Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions

Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in microbiology Ročník 10; s. 1604
Hlavní autoři: Christensen, David G., Xie, Xueshu, Basisty, Nathan, Byrnes, James, McSweeney, Sean, Schilling, Birgit, Wolfe, Alan J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 12.07.2019
Frontiers Media S.A
Témata:
ISSN:1664-302X, 1664-302X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of -𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
AbstractList Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N- -lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N- -lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of -𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-ε-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Author Xie, Xueshu
Byrnes, James
Schilling, Birgit
Wolfe, Alan J.
Basisty, Nathan
McSweeney, Sean
Christensen, David G.
AuthorAffiliation 1 Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL , United States
3 Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, NY , United States
2 Buck Institute for Research on Aging , Novato, CA , United States
AuthorAffiliation_xml – name: 1 Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, IL , United States
– name: 2 Buck Institute for Research on Aging , Novato, CA , United States
– name: 3 Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory , Upton, NY , United States
Author_xml – sequence: 1
  givenname: David G.
  surname: Christensen
  fullname: Christensen, David G.
– sequence: 2
  givenname: Xueshu
  surname: Xie
  fullname: Xie, Xueshu
– sequence: 3
  givenname: Nathan
  surname: Basisty
  fullname: Basisty, Nathan
– sequence: 4
  givenname: James
  surname: Byrnes
  fullname: Byrnes, James
– sequence: 5
  givenname: Sean
  surname: McSweeney
  fullname: McSweeney, Sean
– sequence: 6
  givenname: Birgit
  surname: Schilling
  fullname: Schilling, Birgit
– sequence: 7
  givenname: Alan J.
  surname: Wolfe
  fullname: Wolfe, Alan J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31354686$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1542482$$D View this record in Osti.gov
BookMark eNp1kt9rFDEQxxep2Fr77pMEn3y5M5tfu_FBOGurhYpFFHwLk2z2mpJLapIV7r83d9tKK5hAEibf-cwwM8-bgxCDbZqXLV5S2su348YZvSS4lUvcCsyeNEetEGxBMfl58OB92JzkfIPrYpjU81lzSFvKmejFUTNdxVwWJUHIHoqLATy6SrFYF9DK2LKdre_QKqAzb9cQCvpizTUElzdojAl9AFNscoBKRB-3AWpW4P0WfbPrqTrbKi-go3cGnU_B7Gj5RfN0BJ_tyd193Pw4P_t--nlx-fXTxenqcmE452XRw9BpkJLjuuUw4J4S6PTItex0h4nWI9NW2Ha0LdFSwiAoFbrrGAfGR06Pm4uZO0S4UbfJbSBtVQSn9oaY1gpSccZb1dOOcqtJBWo2Mi6hw2bQGFhvGZNdZb2fWbeT3tjB2FCr5h9BH_8Ed63W8beqfaj9IRXwegbUijuVjSu1jiaGYE1RLWeE9TvRm7soKf6abC5q47Kx3kOwccqKECEok6zrq_TVw4T-ZnLf3CoQs8CkmHOyo6ox9-2s-TmvWqx2g6T2g6R2g6T2g1Qd8T-O9-z_uvwBQSLNsg
CitedBy_id crossref_primary_10_1128_msphere_00452_22
crossref_primary_10_3389_fmicb_2020_516315
crossref_primary_10_1111_tpj_70205
crossref_primary_10_1093_bib_bbab376
crossref_primary_10_1371_journal_pone_0287973
crossref_primary_10_3390_neurolint17090134
crossref_primary_10_1007_s00253_022_12060_4
crossref_primary_10_1136_rmdopen_2024_004411
crossref_primary_10_1016_j_micres_2024_127635
crossref_primary_10_1016_j_ijbiomac_2023_123407
crossref_primary_10_1111_pce_14034
crossref_primary_10_1002_prca_202300212
crossref_primary_10_1093_nar_gkaa011
crossref_primary_10_3389_fmicb_2022_1018220
crossref_primary_10_1007_s00253_022_12185_6
crossref_primary_10_3389_fphar_2021_807742
crossref_primary_10_1016_j_ejmech_2023_115746
crossref_primary_10_1371_journal_ppat_1010056
crossref_primary_10_1038_s41467_024_45765_3
crossref_primary_10_1002_cbin_11983
crossref_primary_10_3389_fmolb_2023_1117921
crossref_primary_10_1093_bbb_zbaa114
crossref_primary_10_3389_fmicb_2022_1004074
crossref_primary_10_3390_ijms232214028
crossref_primary_10_1038_s41594_024_01315_5
crossref_primary_10_1111_jcmm_16332
crossref_primary_10_1021_acs_accounts_5c00158
crossref_primary_10_15252_msb_20209464
crossref_primary_10_1016_j_molcel_2022_10_027
crossref_primary_10_1093_femsml_uqae018
crossref_primary_10_3390_pathogens13010033
crossref_primary_10_1249_JES_0000000000000307
crossref_primary_10_1093_nar_gkad494
crossref_primary_10_3389_fmicb_2021_782815
crossref_primary_10_3390_v12090976
crossref_primary_10_1007_s12275_020_0483_8
crossref_primary_10_1111_mmi_15052
crossref_primary_10_1038_s41467_024_49952_0
crossref_primary_10_1007_s10238_020_00647_y
crossref_primary_10_3390_ijms222212477
crossref_primary_10_1080_07391102_2023_2231553
crossref_primary_10_1021_acs_biomac_5c00584
crossref_primary_10_1186_s12864_025_11652_4
crossref_primary_10_1073_pnas_2210115119
crossref_primary_10_3390_proteomes11020021
crossref_primary_10_1016_j_ijbiomac_2024_131763
crossref_primary_10_3389_fmicb_2024_1356733
crossref_primary_10_1128_jb_00542_24
crossref_primary_10_1177_0036850420964317
crossref_primary_10_3389_fmicb_2021_740555
crossref_primary_10_1111_mmi_14998
crossref_primary_10_1111_acel_13706
crossref_primary_10_3390_antiox12061163
crossref_primary_10_1093_clinchem_hvac147
crossref_primary_10_1124_pharmrev_123_001111
crossref_primary_10_3390_microorganisms12081581
crossref_primary_10_1128_spectrum_02011_24
crossref_primary_10_1128_msystems_00422_21
crossref_primary_10_1038_s41467_020_17916_9
crossref_primary_10_1016_j_bbadis_2020_165992
crossref_primary_10_1080_17501911_2024_2351788
crossref_primary_10_1021_acs_chemrev_5c00001
crossref_primary_10_3390_microorganisms9020365
crossref_primary_10_1128_JB_00143_21
crossref_primary_10_1007_s12017_023_08736_3
crossref_primary_10_1016_j_ymben_2025_01_004
crossref_primary_10_3389_fmicb_2024_1366336
crossref_primary_10_3389_fcimb_2021_725043
crossref_primary_10_15212_AMM_2023_0010
crossref_primary_10_1007_s12275_022_2095_y
crossref_primary_10_1002_pro_4845
crossref_primary_10_1002_psc_3603
crossref_primary_10_1021_acs_jmedchem_5c00479
crossref_primary_10_1007_s12010_024_05176_y
crossref_primary_10_1002_pmic_202100389
crossref_primary_10_3390_v16010131
crossref_primary_10_3389_fendo_2021_731648
crossref_primary_10_1038_s41467_024_48251_y
crossref_primary_10_1186_s40659_025_00613_6
crossref_primary_10_3390_ijms22168529
crossref_primary_10_3390_molecules29020383
crossref_primary_10_1016_j_chemosphere_2021_131373
crossref_primary_10_3389_fmicb_2020_01453
crossref_primary_10_1128_mmbr_00030_17
crossref_primary_10_3389_fcimb_2024_1408947
crossref_primary_10_3390_v14112356
crossref_primary_10_3389_fmicb_2021_805181
crossref_primary_10_1128_IAI_00588_20
crossref_primary_10_3389_fpls_2020_00181
crossref_primary_10_1042_BST20241037
crossref_primary_10_1073_pnas_2419096122
crossref_primary_10_1128_msystems_00510_23
crossref_primary_10_1016_j_isci_2021_103730
crossref_primary_10_1038_s41467_023_43825_8
crossref_primary_10_1128_spectrum_03539_22
crossref_primary_10_1038_s41598_024_60602_9
crossref_primary_10_1128_JB_00231_21
crossref_primary_10_1128_spectrum_02528_23
crossref_primary_10_3390_ijms231911648
crossref_primary_10_1007_s12272_022_01409_y
crossref_primary_10_1128_iai_00090_24
crossref_primary_10_1016_j_bbagen_2021_130021
crossref_primary_10_3389_fcell_2023_1236271
crossref_primary_10_1007_s10238_025_01771_3
crossref_primary_10_1128_MMBR_00090_19
crossref_primary_10_1128_JB_00333_21
crossref_primary_10_1016_j_biotechadv_2021_107842
crossref_primary_10_3389_fmicb_2021_757179
crossref_primary_10_1016_j_bej_2021_108255
crossref_primary_10_1111_omi_12452
crossref_primary_10_1038_s41467_024_46039_8
crossref_primary_10_1111_febs_70014
Cites_doi 10.1073/pnas.96.16.8931
10.1021/acschembio.8b00213
10.3390/genes9100473
10.1016/j.molcel.2011.06.037
10.1016/j.jmb.2006.03.033
10.1016/j.abb.2014.04.004
10.1074/mcp.M114.045922
10.1128/JB.00433-17
10.1074/jbc.m205670200
10.1074/jbc.274.26.18157
10.1074/jbc.M113.495549
10.1016/S0021-9258(18)93148-0
10.1128/jb.00215-06
10.1002/pro.2546
10.1038/38304
10.1126/science.1077650
10.1371/journal.pone.0204687
10.1126/science.1126867
10.1128/JB.111.1.24-32.1972
10.3389/fmicb.2016.01918
10.1021/acs.jproteome.7b00429
10.1074/jbc.m303666200
10.1128/mBio.00708-17
10.1038/nrmicro2836
10.1038/s41426-018-0032-2
10.1016/j.vetmic.2018.09.024
10.1128/JB.01502-12
10.1371/journal.pone.0015123
10.1016/S0021-9258(18)71161-7
10.1371/journal.pone.0189689
10.1016/j.molcel.2005.02.022
10.1016/j.molcel.2015.02.029
10.1128/jb.01780-05
10.1074/jbc.M111.282863
10.1016/j.biocel.2014.11.010
10.1016/s0968-0004(97)01034-7
10.1038/384641a0
10.1371/journal.pone.0094816
10.1251/bpo141
10.1073/pnas.1525654113
10.1073/pnas.51.5.786
10.1128/IAI.00224-18
10.1186/gb-2009-10-6-r63
10.1016/s0022-2836(02)01269-x
10.1128/JB.01961-14
10.1016/s1471-4914(03)00031-5
10.1111/j.1365-2958.2008.06252.x
10.1073/pnas.1815511116
10.1016/j.molcel.2013.06.003
10.1128/JB.00004-14
10.1074/jbc.m704409200
10.1021/bi034959l
10.1111/j.1364-3703.2011.00719.x
10.1016/bs.mie.2016.09.029
10.3389/fmolb.2016.00038
10.1111/mmi.13874
10.1126/sciadv.aao1478
10.1128/MR.57.1.138-163.1993
10.1093/infdis/jix102
10.1128/JB.162.3.1156-1161.1985
10.1074/jbc.m306552200
10.1038/21922
10.1046/j.1365-2958.2003.03442.x
10.1074/jbc.M112.352104
10.1146/annurev.biochem.73.011303.073651
10.3389/fcimb.2017.00537
10.1111/mmi.13161
10.1016/j.molcel.2013.06.001
10.1073/pnas.1514974112
10.1073/pnas.1008203109
10.1128/mBio.01905-18
10.1093/jn/133.7.2485S
10.1016/j.mib.2010.01.002
10.1016/j.jprot.2014.11.006
10.1007/bf02464895
10.1074/jbc.R116.751164
10.1128/JB.00995-10
10.1074/jbc.m116.744532
10.1111/mmi.13339
10.1016/j.molcel.2008.07.002
10.1006/bbrc.2000.3000
10.1016/j.mib.2003.09.002
10.1021/cb500904b
10.1016/j.cmet.2014.03.014
10.1016/s0092-8674(00)81821-8
10.1016/0076-6879(86)31051-6
10.1111/mmi.13627
10.1128/MMBR.00036-16
10.1074/jbc.C113.511261
10.1016/s0959-437x(00)00173-8
10.1128/JB.01674-08
10.1016/j.bbrc.2011.06.076
10.1016/j.bbrc.2016.04.045
10.1074/jbc.m407484200
10.1128/JB.00588-08
10.1021/pr2002325
10.1038/srep30837
10.1021/ja01129a035
10.1371/journal.ppat.1005458
10.1038/srep44826
10.1093/abbs/gmw066
10.1146/annurev.biophys.29.1.81
10.1074/mcp.M113.031567
10.1007/s00792-019-01090-y
10.1074/mcp.M111.012658
10.1002/pmic.200400906
10.1111/mmi.13901
10.1074/mcp.RA117.000372
10.1146/annurev.micro.58.030603.123818
10.1007/bf00331153
10.1016/j.jmb.2017.03.027
10.1128/MR.50.3.314-352.1986
10.2337/diabetes.54.6.1615
10.1261/rna.030213.111
10.1128/JB.00107-17
10.1111/j.1365-2958.2010.07148.x
10.1074/jbc.M116.770826
10.1093/nar/gkv800
10.1111/j.1574-6976.2010.00213.x
10.1128/jb.00564-07
10.1042/bj0870258
10.1016/j.molcel.2016.05.002
10.3390/ijms17071018
10.1128/mSphere.00501-18
10.1111/j.1365-2958.2011.07742.x
10.1371/journal.pone.0179621
10.1021/acs.jproteome.8b00210
10.1074/mcp.M800187-MCP200
10.1101/sqb.1998.63.501
10.1016/j.molcel.2006.06.026
10.1038/382319a0
10.1093/femsle/fnu051
10.1128/mmbr.00032-16
10.1074/jbc.M112.365502
10.1016/j.cell.2011.08.008
10.1128/jb.184.16.4334-4342.2002
10.1007/s13361-016-1476-z
10.1128/JB.157.3.758-763.1984
10.1002/mbo3.320
10.1016/j.abb.2004.09.003
10.1074/jbc.M115.649806
10.1093/nar/gkw053
10.1111/mmi.12088
10.1016/j.gene.2005.09.010
10.1186/1471-2229-8-121
10.1128/JB.00340-08
10.1155/2014/730725
10.1099/mic.0.000737
10.1038/nchembio.607
10.3389/fmicb.2016.01864
10.1074/jbc.M113.463992
10.1074/jbc.M114.581843
10.1099/00221287-102-2-327
10.1021/bi200156t
10.1002/mbo3.223
10.1128/mSystems.00005-16
10.1111/mmi.13658
10.1074/mcp.m700021-mcp200
10.1128/jb.01198-07
10.1139/o11-086
10.1046/j.1365-2958.2001.02425.x
10.1128/jb.177.10.2878-2886.1995
10.1111/j.1365-2958.2010.07127.x
10.1021/acs.biochem.5b01269
10.1016/j.tibs.2010.10.001
10.1099/mic.0.28156-0
10.1039/c5md00344j
10.1128/JB.00385-18
10.1128/aac.41.5.956
10.1128/JB.00661-15
10.1083/jcb.201202056
10.1186/s12864-017-3676-8
10.1016/j.jmb.2004.05.010
10.3389/fmicb.2017.00699
10.1016/j.cell.2009.01.033
10.3390/ijms19051439
10.1021/cb500848p
10.1021/bi00683a018
10.1016/j.jprot.2018.02.005
10.1128/MMBR.00020-15
10.1073/pnas.1120251109
10.1093/infdis/jiw028
10.1016/j.tibs.2007.03.007
10.1074/jbc.M110.126581
10.1111/1758-2229.12639
10.1074/mcp.M900463-MCP200
10.1111/j.1365-2958.2011.07873.x
10.1074/mcp.M117.067587
10.1002/pmic.201800123
10.1021/bi201921a
10.1016/S0070-2137(01)80002-9
10.1073/pnas.0401057101
10.1093/nar/gkx250
10.1074/jbc.M111.241414
10.1021/cr500452k
10.1074/jbc.M110.118398
10.1128/JB.144.1.114-123.1980
10.15252/msb.156513
10.1002/msb.134974
10.1038/nchembio.495
10.1128/AEM.01009-15
10.1126/science.1207861
10.1073/pnas.1008685107
10.1093/genetics/163.2.545
10.1038/s41426-018-0112-3
10.1042/BSR20170157
10.1006/bbrc.1999.0897
10.1016/j.celrep.2015.10.029
10.1021/acs.jproteome.6b00798
10.1016/j.jprot.2016.12.006
10.3791/57209
10.1128/mBio.02708-18
10.1074/jbc.M114.579078
10.1016/S0092-8674(00)81585-8
10.1016/j.celrep.2013.07.024
10.1016/j.mad.2005.03.013
10.1021/pr400245k
10.1128/JB.00874-10
10.1016/j.mib.2010.12.013
10.1007/s11095-015-1637-y
10.1038/nrm2346
10.1074/mcp.M114.041962
10.1016/j.jmb.2007.07.075
10.1021/bi602513x
10.1016/S0021-9258(18)91985-X
10.1371/journal.pone.0054896
10.1128/IAI.02153-14
10.1038/nature06546
10.1371/journal.pone.0131169
10.1016/j.jprot.2013.06.036
10.1126/science.1179687
10.1002/9780470015902.a0000866.pub3
10.15252/msb.20145227
10.1074/jbc.m501280200
10.1099/00221287-94-1-159
10.1111/febs.12216
10.1007/s00253-007-0911-2
10.1021/pr1002609
10.1016/j.bbapap.2009.09.009
10.1016/j.sbi.2011.08.004
10.7554/eLife.02999
10.1128/AEM.01113-18
10.1111/j.1365-2958.2010.07125.x
10.1111/mmi.13595
10.1016/s0969-2126(01)00690-6
10.1016/s0966-842x(97)01033-0
10.1128/JB.00383-13
10.1074/jbc.M113.486753
10.1038/nchembio.1497
10.1016/j.jmb.2004.02.006
10.1016/j.biocel.2008.08.027
10.1074/jbc.m707878200
10.1074/jbc.M115.687269
10.1002/cbic.201700343
10.1080/20002297.2018.1487743
10.1128/AEM.03034-16
10.1111/mmi.13979
10.1021/acs.biochem.7b01089
10.3389/fmicb.2018.02036
10.1002/j.1460-2075.1988.tb02956.x
10.1128/aac.7.5.494
10.1016/j.jprot.2016.05.021
10.1128/mBio.01894-17
10.1016/j.tips.2004.12.009
10.1016/j.tim.2017.04.001
10.1016/s0968-0004(02)00005-1
10.1126/science.1175371
10.1099/mic.0.068585-0
10.1111/febs.13566
10.1128/jb.174.21.7003-7012.1992
10.1128/JB.00768-18
ContentType Journal Article
Copyright Copyright © 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe. 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe
Copyright_xml – notice: Copyright © 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe. 2019 Christensen, Xie, Basisty, Byrnes, McSweeney, Schilling and Wolfe
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7X8
OTOTI
5PM
DOA
DOI 10.3389/fmicb.2019.01604
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_83735eb24beb4f459a70cdb0a48e4497
PMC6640162
1542482
31354686
10_3389_fmicb_2019_01604
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM066130
– fundername: NIAID NIH HHS
  grantid: R01 AI108255
– fundername: NIGMS NIH HHS
  grantid: P41 GM111244
– fundername: NIH HHS
  grantid: S10 OD016281
– fundername: National Center for Research Resources
– fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases
– fundername: National Institute of General Medical Sciences
– fundername: U.S. Department of Energy
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
IAO
IEA
IHR
OTOTI
5PM
ID FETCH-LOGICAL-c555t-8ad7ba99505059dd0832a7bf5b97b702bbf4be6e1fe12b99ad6336b7745a45f53
IEDL.DBID DOA
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475414100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:51:40 EDT 2025
Tue Sep 30 16:19:02 EDT 2025
Mon Nov 25 02:42:33 EST 2024
Sun Nov 09 10:01:48 EST 2025
Mon Jul 21 05:49:55 EDT 2025
Sat Nov 29 01:50:12 EST 2025
Tue Nov 18 20:51:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords acetylation
mass spectrometry
bacteria
proteomics
lysine acetyltransferase
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-8ad7ba99505059dd0832a7bf5b97b702bbf4be6e1fe12b99ad6336b7745a45f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704
BNL-212006-2019-JAAM
This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology
Reviewed by: Feng Ge, Institute of Hydrobiology (CAS), China; Saori Kosono, The University of Tokyo, Japan
Edited by: Boris Macek, University of Tübingen, Germany
OpenAccessLink https://doaj.org/article/83735eb24beb4f459a70cdb0a48e4497
PMID 31354686
PQID 2266349478
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_83735eb24beb4f459a70cdb0a48e4497
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6640162
osti_scitechconnect_1542482
proquest_miscellaneous_2266349478
pubmed_primary_31354686
crossref_citationtrail_10_3389_fmicb_2019_01604
crossref_primary_10_3389_fmicb_2019_01604
PublicationCentury 2000
PublicationDate 2019-07-12
PublicationDateYYYYMMDD 2019-07-12
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2019
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Yang (B259) 2018; 7
Li (B114) 2010; 76
Feldman (B61) 2013; 288
Baeza (B6) 2014; 289
Dai (B44) 2014; 10
Barak (B10) 2001; 40
Kuhn (B105) 2014; 9
Nambi (B157) 2013; 288
Wolfe (B250) 2010; 13
VanDrisse (B227) 2018; 107
Roy-Chaudhuri (B187) 2008; 68
You (B267) 2017; 103
Ouidir (B167) 2015; 114
Tucker (B224) 2013; 87
Trievel (B222) 1999; 96
Wang (B238) 2010; 327
Becker (B13) 2017; 81
Li (B115) 2017; 8
Song (B202) 2016; 44
Starai (B207); 340
Ren (B182) 2015; 81
Madian (B135) 2010; 9
Keating (B96) 2008; 10
Okanishi (B165) 2013; 12
Yan (B258) 2002; 9
Starai (B209) 2003; 163
Gregoretti (B77) 2004; 338
Colak (B39) 2013; 12
Umehara (B225) 2018; 9
Carabetta (B28) 2019; 116
Davie (B47) 2003; 133
Dutnall (B57) 1998; 63
Berndsen (B15) 2007; 46
White-Ziegler (B246) 2002; 184
Salah Ud-Din (B190) 2016; 17
Klein (B101) 2007; 189
Sabari (B188) 2015; 58
Lanouette (B109) 2014; 10
Starai (B208) 2005; 151
Xu (B256); 13
Marmorstein (B138) 2001; 9
Hentchel (B83) 2015; 79
Okkels (B166) 2004; 4
Brown (B23) 2017; 18
Liu (B128) 2008; 451
Bernard (B14) 2011; 286
Garneau-Tsodikova (B68) 2016; 7
Mukherjee (B151) 2007; 32
Nambi (B156) 2010; 285
You (B268) 2014; 196
Gershey (B71) 1968; 243
Starai (B206); 61
Venkat (B231); 429
Di Sabato (B52) 1961; 83
Kentache (B97) 2016; 144
Spange (B203) 2009; 41
Weinert (B245) 2017; 16
Gallego-Jara (B64) 2017; 12
Porcu (B174) 2005; 26
Liszczak (B125) 2011; 286
Mishra (B146) 2018; 200
Ramponi (B179) 1975; 14
Sang (B192) 2016; 213
Christensen (B37) 2018; 9
Denu (B51) 2003; 28
Qin (B177) 2016; 7
Koshland (B102) 1952; 74
Doll (B54) 2015; 10
Jose (B94) 2016; 283
Smith (B201) 2007; 282
Frye (B63) 2000; 273
Chen (B32) 2007; 6
Venkat (B230); 18
Makowski (B137) 2008; 375
Bi (B17) 2017; 7
Crosby (B40) 2014; 196
Fan (B59) 2015; 43
Kosono (B103) 2015; 10
Mittal (B147) 2010; 285
Lima (B121) 2011; 81
Mizuno (B149) 2016; 5
Reeve (B180) 1984; 157
Li (B116) 2018; 10
Blander (B20) 2004; 73
Tan (B217) 2014; 19
Shaw (B198) 1993; 57
Jackson (B91) 2003; 278
Yang (B261) 1996; 382
Bulkley (B26) 2010; 107
Green (B76) 2018; 57
Lewis (B112) 2011; 12
Jencks (B92) 1969
Prüss (B176) 2006; 188
Zhou (B278) 2017; 45
Ringel (B185) 2014; 23
Tanner (B219) 1999; 274
Steinsiek (B210) 2012; 194
Lombardi (B130) 2011; 21
Xiong (B253) 2012; 198
Lynch (B132) 2015; 112
Ramos-Montañez (B178) 2010; 192
Barak (B11) 2006; 359
Polevoda (B173) 2003; 325
Shaw (B199) 1976; 94
Hood (B87) 2012; 10
Brown (B24) 1977; 102
Sang (B193) 2017; 216
Kuo (B107) 2013; 8
Wei (B240) 2018; 134
Reverdy (B184) 2018; 13
Zhang (B271) 2009; 8
Liu (B129) 2015; 198
Lin (B124) 2009; 136
Amin (B3) 2016; 3
Kim (B99) 2012; 109
Schilling (B196) 2015; 98
Xu (B254) 2011; 50
Yang (B263); 9
Choudhary (B34) 2009; 325
Sanders (B191) 2010; 1804
Phillips (B172) 1963; 87
Golubev (B74) 2017; 292
Yang (B260) 2015; 14
White-Ziegler (B247) 1992; 174
Zhang (B273) 2013; 280
AbouElfetouh (B1) 2015; 4
Birhanu (B18) 2017; 16
Nakayasu (B155) 2014; 2014
Ninfa (B160) 2000; 36
Christensen (B38) 2017; 83
Martin (B141) 2014
Navarro Llorens (B158) 2010; 34
Basisty (B12) 2018; 18
Voet (B236) 1990
Gardner (B65) 2008; 190
Ghosh (B72) 2016; 100
Nyström (B162) 2004; 58
Wang (B239) 2007; 189
Tanaka (B218) 1989; 217
Yang (B262); 31
Paquette (B168) 2012; 109
Park (B169) 2013; 50
Helsens (B82) 2011; 10
Bi (B16) 2018; 7
Li (B113) 2018; 226
Dancy (B46) 2015; 115
Hildmann (B84) 2007; 75
Nagano-Shoji (B153) 2017; 104
Bannister (B8) 1996; 384
Liang (B117) 2012; 18
Meyer (B144) 2016; 27
Yu (B270) 2008; 18
Lee (B111) 2015; 13
Gaviard (B70) 2018; 17
Liarzi (B119) 2010; 76
Bitterman (B19) 2002; 277
Vidali (B235) 1968; 243
Schmidt (B197) 2004; 279
Neuwald (B159) 1997; 22
Avalos (B5) 2005; 17
Zhang (B272) 2016; 6
Carabetta (B29) 2016; 1
Guarente (B78) 2005; 126
Yoshikawa (B266) 1987; 209
Crosby (B41) 2010; 76
Vasileva (B229) 2018; 10
Brownlee (B25) 2005; 54
Carabetta (B27) 2017; 199
Hu (B88) 2013
Frye (B62) 1999; 260
Zhang (B274) 2011; 7
Andersen (B4) 1980; 144
Spencer (B204) 1997; 389
Wimpenny (B248) 1972; 111
Vergnolle (B233) 2016; 291
Liu (B127) 2018; 86
Mizzen (B150) 1996; 87
Szewczak (B215) 2015; 32
Cunin (B43) 1986; 50
Ma (B133) 2016; 80
Ye (B264) 2017; 292
Castaño-Cerezo (B31) 2014; 10
Hebbes (B80) 1988; 7
Wolf (B249) 1998; 94
Schilling (B195) 2019; 201
Yoshida (B265) 2019; 23
Du (B55) 2011; 334
Thao (B220) 2010; 5
Peng (B170) 2011; 10
Wei (B241) 2017; 104
Thao (B221) 2011; 14
Ren (B183) 2016; 12
Cheverton (B33) 2016; 63
Weinert (B242) 2015; 11
Dalle-Donne (B45) 2003; 9
Helbig (B81) 2010; 9
Hu (B89) 2013; 195
Wright (B251) 1997; 41
Duan (B56) 2016; 473
Post (B175) 2017; 12
Peregrín-Alvarez (B171) 2009; 10
Zhou (B279) 2015; 362
Davis (B49) 2018; 107
Hollywood (B86) 1976; 17
Gardner (B67) 2006; 188
Suzuki (B214) 2019; 165
Ren (B181) 2017; 25
Dyda (B58) 2000; 29
Hockenberry (B85) 2018; 110
Nakayasu (B154) 2017; 8
Bontemps-Gallo (B21) 2018; 9
Davies (B48) 1997; 5
Sun (B213) 2018; 177
Zhao (B275) 2003; 278
Zhao (B276) 2004; 101
Castaño-Cerezo (B30) 2011; 82
Rose (B186) 1954; 211
Weinert (B243); 51
Ogura (B163) 2016; 7
Lange (B108) 2014; 97
Mukherjee (B152) 2006; 312
Christensen (B35) 2019
Liang (B118) 2011; 44
Crosby (B42) 2012; 287
Lima (B122) 2012; 287
Gardner (B66) 2009; 191
Vallari (B226) 1985; 162
Ma (B134) 2011; 410
Zhou (B277) 2018; 19
Noy (B161) 2014
You (B269) 2016; 113
Dickinson (B53) 2011; 7
Mikulik (B145) 2012; 90
Starai (B205) 2002; 298
Jers (B93) 2017; 7
Liimatta (B120) 2018; 84
Martínez-Antonio (B142) 2003; 6
de Diego Puente (B50) 2015; 290
Lu (B131) 2017; 37
Sauve (B194) 2003; 42
Kawabe (B95) 1975; 7
Kim (B98) 2011; 36
Mba Medie (B143) 2014; 82
VanDrisse (B228) 2017; 8
Marmorstein (B139) 2001; 11
Kossiakoff (B104) 1986; 131
Liu (B126) 2014; 13
Lin (B123) 1999; 400
Brinkman (B22) 2003; 48
Vergnolle (B232) 2013; 288
Ishigaki (B90) 2017; 155
Xu (B257) 2014; 289
Maisonneuve (B136) 2008; 190
Latrasse (B110) 2008; 8
Favrot (B60) 2016; 55
Tucker (B223) 2010; 192
Sakatos (B189) 2018; 4
Hayden (B79) 2013; 159
Miyagi (B148) 2017; 586
Wagner (B237) 2013; 288
Xu (B255); 17
Gottesman (B75) 2017; 199
Sun (B212); 15
Weinert (B244); 4
Bao (B9) 2014; 3
Xie (B252) 2015; 59
Tan (B216) 2011; 146
Allfrey (B2) 1964; 51
Christensen (B36) 2019; 10
Kumari (B106) 1995; 177
Marsh (B140) 2005; 280
Ogura (B164) 2018; 3
Sun (B211); 48
Kim (B100) 2006; 23
Vetting (B234) 2005; 433
Glozak (B73) 2005; 363
Baeza (B7) 2015; 10
Garrity (B69) 2007; 282
Singhal (B200) 2015; 290
References_xml – volume: 96
  start-page: 8931
  year: 1999
  ident: B222
  article-title: Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.96.16.8931
– volume: 13
  start-page: 1588
  ident: B256
  article-title: Characterization of the lysine acylomes and the substrates regulated by Protein Acyltransferase in Mycobacterium smegmatis.
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.8b00213
– volume: 9
  year: 2018
  ident: B225
  article-title: Lysine acetylation regulates alanyl-tRNA synthetase activity in Escherichia coli.
  publication-title: Genes
  doi: 10.3390/genes9100473
– volume: 44
  start-page: 160
  year: 2011
  ident: B118
  article-title: Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.037
– volume: 359
  start-page: 251
  year: 2006
  ident: B11
  article-title: The chemotaxis response regulator CheY can catalyze its own acetylation.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.03.033
– start-page: 42
  year: 2014
  ident: B161
  article-title: Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction.
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2014.04.004
– volume: 14
  start-page: 796
  year: 2015
  ident: B260
  article-title: Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.045922
– volume: 199
  year: 2017
  ident: B75
  article-title: Stress reduction, bacterial style.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00433-17
– volume: 277
  start-page: 45099
  year: 2002
  ident: B19
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast SIR2 and human SIRT1.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m205670200
– volume: 274
  start-page: 18157
  year: 1999
  ident: B219
  article-title: Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.26.18157
– volume: 288
  start-page: 28116
  year: 2013
  ident: B232
  article-title: Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.495549
– volume: 243
  start-page: 6361
  year: 1968
  ident: B235
  article-title: Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)93148-0
– volume: 188
  start-page: 5460
  year: 2006
  ident: B67
  article-title: Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.00215-06
– volume: 23
  start-page: 1686
  year: 2014
  ident: B185
  article-title: Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2.
  publication-title: Protein Sci.
  doi: 10.1002/pro.2546
– volume: 389
  start-page: 194
  year: 1997
  ident: B204
  article-title: Steroid receptor coactivator-1 is a histone acetyltransferase.
  publication-title: Nature
  doi: 10.1038/38304
– volume: 298
  start-page: 2390
  year: 2002
  ident: B205
  article-title: Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
  publication-title: Science
  doi: 10.1126/science.1077650
– volume: 13
  year: 2018
  ident: B184
  article-title: Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0204687
– volume: 312
  start-page: 1211
  year: 2006
  ident: B152
  article-title: Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation.
  publication-title: Science
  doi: 10.1126/science.1126867
– year: 1990
  ident: B236
  publication-title: Biochemistry.
– volume: 111
  start-page: 24
  year: 1972
  ident: B248
  article-title: Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.111.1.24-32.1972
– volume: 7
  year: 2016
  ident: B163
  article-title: Glucose induces ECF sigma factor genes, sigX and sigM, independent of cognate anti-sigma factors through acetylation of CshA in Bacillus subtilis.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01918
– volume: 16
  start-page: 4045
  year: 2017
  ident: B18
  article-title: N - and O-acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 strains: proteins involved in bioenergetics, virulence and antimicrobial resistance are acetylated.
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00429
– volume: 278
  start-page: 26071
  year: 2003
  ident: B275
  article-title: Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m303666200
– volume: 8
  year: 2017
  ident: B228
  article-title: A toxin involved in Salmonella persistence regulates its activity by acetylating its cognate antitoxin, a modification reversed by CobB sirtuin deacetylase.
  publication-title: mBio
  doi: 10.1128/mBio.00708-17
– volume: 10
  start-page: 525
  year: 2012
  ident: B87
  article-title: Nutritional immunity: transition metals at the pathogen-host interface.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2836
– volume: 7
  year: 2018
  ident: B259
  article-title: Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis.
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/s41426-018-0032-2
– volume: 226
  start-page: 1
  year: 2018
  ident: B113
  article-title: First acetyl-proteome pro?ling of Salmonella Typhimurium revealed involvement of lysine acetylation in drug resistance.
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2018.09.024
– volume: 194
  start-page: 5897
  year: 2012
  ident: B210
  article-title: Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01502-12
– volume: 5
  year: 2010
  ident: B220
  article-title: N -lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015123
– volume: 17
  start-page: 23
  year: 1976
  ident: B86
  article-title: Effect of specific growth rate and glucose concentration on growth and glucose metabolism of Escherichia coli K-12.
  publication-title: Microbios
– volume: 211
  start-page: 737
  year: 1954
  ident: B186
  article-title: Enzymatic phosphorylation of acetate.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)71161-7
– volume: 12
  year: 2017
  ident: B64
  article-title: Characterization of CobB kinetics and inhibition by nicotinamide.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189689
– volume: 17
  start-page: 855
  year: 2005
  ident: B5
  article-title: Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.022
– year: 2013
  ident: B88
  publication-title: Understanding the Posttranslational Regulation of the Response Regulator RcsB and Acetyl Phosphate as an Acetyl Group Donor in E. coli.
– volume: 58
  start-page: 203
  year: 2015
  ident: B188
  article-title: Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.029
– volume: 188
  start-page: 3731
  year: 2006
  ident: B176
  article-title: A complex transcription network controls the early stages of biofilm development by Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.01780-05
– volume: 286
  start-page: 37002
  year: 2011
  ident: B125
  article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.282863
– volume: 59
  start-page: 193
  year: 2015
  ident: B252
  article-title: Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2014.11.010
– volume: 9
  start-page: 862
  year: 2002
  ident: B258
  article-title: The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate.
  publication-title: Nat. Struct. Biol.
– volume: 22
  start-page: 154
  year: 1997
  ident: B159
  article-title: GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/s0968-0004(97)01034-7
– volume: 384
  start-page: 641
  year: 1996
  ident: B8
  article-title: The CBP co-activator is a histone acetyltransferase.
  publication-title: Nature
  doi: 10.1038/384641a0
– volume: 9
  year: 2014
  ident: B105
  article-title: Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094816
– volume: 10
  start-page: 36
  year: 2008
  ident: B96
  article-title: Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules.
  publication-title: Biol. Proced. Online
  doi: 10.1251/bpo141
– volume: 113
  start-page: 6653
  year: 2016
  ident: B269
  article-title: Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1525654113
– volume: 51
  start-page: 786
  year: 1964
  ident: B2
  article-title: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.51.5.786
– volume: 86
  year: 2018
  ident: B127
  article-title: Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis.
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00224-18
– volume: 10
  year: 2009
  ident: B171
  article-title: The conservation and evolutionary modularity of metabolism.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-6-r63
– volume: 325
  start-page: 595
  year: 2003
  ident: B173
  article-title: N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.
  publication-title: J. Mol. Biol.
  doi: 10.1016/s0022-2836(02)01269-x
– volume: 196
  start-page: 3169
  year: 2014
  ident: B268
  article-title: Acetyl coenzyme A synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with a single Gcn5-type N-acetyltransferase (GNAT) domain in Saccharopolyspora erythraea.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01961-14
– volume: 9
  start-page: 169
  year: 2003
  ident: B45
  article-title: Protein carbonylation in human diseases.
  publication-title: Trends Mol. Med.
  doi: 10.1016/s1471-4914(03)00031-5
– volume: 68
  start-page: 1547
  year: 2008
  ident: B187
  article-title: Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06252.x
– volume: 116
  start-page: 3752
  year: 2019
  ident: B28
  article-title: YfmK is an N -lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1815511116
– volume: 51
  start-page: 265
  ident: B243
  article-title: Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.003
– volume: 196
  start-page: 1496
  year: 2014
  ident: B40
  article-title: The acetylation motif in AMP-forming Acyl coenzyme A synthetases contains residues critical for acetylation and recognition by the protein acetyltransferase Pat of Rhodopseudomonas palustris.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00004-14
– volume: 282
  start-page: 30239
  year: 2007
  ident: B69
  article-title: N-lysine propionylation controls the activity of propionyl-CoA synthetase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m704409200
– volume: 42
  start-page: 9249
  year: 2003
  ident: B194
  article-title: Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
  publication-title: Biochemistry
  doi: 10.1021/bi034959l
– volume: 12
  start-page: 928
  year: 2011
  ident: B112
  article-title: The YopJ superfamily in plant-associated bacteria.
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2011.00719.x
– volume: 586
  start-page: 85
  year: 2017
  ident: B148
  article-title: Site-specific quantification of lysine acetylation using isotopic labeling.
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.09.029
– volume: 3
  year: 2016
  ident: B3
  article-title: Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145.
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2016.00038
– volume: 107
  start-page: 116
  year: 2018
  ident: B49
  article-title: An acetylatable lysine controls CRP function in E. coli.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13874
– volume: 4
  year: 2018
  ident: B189
  article-title: Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao1478
– volume: 57
  start-page: 138
  year: 1993
  ident: B198
  article-title: Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.57.1.138-163.1993
– volume: 216
  start-page: 1018
  year: 2017
  ident: B193
  article-title: Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating Salmonella Typhimurium virulence.
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jix102
– volume: 162
  start-page: 1156
  year: 1985
  ident: B226
  article-title: Pantothenate transport in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.162.3.1156-1161.1985
– volume: 278
  start-page: 50985
  year: 2003
  ident: B91
  article-title: Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m306552200
– volume: 400
  start-page: 86
  year: 1999
  ident: B123
  article-title: Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A.
  publication-title: Nature
  doi: 10.1038/21922
– volume: 48
  start-page: 287
  year: 2003
  ident: B22
  article-title: The Lrp family of transcriptional regulators.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2003.03442.x
– volume: 287
  start-page: 15590
  year: 2012
  ident: B42
  article-title: System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.352104
– volume: 73
  start-page: 417
  year: 2004
  ident: B20
  article-title: The Sir2 family of protein deacetylases.
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.073651
– volume: 7
  year: 2017
  ident: B93
  article-title: The global acetylome of the human pathogen Vibrio cholerae V52 reveals lysine acetylation of major transcriptional regulators.
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00537
– volume: 98
  start-page: 847
  year: 2015
  ident: B196
  article-title: Protein acetylation dynamics in response to carbon overflow in Escherichia coli.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13161
– volume: 50
  start-page: 919
  year: 2013
  ident: B169
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 112
  start-page: 15690
  year: 2015
  ident: B132
  article-title: The bioenergetic costs of a gene.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1514974112
– volume: 109
  start-page: 12710
  year: 2012
  ident: B168
  article-title: Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1008203109
– volume: 9
  year: 2018
  ident: B37
  article-title: Identification of novel protein lysine acetyltransferases in Escherichia coli.
  publication-title: mBio
  doi: 10.1128/mBio.01905-18
– volume: 133
  start-page: 2485S
  year: 2003
  ident: B47
  article-title: Inhibition of histone deacetylase activity by butyrate.
  publication-title: J. Nutr.
  doi: 10.1093/jn/133.7.2485S
– volume: 13
  start-page: 204
  year: 2010
  ident: B250
  article-title: Physiologically relevant small phosphodonors link metabolism to signal transduction.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2010.01.002
– volume: 114
  start-page: 214
  year: 2015
  ident: B167
  article-title: Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2014.11.006
– volume: 217
  start-page: 289
  year: 1989
  ident: B218
  article-title: Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12.
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/bf02464895
– volume: 292
  start-page: 6029
  year: 2017
  ident: B74
  article-title: Non-enzymatic molecular damage as a prototypic driver of aging.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R116.751164
– volume: 192
  start-page: 6390
  year: 2010
  ident: B178
  article-title: Instability of ackA (acetate kinase) mutations and their effects on acetyl phosphate and ATP amounts in Streptococcus pneumoniae D39.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00995-10
– volume: 291
  start-page: 22315
  year: 2016
  ident: B233
  article-title: Post-translational acetylation of MbtA modulates mycobacterial siderophore biosynthesis.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m116.744532
– volume: 100
  start-page: 577
  year: 2016
  ident: B72
  article-title: Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13339
– volume: 31
  start-page: 449
  ident: B262
  article-title: Lysine acetylation: codified crosstalk with other posttranslational modifications.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.07.002
– volume: 273
  start-page: 793
  year: 2000
  ident: B63
  article-title: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3000
– volume: 6
  start-page: 482
  year: 2003
  ident: B142
  article-title: Identifying global regulators in transcriptional regulatory networks in bacteria.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2003.09.002
– volume: 10
  start-page: 63
  year: 2015
  ident: B54
  article-title: Mass spectrometry-based detection and assignment of protein posttranslational modifications.
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb500904b
– volume: 19
  start-page: 605
  year: 2014
  ident: B217
  article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.014
– volume: 87
  start-page: 1261
  year: 1996
  ident: B150
  article-title: The TAF(II)250 subunit of TFIID has histone acetyltransferase activity.
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)81821-8
– volume: 131
  start-page: 433
  year: 1986
  ident: B104
  article-title: Protein dynamics investigated by neutron diffraction.
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(86)31051-6
– volume: 104
  start-page: 278
  year: 2017
  ident: B241
  article-title: Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13627
– volume: 81
  year: 2017
  ident: B13
  article-title: Bacterial proteasomes: mechanistic and functional insights.
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00036-16
– volume: 288
  start-page: 31350
  year: 2013
  ident: B61
  article-title: Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C113.511261
– volume: 11
  start-page: 155
  year: 2001
  ident: B139
  article-title: Histone acetyltransferases: function, structure, and catalysis.
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/s0959-437x(00)00173-8
– volume: 191
  start-page: 1749
  year: 2009
  ident: B66
  article-title: In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01674-08
– volume: 410
  start-page: 846
  year: 2011
  ident: B134
  article-title: Protein acetylation in prokaryotes increases stress resistance.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.06.076
– volume: 473
  start-page: 1229
  year: 2016
  ident: B56
  article-title: Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.04.045
– volume: 279
  start-page: 40122
  year: 2004
  ident: B197
  article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m407484200
– volume: 190
  start-page: 6609
  year: 2008
  ident: B136
  article-title: Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00588-08
– volume: 10
  start-page: 3578
  year: 2011
  ident: B82
  article-title: Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2002325
– volume: 6
  year: 2016
  ident: B272
  article-title: Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli.
  publication-title: Sci. Rep.
  doi: 10.1038/srep30837
– volume: 74
  start-page: 2286
  year: 1952
  ident: B102
  article-title: Effect of catalysts on the hydrolysis of acetyl phosphate. Nucleophilic displacement mechanisms in enzymatic reactions.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01129a035
– volume: 12
  year: 2016
  ident: B183
  article-title: Acetylation of lysine 201 inhibits the DNA-binding ability of PhoP to regulate Salmonella virulence.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005458
– volume: 7
  year: 2017
  ident: B17
  article-title: Modulation of central carbon metabolism by acetylation of isocitrate lyase in Mycobacterium tuberculosis.
  publication-title: Sci. Rep.
  doi: 10.1038/srep44826
– volume: 48
  start-page: 723
  ident: B211
  article-title: Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase.
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1093/abbs/gmw066
– volume: 29
  start-page: 81
  year: 2000
  ident: B58
  article-title: GCN5-related N-acetyltransferases: a structural overview.
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.29.1.81
– volume: 12
  start-page: 3509
  year: 2013
  ident: B39
  article-title: Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031567
– volume: 23
  start-page: 377
  year: 2019
  ident: B265
  article-title: Protein acetylation on 2-isopropylmalate synthase from Thermus thermophilus HB27.
  publication-title: Extremophiles
  doi: 10.1007/s00792-019-01090-y
– year: 2019
  ident: B35
  publication-title: Regulation of Acetyl Phosphate-Dependent Acetylation and Identification of Novel Lysine Acetyltransferases in Escherichia coli.
– volume: 10
  year: 2011
  ident: B170
  article-title: The first identification of lysine malonylation substrates and its regulatory enzyme.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.012658
– volume: 4
  start-page: 2954
  year: 2004
  ident: B166
  article-title: CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction.
  publication-title: Proteomics
  doi: 10.1002/pmic.200400906
– volume: 107
  start-page: 577
  year: 2018
  ident: B227
  article-title: In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and N.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13901
– volume: 17
  start-page: 1156
  ident: B255
  article-title: Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.RA117.000372
– volume: 58
  start-page: 161
  year: 2004
  ident: B162
  article-title: Stationary-phase physiology.
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.58.030603.123818
– volume: 209
  start-page: 481
  year: 1987
  ident: B266
  article-title: Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12.
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/bf00331153
– volume: 429
  start-page: 1396
  ident: B231
  article-title: Studying the lysine acetylation of malate dehydrogenase.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.03.027
– volume: 50
  start-page: 314
  year: 1986
  ident: B43
  article-title: Biosynthesis and metabolism of arginine in bacteria.
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.50.3.314-352.1986
– volume: 54
  start-page: 1615
  year: 2005
  ident: B25
  article-title: The pathobiology of diabetic complications: a unifying mechanism.
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.2337/diabetes.54.6.1615
– volume: 18
  start-page: 37
  year: 2012
  ident: B117
  article-title: Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ).
  publication-title: RNA
  doi: 10.1261/rna.030213.111
– volume: 199
  year: 2017
  ident: B27
  article-title: Regulation, function, and detection of protein acetylation in bacteria.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00107-17
– volume: 76
  start-page: 932
  year: 2010
  ident: B119
  article-title: Acetylation represses the binding of CheY to its target proteins.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07148.x
– volume: 292
  start-page: 10709
  year: 2017
  ident: B264
  article-title: Acetylation of lysine ?-amino groups regulates aminoacyl-tRNA synthetase activity in Escherichia coli.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.770826
– volume: 43
  year: 2015
  ident: B59
  article-title: Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv800
– volume: 34
  start-page: 476
  year: 2010
  ident: B158
  article-title: Stationary phase in gram-negative bacteria.
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00213.x
– volume: 189
  start-page: 5574
  year: 2007
  ident: B101
  article-title: The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.00564-07
– volume: 87
  start-page: 258
  year: 1963
  ident: B172
  article-title: The presence of acetyl groups of histones.
  publication-title: Biochem. J.
  doi: 10.1042/bj0870258
– volume: 63
  start-page: 86
  year: 2016
  ident: B33
  article-title: A Salmonella toxin promotes persister formation through acetylation of tRNA.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.002
– volume: 17
  year: 2016
  ident: B190
  article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT).
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17071018
– volume: 3
  year: 2018
  ident: B164
  article-title: Newly identified nucleoid-associated-like protein YlxR regulates metabolic gene expression in Bacillus subtilis.
  publication-title: mSphere
  doi: 10.1128/mSphere.00501-18
– volume: 81
  start-page: 1190
  year: 2011
  ident: B121
  article-title: Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07742.x
– volume: 12
  year: 2017
  ident: B175
  article-title: Identification and characterization of AckA-dependent protein acetylation in Neisseria gonorrhoeae.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179621
– volume: 17
  start-page: 2449
  year: 2018
  ident: B70
  article-title: Lysine succinylation and acetylation in Pseudomonas aeruginosa.
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00210
– volume: 8
  start-page: 215
  year: 2009
  ident: B271
  article-title: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M800187-MCP200
– volume: 63
  start-page: 501
  year: 1998
  ident: B57
  article-title: Structure of the yeast histone acetyltransferase Hat1: insights into substrate specificity and implications for the Gcn5-related N-acetyltransferase superfamily.
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.1998.63.501
– volume: 23
  start-page: 607
  year: 2006
  ident: B100
  article-title: Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.026
– volume: 382
  start-page: 319
  year: 1996
  ident: B261
  article-title: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A.
  publication-title: Nature
  doi: 10.1038/382319a0
– volume: 362
  year: 2015
  ident: B279
  article-title: Discovery and characterization of Ku acetylation in Mycobacterium smegmatis.
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnu051
– volume: 80
  start-page: 1011
  year: 2016
  ident: B133
  article-title: YopJ family effectors promote bacterial infection through a unique acetyltransferase activity.
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/mmbr.00032-16
– volume: 287
  start-page: 32147
  year: 2012
  ident: B122
  article-title: Inhibition of acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.365502
– volume: 146
  start-page: 1016
  year: 2011
  ident: B216
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 184
  start-page: 4334
  year: 2002
  ident: B246
  article-title: The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.184.16.4334-4342.2002
– volume: 27
  start-page: 1758
  year: 2016
  ident: B144
  article-title: Quantification of lysine acetylation and succinylation stoichiometry in proteins using mass spectrometric data-independent acquisitions (SWATH).
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-016-1476-z
– volume: 157
  start-page: 758
  year: 1984
  ident: B180
  article-title: Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella Typhimurium.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.157.3.758-763.1984
– volume: 5
  start-page: 152
  year: 2016
  ident: B149
  article-title: Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction.
  publication-title: Microbiologyopen
  doi: 10.1002/mbo3.320
– volume: 433
  start-page: 212
  year: 2005
  ident: B234
  article-title: Structure and functions of the GNAT superfamily of acetyltransferases.
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2004.09.003
– volume: 290
  start-page: 23077
  year: 2015
  ident: B50
  article-title: The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.649806
– volume: 44
  start-page: 1979
  year: 2016
  ident: B202
  article-title: Reversible acetylation on Lys501 regulates the activity of RNase II.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw053
– volume: 87
  start-page: 152
  year: 2013
  ident: B224
  article-title: Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12088
– volume: 363
  start-page: 15
  year: 2005
  ident: B73
  article-title: Acetylation and deacetylation of non-histone proteins.
  publication-title: Gene
  doi: 10.1016/j.gene.2005.09.010
– volume: 8
  year: 2008
  ident: B110
  article-title: The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-8-121
– volume: 61
  start-page: 2020
  ident: B206
  article-title: Acetyl-coenzyme A synthetase (AMP forming).
  publication-title: Cell. Mol. Life Sci.
– volume: 190
  start-page: 5132
  year: 2008
  ident: B65
  article-title: Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme a synthetase (AcsA) in Bacillus subtilis.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00340-08
– volume: 2014
  year: 2014
  ident: B155
  article-title: A method to determine lysine acetylation stoichiometries.
  publication-title: Int. J. Proteomics
  doi: 10.1155/2014/730725
– volume: 165
  start-page: 65
  year: 2019
  ident: B214
  article-title: Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis.
  publication-title: Microbiology
  doi: 10.1099/mic.0.000737
– volume: 7
  start-page: 504
  year: 2011
  ident: B53
  article-title: Chemistry and biology of reactive oxygen species in signaling or stress responses.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.607
– volume: 18
  start-page: 1529
  year: 2008
  ident: B270
  article-title: The diversity of lysine-acetylated proteins in Escherichia coli.
  publication-title: J. Microbiol. Biotechnol.
– volume: 7
  year: 2016
  ident: B177
  article-title: The bacterial two-hybrid system uncovers the involvement of acetylation in regulating of Lrp Activity in Salmonella Typhimurium.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01864
– volume: 288
  start-page: 14114
  year: 2013
  ident: B157
  article-title: Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.463992
– volume: 289
  start-page: 21326
  year: 2014
  ident: B6
  article-title: Stoichiometry of site-specific lysine acetylation in an entire proteome.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.581843
– volume: 102
  start-page: 327
  year: 1977
  ident: B24
  article-title: The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli.
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-102-2-327
– volume: 50
  start-page: 5883
  year: 2011
  ident: B254
  article-title: Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP.
  publication-title: Biochemistry
  doi: 10.1021/bi200156t
– volume: 4
  start-page: 66
  year: 2015
  ident: B1
  article-title: The E. coli sirtuin CobB shows no preference for enzymatic and nonenzymatic lysine acetylation substrate sites.
  publication-title: Microbiologyopen
  doi: 10.1002/mbo3.223
– volume: 1
  year: 2016
  ident: B29
  article-title: Temporal regulation of the Bacillus subtilis acetylome and evidence for a role of MreB acetylation in cell wall growth.
  publication-title: mSystems
  doi: 10.1128/mSystems.00005-16
– volume: 104
  start-page: 677
  year: 2017
  ident: B153
  article-title: Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13658
– volume: 6
  start-page: 812
  year: 2007
  ident: B32
  article-title: Lysine propionylation and butyrylation are novel post-translational modifications in histones.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.m700021-mcp200
– volume: 189
  start-page: 8447
  year: 2007
  ident: B239
  article-title: The RcsCDB signaling system and swarming motility in Salmonella enterica serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.01198-07
– volume: 90
  start-page: 179
  year: 2012
  ident: B145
  article-title: CobB1 deacetylase activity in Streptomyces coelicolor.
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o11-086
– volume: 40
  start-page: 731
  year: 2001
  ident: B10
  article-title: Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02425.x
– volume: 177
  start-page: 2878
  year: 1995
  ident: B106
  article-title: Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.10.2878-2886.1995
– volume: 76
  start-page: 874
  year: 2010
  ident: B41
  article-title: Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07127.x
– volume: 55
  start-page: 989
  year: 2016
  ident: B60
  article-title: Bacterial GCN5-Related N-Acetyltransferases: from resistance to regulation.
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b01269
– volume: 36
  start-page: 211
  year: 2011
  ident: B98
  article-title: Comprehensive lysine acetylomes emerging from bacteria to humans.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2010.10.001
– volume: 151
  start-page: 3793
  year: 2005
  ident: B208
  article-title: Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities.
  publication-title: Microbiology
  doi: 10.1099/mic.0.28156-0
– volume: 7
  start-page: 11
  year: 2016
  ident: B68
  article-title: Mechanisms of resistance to aminoglycoside Antibiotics: overview and perspectives.
  publication-title: Medchemcomm
  doi: 10.1039/c5md00344j
– volume: 200
  year: 2018
  ident: B146
  article-title: Role of acetyltransferase PG1842 in gingipain biogenesis in Porphyromonas gingivalis.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00385-18
– volume: 41
  start-page: 956
  year: 1997
  ident: B251
  article-title: Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/aac.41.5.956
– volume: 198
  start-page: 623
  year: 2015
  ident: B129
  article-title: Regulation of a protein acetyltransferase in Myxococcus xanthus by the coenzyme NADP.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00661-15
– volume: 198
  start-page: 155
  year: 2012
  ident: B253
  article-title: Mechanistic insights into the regulation of metabolic enzymes by acetylation.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201202056
– volume: 18
  year: 2017
  ident: B23
  article-title: Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions.
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3676-8
– volume: 340
  start-page: 1005
  ident: B207
  article-title: Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.010
– volume: 8
  year: 2017
  ident: B115
  article-title: Acetylation of lysine 243 inhibits the oriC binding ability of DnaA in Escherichia coli.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00699
– volume: 136
  start-page: 1073
  year: 2009
  ident: B124
  article-title: Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.033
– volume: 19
  year: 2018
  ident: B277
  article-title: Biochemical basis of E. coli topoisomerase I relaxation activity reduction by nonenzymatic lysine acetylation.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19051439
– volume: 10
  start-page: 122
  year: 2015
  ident: B7
  article-title: Site-specific reactivity of nonenzymatic lysine acetylation.
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb500848p
– volume: 14
  start-page: 2681
  year: 1975
  ident: B179
  article-title: Nonenzymatic acetylation of histones with acetyl phosphate and acetyl adenylate.
  publication-title: Biochemistry
  doi: 10.1021/bi00683a018
– volume: 177
  start-page: 31
  year: 2018
  ident: B213
  article-title: The lysine acetylome of the nematocidal bacterium Bacillus nematocida and impact of nematode on the acetylome.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2018.02.005
– volume: 79
  start-page: 321
  year: 2015
  ident: B83
  article-title: Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress.
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00020-15
– volume: 109
  start-page: 7729
  year: 2012
  ident: B99
  article-title: Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1120251109
– volume: 213
  start-page: 1836
  year: 2016
  ident: B192
  article-title: Protein acetylation is involved in Salmonella enterica serovar Typhimurium virulence.
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiw028
– volume: 32
  start-page: 210
  year: 2007
  ident: B151
  article-title: A newly discovered post-translational modification–the acetylation of serine and threonine residues.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2007.03.007
– volume: 285
  start-page: 19927
  year: 2010
  ident: B147
  article-title: The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.126581
– volume: 10
  start-page: 299
  year: 2018
  ident: B229
  article-title: Proteome and acylome analyses of the functional interaction network between the carbazole-degradative plasmid pCAR1 and host Pseudomonas putida KT2440.
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12639
– volume: 9
  start-page: 928
  year: 2010
  ident: B81
  article-title: Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900463-MCP200
– volume: 82
  start-page: 1110
  year: 2011
  ident: B30
  article-title: cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07873.x
– volume: 16
  start-page: 759
  year: 2017
  ident: B245
  article-title: Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M117.067587
– volume: 18
  year: 2018
  ident: B12
  article-title: Simultaneous quantification of the acetylome and succinylome by ’one-pot’ affinity enrichment.
  publication-title: Proteomics
  doi: 10.1002/pmic.201800123
– volume: 83
  start-page: 4393
  year: 1961
  ident: B52
  article-title: Mechanism and catalysis of reactions of acyl phosphates. I. Nucleophilic reactions.
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/bi201921a
– volume: 36
  start-page: 31
  year: 2000
  ident: B160
  article-title: Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli.
  publication-title: Curr. Top. Cell. Regul.
  doi: 10.1016/S0070-2137(01)80002-9
– volume: 101
  start-page: 8563
  year: 2004
  ident: B276
  article-title: Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0401057101
– volume: 45
  start-page: 5349
  year: 2017
  ident: B278
  article-title: Deacetylation of topoisomerase I is an important physiological function of E. coli CobB.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx250
– volume: 286
  start-page: 23950
  year: 2011
  ident: B14
  article-title: Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.241414
– volume: 115
  start-page: 2419
  year: 2015
  ident: B46
  article-title: Protein lysine acetylation by p300/CBP.
  publication-title: Chem. Rev.
  doi: 10.1021/cr500452k
– volume: 285
  start-page: 24313
  year: 2010
  ident: B156
  article-title: cAMP-regulated protein lysine acetylases in Mycobacteria.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118398
– volume: 144
  start-page: 114
  year: 1980
  ident: B4
  article-title: Are growth rates of Escherichia coli in batch cultures limited by respiration?
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.144.1.114-123.1980
– volume: 11
  year: 2015
  ident: B242
  article-title: Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.156513
– volume: 10
  year: 2014
  ident: B109
  article-title: The functional diversity of protein lysine methylation.
  publication-title: Mol. Syst. Biol.
  doi: 10.1002/msb.134974
– volume: 7
  start-page: 58
  year: 2011
  ident: B274
  article-title: Identification of lysine succinylation as a new post-translational modification.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.495
– volume: 81
  start-page: 5675
  year: 2015
  ident: B182
  article-title: Acetylation regulates survival of Salmonella enterica serovar Typhimurium under acid stress.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01009-15
– volume: 334
  start-page: 806
  year: 2011
  ident: B55
  article-title: Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.
  publication-title: Science
  doi: 10.1126/science.1207861
– volume: 107
  start-page: 17158
  year: 2010
  ident: B26
  article-title: Revisiting the structures of several antibiotics bound to the bacterial ribosome.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1008685107
– volume: 163
  start-page: 545
  year: 2003
  ident: B209
  article-title: Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.545
– volume: 7
  year: 2018
  ident: B16
  article-title: Acetylation of lysine 182 inhibits the ability of Mycobacterium tuberculosis DosR to bind DNA and regulate gene expression during hypoxia.
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/s41426-018-0112-3
– volume: 37
  year: 2017
  ident: B131
  article-title: Identification and characterization of two types of amino acid-regulated acetyltransferases in actinobacteria.
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20170157
– volume: 260
  start-page: 273
  year: 1999
  ident: B62
  article-title: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1999.0897
– volume: 13
  start-page: 1670
  year: 2015
  ident: B111
  article-title: Acetylation of an NB-LRR plant immune-effector complex suppresses immunity.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.10.029
– volume: 15
  start-page: 4696
  ident: B212
  article-title: Characterization of protein lysine propionylation in Escherichia coli: global profiling, dynamic change, and enzymatic regulation.
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00798
– volume: 155
  start-page: 63
  year: 2017
  ident: B90
  article-title: Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2016.12.006
– volume: 134
  year: 2018
  ident: B240
  article-title: Quantification of site-specific protein lysine acetylation and succinylation stoichiometry using data-independent acquisition mass spectrometry.
  publication-title: J. Vis. Exp.
  doi: 10.3791/57209
– volume: 10
  year: 2019
  ident: B36
  article-title: Mechanisms, detection, and relevance of protein acetylation in prokaryotes.
  publication-title: mBio
  doi: 10.1128/mBio.02708-18
– volume: 289
  start-page: 27034
  year: 2014
  ident: B257
  article-title: Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.579078
– volume: 94
  start-page: 439
  year: 1998
  ident: B249
  article-title: Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81585-8
– volume: 4
  start-page: 842
  ident: B244
  article-title: Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.024
– volume: 126
  start-page: 923
  year: 2005
  ident: B78
  article-title: Calorie restriction and SIR2 genes–towards a mechanism.
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2005.03.013
– volume: 12
  start-page: 3952
  year: 2013
  ident: B165
  article-title: Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophilus.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr400245k
– volume: 192
  start-page: 6200
  year: 2010
  ident: B223
  article-title: Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00874-10
– volume: 14
  start-page: 200
  year: 2011
  ident: B221
  article-title: Control of protein function by reversible N?-lysine acetylation in bacteria.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2010.12.013
– volume: 32
  start-page: 2450
  year: 2015
  ident: B215
  article-title: Isolation and characterization of acetylated derivative of recombinant insulin Lispro produced in Escherichia coli.
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-015-1637-y
– volume: 9
  start-page: 206
  ident: B263
  article-title: The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2346
– volume: 13
  start-page: 3352
  year: 2014
  ident: B126
  article-title: Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.041962
– volume: 375
  start-page: 529
  year: 2008
  ident: B137
  article-title: Molecular crowding inhibits intramolecular breathing motions in proteins.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.07.075
– volume: 46
  start-page: 623
  year: 2007
  ident: B15
  article-title: Catalytic mechanism of a MYST family histone acetyltransferase.
  publication-title: Biochemistry
  doi: 10.1021/bi602513x
– volume: 243
  start-page: 5018
  year: 1968
  ident: B71
  article-title: Chemical studies of histone acetylation. The occurrence of epsilon-N-acetyllysine in the f2a1 histone.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)91985-X
– volume: 8
  year: 2013
  ident: B107
  article-title: Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054896
– volume: 82
  start-page: 4572
  year: 2014
  ident: B143
  article-title: Homeostasis of N-α-terminal acetylation of EsxA correlates with virulence in Mycobacterium marinum.
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.02153-14
– volume: 451
  start-page: 846
  year: 2008
  ident: B128
  article-title: The structural basis of protein acetylation by the p300/CBP transcriptional coactivator.
  publication-title: Nature
  doi: 10.1038/nature06546
– volume: 10
  year: 2015
  ident: B103
  article-title: Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0131169
– volume: 97
  start-page: 235
  year: 2014
  ident: B108
  article-title: Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2013.06.036
– volume: 327
  start-page: 1004
  year: 2010
  ident: B238
  article-title: Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux.
  publication-title: Science
  doi: 10.1126/science.1179687
– year: 2014
  ident: B141
  article-title: “Regulation by covalent modification,” in
  publication-title: eLS
  doi: 10.1002/9780470015902.a0000866.pub3
– volume: 10
  year: 2014
  ident: B31
  article-title: Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli.
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145227
– volume: 280
  start-page: 21122
  year: 2005
  ident: B140
  article-title: Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m501280200
– volume: 94
  start-page: 159
  year: 1976
  ident: B199
  article-title: Chloramphenicol acetylation in Streptomyces.
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-94-1-159
– volume: 280
  start-page: 1966
  year: 2013
  ident: B273
  article-title: Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase.
  publication-title: FEBS J.
  doi: 10.1111/febs.12216
– volume: 75
  start-page: 487
  year: 2007
  ident: B84
  article-title: Histone deacetylases–an important class of cellular regulators with a variety of functions.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-007-0911-2
– volume: 9
  start-page: 3766
  year: 2010
  ident: B135
  article-title: Proteomic identification of carbonylated proteins and their oxidation sites.
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1002609
– volume: 1804
  start-page: 1604
  year: 2010
  ident: B191
  article-title: Structural basis for sirtuin function: what we know and what we don’t.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2009.09.009
– volume: 21
  start-page: 735
  year: 2011
  ident: B130
  article-title: Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes.
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2011.08.004
– volume: 3
  year: 2014
  ident: B9
  article-title: Identification of ’erasers’ for lysine crotonylated histone marks using a chemical proteomics approach.
  publication-title: eLife
  doi: 10.7554/eLife.02999
– volume: 84
  year: 2018
  ident: B120
  article-title: A putative acetylation system in Vibrio cholerae modulates virulence in arthropod hosts.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01113-18
– year: 1969
  ident: B92
  publication-title: Catalysis in Chemistry and Enzymology.
– volume: 76
  start-page: 1162
  year: 2010
  ident: B114
  article-title: CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07125.x
– volume: 103
  start-page: 845
  year: 2017
  ident: B267
  article-title: Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13595
– volume: 9
  start-page: 1127
  year: 2001
  ident: B138
  article-title: Structure of histone deacetylases: insights into substrate recognition and catalysis.
  publication-title: Structure
  doi: 10.1016/s0969-2126(01)00690-6
– volume: 5
  start-page: 234
  year: 1997
  ident: B48
  article-title: Bacterial resistance to aminoglycoside antibiotics.
  publication-title: Trends Microbiol.
  doi: 10.1016/s0966-842x(97)01033-0
– volume: 195
  start-page: 4174
  year: 2013
  ident: B89
  article-title: Acetylation of the response regulator RcsB controls transcription from a small RNA promoter.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00383-13
– volume: 288
  start-page: 29036
  year: 2013
  ident: B237
  article-title: Widespread and enzyme-independent N -acetylation and N -succinylation of proteins in the chemical conditions of the mitochondrial matrix.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.486753
– volume: 10
  start-page: 365
  year: 2014
  ident: B44
  article-title: Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1497
– volume: 338
  start-page: 17
  year: 2004
  ident: B77
  article-title: Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.02.006
– volume: 41
  start-page: 185
  year: 2009
  ident: B203
  article-title: Acetylation of non-histone proteins modulates cellular signalling at multiple levels.
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2008.08.027
– volume: 282
  start-page: 37256
  year: 2007
  ident: B201
  article-title: Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m707878200
– volume: 290
  start-page: 26218
  year: 2015
  ident: B200
  article-title: Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.687269
– volume: 18
  start-page: 1928
  ident: B230
  article-title: Biochemical characterization of the lysine acetylation of tyrosyl-tRNA synthetase in Escherichia coli.
  publication-title: Chembiochem
  doi: 10.1002/cbic.201700343
– volume: 10
  year: 2018
  ident: B116
  article-title: Post-translational regulation of a Porphyromonas gingivalis regulator.
  publication-title: J. Oral Microbiol.
  doi: 10.1080/20002297.2018.1487743
– volume: 83
  year: 2017
  ident: B38
  article-title: Increasing growth yield and decreasing acetylation in Escherichia coli by optimizing the carbon-to-magnesium ratio in peptide-based media.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03034-16
– volume: 110
  start-page: 677
  year: 2018
  ident: B85
  article-title: Perturbing the acetylation status of the Type IV pilus retraction motor, PilT, reduces Neisseria gonorrhoeae viability.
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.13979
– volume: 57
  start-page: 781
  year: 2018
  ident: B76
  article-title: Acetylation by Eis and deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: biochemical and structural insight.
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b01089
– volume: 9
  year: 2018
  ident: B21
  article-title: Global profiling of lysine acetylation in Borrelia burgdorferi B31 reveals its role in central metabolism.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02036
– volume: 7
  start-page: 1395
  year: 1988
  ident: B80
  article-title: A direct link between core histone acetylation and transcriptionally active chromatin.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02956.x
– volume: 7
  start-page: 494
  year: 1975
  ident: B95
  article-title: R factor-mediated aminoglycoside antibiotic resistance in Pseudomonas aeruginosa: a new aminoglycoside 6′-N-acetyltransferase.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/aac.7.5.494
– volume: 144
  start-page: 148
  year: 2016
  ident: B97
  article-title: Proteomic characterization of Nα- and N -acetylation in Acinetobacter baumannii.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2016.05.021
– volume: 8
  year: 2017
  ident: B154
  article-title: Ancient regulatory role of lysine acetylation in central metabolism.
  publication-title: mBio
  doi: 10.1128/mBio.01894-17
– volume: 26
  start-page: 94
  year: 2005
  ident: B174
  article-title: The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension.
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2004.12.009
– volume: 25
  start-page: 768
  year: 2017
  ident: B181
  article-title: Protein acetylation and its role in bacterial virulence.
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2017.04.001
– volume: 28
  start-page: 41
  year: 2003
  ident: B51
  article-title: Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/s0968-0004(02)00005-1
– volume: 325
  start-page: 834
  year: 2009
  ident: B34
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions.
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 159
  start-page: 1986
  year: 2013
  ident: B79
  article-title: Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis.
  publication-title: Microbiology
  doi: 10.1099/mic.0.068585-0
– volume: 283
  start-page: 265
  year: 2016
  ident: B94
  article-title: Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase.
  publication-title: FEBS J.
  doi: 10.1111/febs.13566
– volume: 174
  start-page: 7003
  year: 1992
  ident: B247
  article-title: Thermoregulation of the pap operon: evidence for the involvement of RimJ, the N-terminal acetylase of ribosomal protein S5.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.21.7003-7012.1992
– volume: 201
  year: 2019
  ident: B195
  article-title: Global lysine acetylation in Escherichia coli results from growth conditions that favor acetate fermentation.
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00768-18
SSID ssj0000402000
Score 2.5550203
SecondaryResourceType review_article
Snippet Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1604
SubjectTerms acetylation
bacteria
BASIC BIOLOGICAL SCIENCES
lysine acetyltransferase
mass spectrometry
Microbiology
proteomics
Title Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions
URI https://www.ncbi.nlm.nih.gov/pubmed/31354686
https://www.proquest.com/docview/2266349478
https://www.osti.gov/biblio/1542482
https://pubmed.ncbi.nlm.nih.gov/PMC6640162
https://doaj.org/article/83735eb24beb4f459a70cdb0a48e4497
Volume 10
WOSCitedRecordID wos000475414100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4k1aqIzEhUNo4vjJbQu74kCrCoG0N8t2HBopZFE3W2kv_HZm4u1qFyG4cEkkx5GcmXHmG3v8DSGvo44scBlzVjOT88a43Ejlcm5KD3_Kwhd-5Jn9pM7P9XxuLnZKfWFOWKIHToI7gQCqEhD-cR89b7gwThWh9oXjOnJuxnPkgHp2gqnxH4xhUVGkfUmIwgyoqQ0eU7nMWyRV43t-aKTrh9sCptWfoObvGZM7Lmj2gNzfYEc6SWN-SG7F_hG5m6pJrh-TFRbezQd0Pt1miY9eIA1D29NJiMM6tb6jk55Ou_gNZErPIp78bZffKYBXepqomx0dFvRDKlXvum5NP6eC9RG6D2A0XRvoDPzhaLJPyNfZ9Mv7j_mmqkIehBBDrl2tvDNGYA07U9eAwZhTvhHeKK8K5n0DspaxbGLJvDGullUlPcBE4bhoRPWUHPSLPj7HtCjlNA88KOk4QBntGMCDqB00-bJsMnJyI2MbNpTjWPmisxB6oFbsqBWLWrGjVjLyZvvGj0S38Ze-p6i2bT8kyh4bwHzsxnzsv8wnI0eodAt4A0lzA2YXhcECsGRcs4y8urEFC9MO91JcHxerpQXUKpHZR-mMPEu2sR1IVVaCSy0zovasZm-k-0_69nKk9pYS4l3JDv_Hpx2ReygsXIgu2QtyMFyt4ktyJ1wP7fLqmNxWc308zhq4nv2c_gKoiB6E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-translational+Protein+Acetylation%3A+An+Elegant+Mechanism+for+Bacteria+to+Dynamically+Regulate+Metabolic+Functions&rft.jtitle=Frontiers+in+microbiology&rft.au=Christensen%2C+David+G&rft.au=Xie%2C+Xueshu&rft.au=Basisty%2C+Nathan&rft.au=Byrnes%2C+James&rft.date=2019-07-12&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=10&rft.spage=1604&rft_id=info:doi/10.3389%2Ffmicb.2019.01604&rft_id=info%3Apmid%2F31354686&rft.externalDocID=31354686
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon