume: 6 start-page: 482 year: 2003 ident: B142 article-title: Identifying global regulators in transcriptional regulatory networks in bacteria. publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2003.09.002 – volume: 10 start-page: 63 year: 2015 ident: B54 article-title: Mass spectrometry-based detection and assignment of protein posttranslational modifications. publication-title: ACS Chem. Biol. doi: 10.1021/cb500904b – volume: 19 start-page: 605 year: 2014 ident: B217 article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.014 – volume: 87 start-page: 1261 year: 1996 ident: B150 article-title: The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. publication-title: Cell doi: 10.1016/s0092-8674(00)81821-8 – volume: 131 start-page: 433 year: 1986 ident: B104 article-title: Protein dynamics investigated by neutron diffraction. publication-title: Methods Enzymol. doi: 10.1016/0076-6879(86)31051-6 – volume: 104 start-page: 278 year: 2017 ident: B241 article-title: Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13627 – volume: 81 year: 2017 ident: B13 article-title: Bacterial proteasomes: mechanistic and functional insights. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00036-16 – volume: 288 start-page: 31350 year: 2013 ident: B61 article-title: Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. publication-title: J. Biol. Chem. doi: 10.1074/jbc.C113.511261 – volume: 11 start-page: 155 year: 2001 ident: B139 article-title: Histone acetyltransferases: function, structure, and catalysis. publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/s0959-437x(00)00173-8 – volume: 191 start-page: 1749 year: 2009 ident: B66 article-title: In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase. publication-title: J. Bacteriol. doi: 10.1128/JB.01674-08 – volume: 410 start-page: 846 year: 2011 ident: B134 article-title: Protein acetylation in prokaryotes increases stress resistance. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.06.076 – volume: 473 start-page: 1229 year: 2016 ident: B56 article-title: Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.04.045 – volume: 279 start-page: 40122 year: 2004 ident: B197 article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m407484200 – volume: 190 start-page: 6609 year: 2008 ident: B136 article-title: Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/JB.00588-08 – volume: 10 start-page: 3578 year: 2011 ident: B82 article-title: Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. publication-title: J. Proteome Res. doi: 10.1021/pr2002325 – volume: 6 year: 2016 ident: B272 article-title: Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. publication-title: Sci. Rep. doi: 10.1038/srep30837 – volume: 74 start-page: 2286 year: 1952 ident: B102 article-title: Effect of catalysts on the hydrolysis of acetyl phosphate. Nucleophilic displacement mechanisms in enzymatic reactions. publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01129a035 – volume: 12 year: 2016 ident: B183 article-title: Acetylation of lysine 201 inhibits the DNA-binding ability of PhoP to regulate Salmonella virulence. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005458 – volume: 7 year: 2017 ident: B17 article-title: Modulation of central carbon metabolism by acetylation of isocitrate lyase in Mycobacterium tuberculosis. publication-title: Sci. Rep. doi: 10.1038/srep44826 – volume: 48 start-page: 723 ident: B211 article-title: Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase. publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmw066 – volume: 29 start-page: 81 year: 2000 ident: B58 article-title: GCN5-related N-acetyltransferases: a structural overview. publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.29.1.81 – volume: 12 start-page: 3509 year: 2013 ident: B39 article-title: Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031567 – volume: 23 start-page: 377 year: 2019 ident: B265 article-title: Protein acetylation on 2-isopropylmalate synthase from Thermus thermophilus HB27. publication-title: Extremophiles doi: 10.1007/s00792-019-01090-y – year: 2019 ident: B35 publication-title: Regulation of Acetyl Phosphate-Dependent Acetylation and Identification of Novel Lysine Acetyltransferases in Escherichia coli. – volume: 10 year: 2011 ident: B170 article-title: The first identification of lysine malonylation substrates and its regulatory enzyme. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.012658 – volume: 4 start-page: 2954 year: 2004 ident: B166 article-title: CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. publication-title: Proteomics doi: 10.1002/pmic.200400906 – volume: 107 start-page: 577 year: 2018 ident: B227 article-title: In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and N. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13901 – volume: 17 start-page: 1156 ident: B255 article-title: Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.RA117.000372 – volume: 58 start-page: 161 year: 2004 ident: B162 article-title: Stationary-phase physiology. publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.58.030603.123818 – volume: 209 start-page: 481 year: 1987 ident: B266 article-title: Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. publication-title: Mol. Gen. Genet. doi: 10.1007/bf00331153 – volume: 429 start-page: 1396 ident: B231 article-title: Studying the lysine acetylation of malate dehydrogenase. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.03.027 – volume: 50 start-page: 314 year: 1986 ident: B43 article-title: Biosynthesis and metabolism of arginine in bacteria. publication-title: Microbiol. Rev. doi: 10.1128/MR.50.3.314-352.1986 – volume: 54 start-page: 1615 year: 2005 ident: B25 article-title: The pathobiology of diabetic complications: a unifying mechanism. publication-title: Diabetes Metab. Res. Rev. doi: 10.2337/diabetes.54.6.1615 – volume: 18 start-page: 37 year: 2012 ident: B117 article-title: Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). publication-title: RNA doi: 10.1261/rna.030213.111 – volume: 199 year: 2017 ident: B27 article-title: Regulation, function, and detection of protein acetylation in bacteria. publication-title: J. Bacteriol. doi: 10.1128/JB.00107-17 – volume: 76 start-page: 932 year: 2010 ident: B119 article-title: Acetylation represses the binding of CheY to its target proteins. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07148.x – volume: 292 start-page: 10709 year: 2017 ident: B264 article-title: Acetylation of lysine ?-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.770826 – volume: 43 year: 2015 ident: B59 article-title: Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv800 – volume: 34 start-page: 476 year: 2010 ident: B158 article-title: Stationary phase in gram-negative bacteria. publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00213.x – volume: 189 start-page: 5574 year: 2007 ident: B101 article-title: The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. publication-title: J. Bacteriol. doi: 10.1128/jb.00564-07 – volume: 87 start-page: 258 year: 1963 ident: B172 article-title: The presence of acetyl groups of histones. publication-title: Biochem. J. doi: 10.1042/bj0870258 – volume: 63 start-page: 86 year: 2016 ident: B33 article-title: A Salmonella toxin promotes persister formation through acetylation of tRNA. publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.05.002 – volume: 17 year: 2016 ident: B190 article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17071018 – volume: 3 year: 2018 ident: B164 article-title: Newly identified nucleoid-associated-like protein YlxR regulates metabolic gene expression in Bacillus subtilis. publication-title: mSphere doi: 10.1128/mSphere.00501-18 – volume: 81 start-page: 1190 year: 2011 ident: B121 article-title: Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07742.x – volume: 12 year: 2017 ident: B175 article-title: Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae. publication-title: PLoS One doi: 10.1371/journal.pone.0179621 – volume: 17 start-page: 2449 year: 2018 ident: B70 article-title: Lysine succinylation and acetylation in Pseudomonas aeruginosa. publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00210 – volume: 8 start-page: 215 year: 2009 ident: B271 article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800187-MCP200 – volume: 63 start-page: 501 year: 1998 ident: B57 article-title: Structure of the yeast histone acetyltransferase Hat1: insights into substrate specificity and implications for the Gcn5-related N-acetyltransferase superfamily. publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.1998.63.501 – volume: 23 start-page: 607 year: 2006 ident: B100 article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.026 – volume: 382 start-page: 319 year: 1996 ident: B261 article-title: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. publication-title: Nature doi: 10.1038/382319a0 – volume: 362 year: 2015 ident: B279 article-title: Discovery and characterization of Ku acetylation in Mycobacterium smegmatis. publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnu051 – volume: 80 start-page: 1011 year: 2016 ident: B133 article-title: YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/mmbr.00032-16 – volume: 287 start-page: 32147 year: 2012 ident: B122 article-title: Inhibition of acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.365502 – volume: 146 start-page: 1016 year: 2011 ident: B216 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 184 start-page: 4334 year: 2002 ident: B246 article-title: The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/jb.184.16.4334-4342.2002 – volume: 27 start-page: 1758 year: 2016 ident: B144 article-title: Quantification of lysine acetylation and succinylation stoichiometry in proteins using mass spectrometric data-independent acquisitions (SWATH). publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-016-1476-z – volume: 157 start-page: 758 year: 1984 ident: B180 article-title: Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella Typhimurium. publication-title: J. Bacteriol. doi: 10.1128/JB.157.3.758-763.1984 – volume: 5 start-page: 152 year: 2016 ident: B149 article-title: Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction. publication-title: Microbiologyopen doi: 10.1002/mbo3.320 – volume: 433 start-page: 212 year: 2005 ident: B234 article-title: Structure and functions of the GNAT superfamily of acetyltransferases. publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2004.09.003 – volume: 290 start-page: 23077 year: 2015 ident: B50 article-title: The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.649806 – volume: 44 start-page: 1979 year: 2016 ident: B202 article-title: Reversible acetylation on Lys501 regulates the activity of RNase II. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw053 – volume: 87 start-page: 152 year: 2013 ident: B224 article-title: Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans. publication-title: Mol. Microbiol. doi: 10.1111/mmi.12088 – volume: 363 start-page: 15 year: 2005 ident: B73 article-title: Acetylation and deacetylation of non-histone proteins. publication-title: Gene doi: 10.1016/j.gene.2005.09.010 – volume: 8 year: 2008 ident: B110 article-title: The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-8-121 – volume: 61 start-page: 2020 ident: B206 article-title: Acetyl-coenzyme A synthetase (AMP forming). publication-title: Cell. Mol. Life Sci. – volume: 190 start-page: 5132 year: 2008 ident: B65 article-title: Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme a synthetase (AcsA) in Bacillus subtilis. publication-title: J. Bacteriol. doi: 10.1128/JB.00340-08 – volume: 2014 year: 2014 ident: B155 article-title: A method to determine lysine acetylation stoichiometries. publication-title: Int. J. Proteomics doi: 10.1155/2014/730725 – volume: 165 start-page: 65 year: 2019 ident: B214 article-title: Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis. publication-title: Microbiology doi: 10.1099/mic.0.000737 – volume: 7 start-page: 504 year: 2011 ident: B53 article-title: Chemistry and biology of reactive oxygen species in signaling or stress responses. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.607 – volume: 18 start-page: 1529 year: 2008 ident: B270 article-title: The diversity of lysine-acetylated proteins in Escherichia coli. publication-title: J. Microbiol. Biotechnol. – volume: 7 year: 2016 ident: B177 article-title: The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp Activity in Salmonella Typhimurium. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01864 – volume: 288 start-page: 14114 year: 2013 ident: B157 article-title: Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.463992 – volume: 289 start-page: 21326 year: 2014 ident: B6 article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.581843 – volume: 102 start-page: 327 year: 1977 ident: B24 article-title: The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-102-2-327 – volume: 50 start-page: 5883 year: 2011 ident: B254 article-title: Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. publication-title: Biochemistry doi: 10.1021/bi200156t – volume: 4 start-page: 66 year: 2015 ident: B1 article-title: The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites. publication-title: Microbiologyopen doi: 10.1002/mbo3.223 – volume: 1 year: 2016 ident: B29 article-title: Temporal regulation of the Bacillus subtilis acetylome and evidence for a role of MreB acetylation in cell wall growth. publication-title: mSystems doi: 10.1128/mSystems.00005-16 – volume: 104 start-page: 677 year: 2017 ident: B153 article-title: Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13658 – volume: 6 start-page: 812 year: 2007 ident: B32 article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.m700021-mcp200 – volume: 189 start-page: 8447 year: 2007 ident: B239 article-title: The RcsCDB signaling system and swarming motility in Salmonella enterica serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. publication-title: J. Bacteriol. doi: 10.1128/jb.01198-07 – volume: 90 start-page: 179 year: 2012 ident: B145 article-title: CobB1 deacetylase activity in Streptomyces coelicolor. publication-title: Biochem. Cell Biol. doi: 10.1139/o11-086 – volume: 40 start-page: 731 year: 2001 ident: B10 article-title: Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02425.x – volume: 177 start-page: 2878 year: 1995 ident: B106 article-title: Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. publication-title: J. Bacteriol. doi: 10.1128/jb.177.10.2878-2886.1995 – volume: 76 start-page: 874 year: 2010 ident: B41 article-title: Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07127.x – volume: 55 start-page: 989 year: 2016 ident: B60 article-title: Bacterial GCN5-Related N-Acetyltransferases: from resistance to regulation. publication-title: Biochemistry doi: 10.1021/acs.biochem.5b01269 – volume: 36 start-page: 211 year: 2011 ident: B98 article-title: Comprehensive lysine acetylomes emerging from bacteria to humans. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.10.001 – volume: 151 start-page: 3793 year: 2005 ident: B208 article-title: Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities. publication-title: Microbiology doi: 10.1099/mic.0.28156-0 – volume: 7 start-page: 11 year: 2016 ident: B68 article-title: Mechanisms of resistance to aminoglycoside Antibiotics: overview and perspectives. publication-title: Medchemcomm doi: 10.1039/c5md00344j – volume: 200 year: 2018 ident: B146 article-title: Role of acetyltransferase PG1842 in gingipain biogenesis in Porphyromonas gingivalis. publication-title: J. Bacteriol. doi: 10.1128/JB.00385-18 – volume: 41 start-page: 956 year: 1997 ident: B251 article-title: Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. publication-title: Antimicrob. Agents Chemother. doi: 10.1128/aac.41.5.956 – volume: 198 start-page: 623 year: 2015 ident: B129 article-title: Regulation of a protein acetyltransferase in Myxococcus xanthus by the coenzyme NADP. publication-title: J. Bacteriol. doi: 10.1128/JB.00661-15 – volume: 198 start-page: 155 year: 2012 ident: B253 article-title: Mechanistic insights into the regulation of metabolic enzymes by acetylation. publication-title: J. Cell Biol. doi: 10.1083/jcb.201202056 – volume: 18 year: 2017 ident: B23 article-title: Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. publication-title: BMC Genomics doi: 10.1186/s12864-017-3676-8 – volume: 340 start-page: 1005 ident: B207 article-title: Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.05.010 – volume: 8 year: 2017 ident: B115 article-title: Acetylation of lysine 243 inhibits the oriC binding ability of DnaA in Escherichia coli. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00699 – volume: 136 start-page: 1073 year: 2009 ident: B124 article-title: Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. publication-title: Cell doi: 10.1016/j.cell.2009.01.033 – volume: 19 year: 2018 ident: B277 article-title: Biochemical basis of E. coli topoisomerase I relaxation activity reduction by nonenzymatic lysine acetylation. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19051439 – volume: 10 start-page: 122 year: 2015 ident: B7 article-title: Site-specific reactivity of nonenzymatic lysine acetylation. publication-title: ACS Chem. Biol. doi: 10.1021/cb500848p – volume: 14 start-page: 2681 year: 1975 ident: B179 article-title: Nonenzymatic acetylation of histones with acetyl phosphate and acetyl adenylate. publication-title: Biochemistry doi: 10.1021/bi00683a018 – volume: 177 start-page: 31 year: 2018 ident: B213 article-title: The lysine acetylome of the nematocidal bacterium Bacillus nematocida and impact of nematode on the acetylome. publication-title: J. Proteomics doi: 10.1016/j.jprot.2018.02.005 – volume: 79 start-page: 321 year: 2015 ident: B83 article-title: Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00020-15 – volume: 109 start-page: 7729 year: 2012 ident: B99 article-title: Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1120251109 – volume: 213 start-page: 1836 year: 2016 ident: B192 article-title: Protein acetylation is involved in Salmonella enterica serovar Typhimurium virulence. publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiw028 – volume: 32 start-page: 210 year: 2007 ident: B151 article-title: A newly discovered post-translational modification–the acetylation of serine and threonine residues. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2007.03.007 – volume: 285 start-page: 19927 year: 2010 ident: B147 article-title: The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.126581 – volume: 10 start-page: 299 year: 2018 ident: B229 article-title: Proteome and acylome analyses of the functional interaction network between the carbazole-degradative plasmid pCAR1 and host Pseudomonas putida KT2440. publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12639 – volume: 9 start-page: 928 year: 2010 ident: B81 article-title: Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900463-MCP200 – volume: 82 start-page: 1110 year: 2011 ident: B30 article-title: cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07873.x – volume: 16 start-page: 759 year: 2017 ident: B245 article-title: Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M117.067587 – volume: 18 year: 2018 ident: B12 article-title: Simultaneous quantification of the acetylome and succinylome by ’one-pot’ affinity enrichment. publication-title: Proteomics doi: 10.1002/pmic.201800123 – volume: 83 start-page: 4393 year: 1961 ident: B52 article-title: Mechanism and catalysis of reactions of acyl phosphates. I. Nucleophilic reactions. publication-title: J. Am. Chem. Soc. doi: 10.1021/bi201921a – volume: 36 start-page: 31 year: 2000 ident: B160 article-title: Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. publication-title: Curr. Top. Cell. Regul. doi: 10.1016/S0070-2137(01)80002-9 – volume: 101 start-page: 8563 year: 2004 ident: B276 article-title: Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0401057101 – volume: 45 start-page: 5349 year: 2017 ident: B278 article-title: Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx250 – volume: 286 start-page: 23950 year: 2011 ident: B14 article-title: Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.241414 – volume: 115 start-page: 2419 year: 2015 ident: B46 article-title: Protein lysine acetylation by p300/CBP. publication-title: Chem. Rev. doi: 10.1021/cr500452k – volume: 285 start-page: 24313 year: 2010 ident: B156 article-title: cAMP-regulated protein lysine acetylases in Mycobacteria. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118398 – volume: 144 start-page: 114 year: 1980 ident: B4 article-title: Are growth rates of Escherichia coli in batch cultures limited by respiration? publication-title: J. Bacteriol. doi: 10.1128/JB.144.1.114-123.1980 – volume: 11 year: 2015 ident: B242 article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. publication-title: Mol. Syst. Biol. doi: 10.15252/msb.156513 – volume: 10 year: 2014 ident: B109 article-title: The functional diversity of protein lysine methylation. publication-title: Mol. Syst. Biol. doi: 10.1002/msb.134974 – volume: 7 start-page: 58 year: 2011 ident: B274 article-title: Identification of lysine succinylation as a new post-translational modification. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.495 – volume: 81 start-page: 5675 year: 2015 ident: B182 article-title: Acetylation regulates survival of Salmonella enterica serovar Typhimurium under acid stress. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01009-15 – volume: 334 start-page: 806 year: 2011 ident: B55 article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. publication-title: Science doi: 10.1126/science.1207861 – volume: 107 start-page: 17158 year: 2010 ident: B26 article-title: Revisiting the structures of several antibiotics bound to the bacterial ribosome. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1008685107 – volume: 163 start-page: 545 year: 2003 ident: B209 article-title: Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1093/genetics/163.2.545 – volume: 7 year: 2018 ident: B16 article-title: Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia. publication-title: Emerg. Microbes Infect. doi: 10.1038/s41426-018-0112-3 – volume: 37 year: 2017 ident: B131 article-title: Identification and characterization of two types of amino acid-regulated acetyltransferases in actinobacteria. publication-title: Biosci. Rep. doi: 10.1042/BSR20170157 – volume: 260 start-page: 273 year: 1999 ident: B62 article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1999.0897 – volume: 13 start-page: 1670 year: 2015 ident: B111 article-title: Acetylation of an NB-LRR plant immune-effector complex suppresses immunity. publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.029 – volume: 15 start-page: 4696 ident: B212 article-title: Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation. publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00798 – volume: 155 start-page: 63 year: 2017 ident: B90 article-title: Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. publication-title: J. Proteomics doi: 10.1016/j.jprot.2016.12.006 – volume: 134 year: 2018 ident: B240 article-title: Quantification of site-specific protein lysine acetylation and succinylation stoichiometry using data-independent acquisition mass spectrometry. publication-title: J. Vis. Exp. doi: 10.3791/57209 – volume: 10 year: 2019 ident: B36 article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes. publication-title: mBio doi: 10.1128/mBio.02708-18 – volume: 289 start-page: 27034 year: 2014 ident: B257 article-title: Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.579078 – volume: 94 start-page: 439 year: 1998 ident: B249 article-title: Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. publication-title: Cell doi: 10.1016/S0092-8674(00)81585-8 – volume: 4 start-page: 842 ident: B244 article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.024 – volume: 126 start-page: 923 year: 2005 ident: B78 article-title: Calorie restriction and SIR2 genes–towards a mechanism. publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2005.03.013 – volume: 12 start-page: 3952 year: 2013 ident: B165 article-title: Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophilus. publication-title: J. Proteome Res. doi: 10.1021/pr400245k – volume: 192 start-page: 6200 year: 2010 ident: B223 article-title: Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora. publication-title: J. Bacteriol. doi: 10.1128/JB.00874-10 – volume: 14 start-page: 200 year: 2011 ident: B221 article-title: Control of protein function by reversible N?-lysine acetylation in bacteria. publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2010.12.013 – volume: 32 start-page: 2450 year: 2015 ident: B215 article-title: Isolation and characterization of acetylated derivative of recombinant insulin Lispro produced in Escherichia coli. publication-title: Pharm. Res. doi: 10.1007/s11095-015-1637-y – volume: 9 start-page: 206 ident: B263 article-title: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2346 – volume: 13 start-page: 3352 year: 2014 ident: B126 article-title: Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.041962 – volume: 375 start-page: 529 year: 2008 ident: B137 article-title: Molecular crowding inhibits intramolecular breathing motions in proteins. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.07.075 – volume: 46 start-page: 623 year: 2007 ident: B15 article-title: Catalytic mechanism of a MYST family histone acetyltransferase. publication-title: Biochemistry doi: 10.1021/bi602513x – volume: 243 start-page: 5018 year: 1968 ident: B71 article-title: Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)91985-X – volume: 8 year: 2013 ident: B107 article-title: Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3. publication-title: PLoS One doi: 10.1371/journal.pone.0054896 – volume: 82 start-page: 4572 year: 2014 ident: B143 article-title: Homeostasis of N-α-terminal acetylation of EsxA correlates with virulence in Mycobacterium marinum. publication-title: Infect. Immun. doi: 10.1128/IAI.02153-14 – volume: 451 start-page: 846 year: 2008 ident: B128 article-title: The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. publication-title: Nature doi: 10.1038/nature06546 – volume: 10 year: 2015 ident: B103 article-title: Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. publication-title: PLoS One doi: 10.1371/journal.pone.0131169 – volume: 97 start-page: 235 year: 2014 ident: B108 article-title: Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS. publication-title: J. Proteomics doi: 10.1016/j.jprot.2013.06.036 – volume: 327 start-page: 1004 year: 2010 ident: B238 article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. publication-title: Science doi: 10.1126/science.1179687 – year: 2014 ident: B141 article-title: “Regulation by covalent modification,” in publication-title: eLS doi: 10.1002/9780470015902.a0000866.pub3 – volume: 10 year: 2014 ident: B31 article-title: Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20145227 – volume: 280 start-page: 21122 year: 2005 ident: B140 article-title: Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m501280200 – volume: 94 start-page: 159 year: 1976 ident: B199 article-title: Chloramphenicol acetylation in Streptomyces. publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-94-1-159 – volume: 280 start-page: 1966 year: 2013 ident: B273 article-title: Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. publication-title: FEBS J. doi: 10.1111/febs.12216 – volume: 75 start-page: 487 year: 2007 ident: B84 article-title: Histone deacetylases–an important class of cellular regulators with a variety of functions. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-007-0911-2 – volume: 9 start-page: 3766 year: 2010 ident: B135 article-title: Proteomic identification of carbonylated proteins and their oxidation sites. publication-title: J. Proteome Res. doi: 10.1021/pr1002609 – volume: 1804 start-page: 1604 year: 2010 ident: B191 article-title: Structural basis for sirtuin function: what we know and what we don’t. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2009.09.009 – volume: 21 start-page: 735 year: 2011 ident: B130 article-title: Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2011.08.004 – volume: 3 year: 2014 ident: B9 article-title: Identification of ’erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. publication-title: eLife doi: 10.7554/eLife.02999 – volume: 84 year: 2018 ident: B120 article-title: A putative acetylation system in Vibrio cholerae modulates virulence in arthropod hosts. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01113-18 – year: 1969 ident: B92 publication-title: Catalysis in Chemistry and Enzymology. – volume: 76 start-page: 1162 year: 2010 ident: B114 article-title: CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07125.x – volume: 103 start-page: 845 year: 2017 ident: B267 article-title: Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13595 – volume: 9 start-page: 1127 year: 2001 ident: B138 article-title: Structure of histone deacetylases: insights into substrate recognition and catalysis. publication-title: Structure doi: 10.1016/s0969-2126(01)00690-6 – volume: 5 start-page: 234 year: 1997 ident: B48 article-title: Bacterial resistance to aminoglycoside antibiotics. publication-title: Trends Microbiol. doi: 10.1016/s0966-842x(97)01033-0 – volume: 195 start-page: 4174 year: 2013 ident: B89 article-title: Acetylation of the response regulator RcsB controls transcription from a small RNA promoter. publication-title: J. Bacteriol. doi: 10.1128/JB.00383-13 – volume: 288 start-page: 29036 year: 2013 ident: B237 article-title: Widespread and enzyme-independent N -acetylation and N -succinylation of proteins in the chemical conditions of the mitochondrial matrix. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.486753 – volume: 10 start-page: 365 year: 2014 ident: B44 article-title: Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1497 – volume: 338 start-page: 17 year: 2004 ident: B77 article-title: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.02.006 – volume: 41 start-page: 185 year: 2009 ident: B203 article-title: Acetylation of non-histone proteins modulates cellular signalling at multiple levels. publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2008.08.027 – volume: 282 start-page: 37256 year: 2007 ident: B201 article-title: Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m707878200 – volume: 290 start-page: 26218 year: 2015 ident: B200 article-title: Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.687269 – volume: 18 start-page: 1928 ident: B230 article-title: Biochemical characterization of the lysine acetylation of tyrosyl-tRNA synthetase in Escherichia coli. publication-title: Chembiochem doi: 10.1002/cbic.201700343 – volume: 10 year: 2018 ident: B116 article-title: Post-translational regulation of a Porphyromonas gingivalis regulator. publication-title: J. Oral Microbiol. doi: 10.1080/20002297.2018.1487743 – volume: 83 year: 2017 ident: B38 article-title: Increasing growth yield and decreasing acetylation in Escherichia coli by optimizing the carbon-to-magnesium ratio in peptide-based media. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03034-16 – volume: 110 start-page: 677 year: 2018 ident: B85 article-title: Perturbing the acetylation status of the Type IV pilus retraction motor, PilT, reduces Neisseria gonorrhoeae viability. publication-title: Mol. Microbiol. doi: 10.1111/mmi.13979 – volume: 57 start-page: 781 year: 2018 ident: B76 article-title: Acetylation by Eis and deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: biochemical and structural insight. publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01089 – volume: 9 year: 2018 ident: B21 article-title: Global profiling of lysine acetylation in Borrelia burgdorferi B31 reveals its role in central metabolism. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02036 – volume: 7 start-page: 1395 year: 1988 ident: B80 article-title: A direct link between core histone acetylation and transcriptionally active chromatin. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02956.x – volume: 7 start-page: 494 year: 1975 ident: B95 article-title: R factor-mediated aminoglycoside antibiotic resistance in Pseudomonas aeruginosa: a new aminoglycoside 6′-N-acetyltransferase. publication-title: Antimicrob. Agents Chemother. doi: 10.1128/aac.7.5.494 – volume: 144 start-page: 148 year: 2016 ident: B97 article-title: Proteomic characterization of Nα- and N -acetylation in Acinetobacter baumannii. publication-title: J. Proteomics doi: 10.1016/j.jprot.2016.05.021 – volume: 8 year: 2017 ident: B154 article-title: Ancient regulatory role of lysine acetylation in central metabolism. publication-title: mBio doi: 10.1128/mBio.01894-17 – volume: 26 start-page: 94 year: 2005 ident: B174 article-title: The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2004.12.009 – volume: 25 start-page: 768 year: 2017 ident: B181 article-title: Protein acetylation and its role in bacterial virulence. publication-title: Trends Microbiol. doi: 10.1016/j.tim.2017.04.001 – volume: 28 start-page: 41 year: 2003 ident: B51 article-title: Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. publication-title: Trends Biochem. Sci. doi: 10.1016/s0968-0004(02)00005-1 – volume: 325 start-page: 834 year: 2009 ident: B34 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions. publication-title: Science doi: 10.1126/science.1175371 – volume: 159 start-page: 1986 year: 2013 ident: B79 article-title: Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. publication-title: Microbiology doi: 10.1099/mic.0.068585-0 – volume: 283 start-page: 265 year: 2016 ident: B94 article-title: Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase. publication-title: FEBS J. doi: 10.1111/febs.13566 – volume: 174 start-page: 7003 year: 1992 ident: B247 article-title: Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5. publication-title: J. Bacteriol. doi: 10.1128/jb.174.21.7003-7012.1992 – volume: 201 year: 2019 ident: B195 article-title: Global lysine acetylation in Escherichia coli results from growth conditions that favor acetate fermentation. publication-title: J. Bacteriol. doi: 10.1128/JB.00768-18 |
| SSID | ssj0000402000 |
| Score | 2.5550203 |
| SecondaryResourceType | review_article |
| Snippet | Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights... |
| SourceID | doaj pubmedcentral osti proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1604 |
| SubjectTerms | acetylation bacteria BASIC BIOLOGICAL SCIENCES lysine acetyltransferase mass spectrometry Microbiology proteomics |
| Title | Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31354686 https://www.proquest.com/docview/2266349478 https://www.osti.gov/biblio/1542482 https://pubmed.ncbi.nlm.nih.gov/PMC6640162 https://doaj.org/article/83735eb24beb4f459a70cdb0a48e4497 |
| Volume | 10 |
| WOSCitedRecordID | wos000475414100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA66KHgRf1tXlwhePNRtm1-Nt1mdwcsuiyjMLSRpqoXakZ2OMBf_dt9LusOMiF68tNCmJX3vpe97afp9hLyyzvlKlywXwoWct4rn1lufc-UCl1ZxXdgoNqEuLurlUl_uSX3hmrBED5wMdwoFFBNQ_nEXHG-50FYVvnGF5XXgXMf_yAH17BVT8R2MZVFRpO-SUIVpcFPnHS7l0m-QVI0f5KFI1w-7FQyrP0HN31dM7qWgxT1yd8KOdJb6fJ_cCMMDcjupSW4fkg0K7-YjJp9-muKjl0jD0A105sO4TUff0tlA5334Ajal5wH__O3W3yiAV3qWqJstHVf0fZKqt32_pR-TYH2A5iMETd95uoB8GEP2Efm8mH969yGfVBVyL4QY89o2ylmtBWrY6aYBDFZZ5VrhtHKqqJxrwdYylG0oK6e1bSRj0gFMFJaLVrDH5GhYDeEpoT40TLe-ZHA_yGsFcolpC5DOIorkRUZOr21s_EQ5jsoXvYHSA71iolcMesVEr2Tk9e6K74lu4y9tz9Btu3ZIlB0PQPiYKXzMv8InI8fodAN4A0lzPa4u8qMBYFnxusrIy-tYMDDs8FuKHcJqszaAWiUy-6g6I09SbOw6wkomuKxlRtRB1Bz09PDM0H2N1N5SQr0rq2f_49GOyR00Fk5El9VzcjRebcILcsv_GLv11Qm5qZb1SRw1sD3_Of8Fmc4e0w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-translational+Protein+Acetylation%3A+An+Elegant+Mechanism+for+Bacteria+to+Dynamically+Regulate+Metabolic+Functions&rft.jtitle=Frontiers+in+microbiology&rft.au=Christensen%2C+David+G.&rft.au=Xie%2C+Xueshu&rft.au=Basisty%2C+Nathan&rft.au=Byrnes%2C+James&rft.date=2019-07-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmicb.2019.01604&rft_id=info%3Apmid%2F31354686&rft.externalDocID=PMC6640162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |