EqSpike: Spike-driven equilibrium propagation for neuromorphic implementations

Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience Jg. 24; H. 3; S. 102222
Hauptverfasser: Martin, Erwann, Ernoult, Maxence, Laydevant, Jérémie, Li, Shuai, Querlioz, Damien, Petrisor, Teodora, Grollier, Julie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 19.03.2021
Elsevier
Schlagworte:
ISSN:2589-0042, 2589-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology. [Display omitted] •EqSpike is a spiking neural network version of equilibrium propagation•It achieves 97.6% test accuracy on MNIST with a fully connected architecture•Its two-factor local learning rule is compatible with neuromorphic hardware•Its weight updates exhibit a form of spike-timing-dependent plasticity Computer Science; Algorithms; Artificial Intelligence
AbstractList Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology. • EqSpike is a spiking neural network version of equilibrium propagation • It achieves 97.6% test accuracy on MNIST with a fully connected architecture • Its two-factor local learning rule is compatible with neuromorphic hardware • Its weight updates exhibit a form of spike-timing-dependent plasticity Computer Science; Algorithms; Artificial Intelligence
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology. [Display omitted] •EqSpike is a spiking neural network version of equilibrium propagation•It achieves 97.6% test accuracy on MNIST with a fully connected architecture•Its two-factor local learning rule is compatible with neuromorphic hardware•Its weight updates exhibit a form of spike-timing-dependent plasticity Computer Science; Algorithms; Artificial Intelligence
ArticleNumber 102222
Author Martin, Erwann
Grollier, Julie
Ernoult, Maxence
Querlioz, Damien
Petrisor, Teodora
Li, Shuai
Laydevant, Jérémie
Author_xml – sequence: 1
  givenname: Erwann
  surname: Martin
  fullname: Martin, Erwann
  organization: Thales Research and Technology, 91767 Palaiseau, France
– sequence: 2
  givenname: Maxence
  surname: Ernoult
  fullname: Ernoult, Maxence
  organization: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
– sequence: 3
  givenname: Jérémie
  surname: Laydevant
  fullname: Laydevant, Jérémie
  organization: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
– sequence: 4
  givenname: Shuai
  surname: Li
  fullname: Li, Shuai
  organization: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
– sequence: 5
  givenname: Damien
  surname: Querlioz
  fullname: Querlioz, Damien
  organization: Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
– sequence: 6
  givenname: Teodora
  surname: Petrisor
  fullname: Petrisor, Teodora
  organization: Thales Research and Technology, 91767 Palaiseau, France
– sequence: 7
  givenname: Julie
  surname: Grollier
  fullname: Grollier, Julie
  email: julie.grollier@cnrs-thales.fr
  organization: Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33748709$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03451693$$DView record in HAL
BookMark eNp9kk1v1DAQhi1URNulf4ADyhEOWfwZOwghVVVLK63gAJwtrz3Z9ZLEWSdZiX-Ps2lR20MtS2PNzPt47JlzdNKGFhB6R_CSYFJ82i19b_2SYkqSg6b1Cp1RococY05PHp1P0UXf7zDGNG1eFm_QKWOSK4nLM_T9ev-z83_gc3Y0uYv-AG0G-9HXfh392GRdDJ3ZmMGHNqtCzFoYY2hC7LbeZr7pamigHY7x_i16XZm6h4t7u0C_b65_Xd3mqx_f7q4uV7kVQgw5A75mklJrKseUFEJxVZXYWllYQUusnHCOYwGWK1ZxI40ljljOlBWYYMcW6G7mumB2uou-MfGvDsbroyPEjTZx8LYGTUQFtiKKyYLxwhUTYm1LuTZKYWYn1teZ1Y3rBpxNj4mmfgJ9Gmn9Vm_CQctSYlaQBPg4A7bPZLeXKz35MOOCFCU7TLkf7i-LYT9CP-gm9RHq2rQQxl5TkZCK4mQW6P3juv6TH5qXEtScYGPo-wiVtn7uQyrT15pgPY2K3ulpVPQ0KnoelSSlz6QP9BdFX2YRpM4ePESdMqC14HwEO6Sv9y_J_wFGH9cs
CitedBy_id crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1103_PhysRevApplied_17_034077
crossref_primary_10_3390_nano15030213
crossref_primary_10_1109_TCAD_2023_3285410
crossref_primary_10_3390_math13111866
crossref_primary_10_1146_annurev_conmatphys_040821_113439
crossref_primary_10_3389_fnins_2022_736642
crossref_primary_10_1038_s41467_023_43887_8
crossref_primary_10_1038_s41586_021_04223_6
crossref_primary_10_1103_PhysRevApplied_18_014040
crossref_primary_10_1016_j_neucom_2022_10_068
crossref_primary_10_1038_s41467_025_57043_x
crossref_primary_10_1103_PhysRevX_13_031020
crossref_primary_10_1103_smt9_1t1l
crossref_primary_10_3390_mi14071367
crossref_primary_10_1103_PhysRevResearch_4_L022037
crossref_primary_10_1038_s41467_025_61665_6
crossref_primary_10_1088_2399_1984_ad299a
crossref_primary_10_3389_fncom_2023_1114651
crossref_primary_10_1038_s41567_024_02534_9
crossref_primary_10_1038_s41467_024_46879_4
crossref_primary_10_1088_2634_4386_acdf17
crossref_primary_10_1088_2634_4386_ad752b
crossref_primary_10_1088_2634_4386_ad8c78
crossref_primary_10_1002_adma_202203352
crossref_primary_10_1007_s40509_024_00351_6
crossref_primary_10_1088_2634_4386_ad3a95
crossref_primary_10_1103_PhysRevApplied_22_024053
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_1016_j_neunet_2023_01_026
Cites_doi 10.3389/fnins.2015.00141
10.3389/fnins.2021.633674
10.3389/fnins.2020.00424
10.3389/fnins.2017.00324
10.1016/j.patcog.2019.04.016
10.1038/s41578-019-0159-3
10.1038/s41928-020-0435-7
10.1038/ncomms12611
10.1162/NECO_a_00934
10.3389/fnins.2018.00774
10.1021/nl904092h
10.1016/j.neunet.2012.02.022
10.1038/s41586-019-1157-8
10.1142/S0129065720500276
10.3389/fnins.2011.00026
10.1038/s41467-018-07757-y
10.7554/eLife.54940
10.3389/fnins.2020.00240
10.1038/s41598-017-05480-0
10.1109/JPROC.2014.2304638
10.1146/annurev.neuro.24.1.139
10.1126/science.1254642
10.3389/fnins.2018.00991
10.3390/ma13010166
10.3389/fncom.2017.00024
10.1038/381526a0
10.1016/j.neucom.2018.11.014
10.1109/MSP.2019.2931595
10.1038/s41593-019-0520-2
10.1109/JSSC.2019.2942367
10.3389/fnins.2016.00508
10.1109/MM.2018.112130359
10.1063/1.4921745
10.1371/journal.pcbi.0030031
10.1038/s41467-020-17236-y
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
Attribution - NonCommercial
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: Attribution - NonCommercial
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.isci.2021.102222
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Physics
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_15fecf18376346d68c50bc97ba8803cd
PMC7970361
oai:HAL:hal-03451693v1
33748709
10_1016_j_isci_2021_102222
S2589004221001905
Genre Journal Article
GroupedDBID 0R~
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c555t-3e4b3722cafd38755848f90cc76c52908d5dd405ec483f4a7ac1d1c438c5010d3
IEDL.DBID DOA
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631646000072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:51:26 EDT 2025
Tue Sep 30 16:50:37 EDT 2025
Tue Oct 14 20:23:05 EDT 2025
Fri Jul 11 08:52:49 EDT 2025
Thu Jan 02 22:36:57 EST 2025
Tue Nov 18 22:45:15 EST 2025
Sat Nov 29 02:13:31 EST 2025
Sat Nov 16 15:58:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Artificial Intelligence
Algorithms
Computer Science
Language English
License This is an open access article under the CC BY license.
2021 The Authors.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c555t-3e4b3722cafd38755848f90cc76c52908d5dd405ec483f4a7ac1d1c438c5010d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7970361
ORCID 0000-0003-4866-4490
OpenAccessLink https://doaj.org/article/15fecf18376346d68c50bc97ba8803cd
PMID 33748709
PQID 2503682050
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_15fecf18376346d68c50bc97ba8803cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7970361
hal_primary_oai_HAL_hal_03451693v1
proquest_miscellaneous_2503682050
pubmed_primary_33748709
crossref_citationtrail_10_1016_j_isci_2021_102222
crossref_primary_10_1016_j_isci_2021_102222
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102222
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Tavanaei, Maida (bib54) 2019; 330
Milo, Malavena, Monzio Compagnoni, Ielmini (bib32) 2020; 13
Thiele, Bichler, Dupret (bib56) 2019
Ishii, Kim, Lewis, Okazaki, Okazawa, Ito, Rasch, Kim, Nomura, Shin (bib16) 2019
Ernoult, Grollier, Querlioz, Bengio, Scellier (bib6) 2019
Ernoult, Grollier, Querlioz, Bengio, Scellier (bib7) 2020
Zoppo, Marrone, Corinto (bib61) 2020; 14
Schemmel, Brüderle, Grübl, Hock, Meier, Millner (bib51) 2010
Laborieux, Ernoult, Scellier, Bengio, Grollier, Querlioz (bib23) 2021; 15
Qiao, Mostafa, Corradi, Osswald, Stefanini, Sumislawska, Indiveri (bib45) 2015; 9
Zhang, Gao, Tang, Yao, Yu, Chang, Yoo, Qian, Wu (bib60) 2020; 3
Bellec, Scherr, Subramoney, Hajek, Salaj, Legenstein, Maass (bib1) 2020; 11
Neftci, Mostafa, Zenke (bib36) 2019; 36
Kheradpisheh, Masquelier (bib21) 2020; 30
Prezioso, Mahmoodi, Merrikh Bayat, Nili, Kim, Vincent, Strukov (bib44) 2018; 9
Wang, Wu, Burr, Hwang, Wang, Xia, Yang (bib58) 2020; 5
Pfeiffer, Pfeil (bib43) 2018; 12
Bengio, Mesnard, Fischer, Zhang, Wu (bib2) 2017; 29
Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan, Jackson, Imam, Guo, Nakamura (bib30) 2014; 345
Kaiser, Mostafa, Neftci (bib19) 2020; 14
Richards, Lillicrap, Beaudoin, Bengio, Bogacz, Christensen, Clopath, Ponte Costa, de Berker, Ganguli (bib47) 2019; 22
Huh, Sejnowski (bib15) 2018
Sebastian, Le Gallo, Khaddam-Aljameh, Eleftheriou (bib52) 2020; 15
Davies, Srinivasa, Lin, Chinya, Cao, Choday, Dimou, Joshi, Imam, Jain (bib5) 2018; 38
Gerstner (bib12) 2014
Sacramento, Ponte Costa, Bengio, Senn (bib48) 2018; 31
Hirtzlin, Bocquet, Ernoult, Klein, Nowak, Vianello, Portal, Querlioz (bib13) 2019
Kendall, Pantone, Manickavasagam, Bengio, Scellier (bib20) 2020
(bib29) 1989
O’Connor, Welling (bib38) 2016
Thakur, Lottier Molin, Cauwenberghs, Indiveri, Kumar, Qiao, Schemmel, Wang, Chicca, Hasler (bib55) 2018; 12
Zamarreño-Ramos, Camuñas-Mesa, Pérez-Carrasco, Masquelier, Serrano-Gotarredona, Linares-Barranco (bib26) 2011; 5
Bi, Poo (bib3) 2001; 24
Joseph, V. and Nagarajan, C. (2020 )MADONNA: A Framework for Energy Measurements and Assistance in Designing Low Power Deep Neural Networks. p. 7.
Li, Liu, Nandi, Venkatachalam, Elliman (bib25) 2015; 106
Furber, Galluppi, Temple, Plana (bib11) 2014; 102
Neftci, Augustine, Paul, Detorakis (bib35) 2017; 11
Rastegari, Ordonez, Redmon, Farhadi (bib46) 2016
Scellier, Bengio (bib50) 2017; 11
Masquelier, Thorpe (bib28) 2007; 3
Mostafa (bib33) 2018; 29
Hubara, Courbariaux, Soudry, El-Yaniv, Bengio (bib14) 2016
Navarro, Salari, Lin, Cowan, Penington, Milescu, Milescu (bib34) 2020; 9
Park, Lee, Jeon (bib39) 2020; 55
Payeur, Guerguiev, Zenke, Richards, Naud (bib40) 2020
Lee, Delbruck, Pfeiffer (bib24) 2016; 10
Xi, Gao, Tang, Chen, Chang, Hu, Van Der Spiegel, Qian, Wu (bib59) 2020; 109
Feldmann, Youngblood, Wright, Bhaskaran, Pernice (bib9) 2019; 569
Marković, Mizrahi, Querlioz, Grollier (bib27) 2020
Jo, Chang, Ebong, Bhadviya, Mazumder, Lu (bib17) 2010; 10
Scellier, Goyal, Binas, Mesnard, Bengio (bib49) 2018
Wan, Kubendran, Burc Eryilmaz, Zhang, Liao, Wu, Deiss, Gao, Raina, Joshi (bib57) 2020
Payvand, Fouda, Kurdahi, Eltawil, Neftci (bib41) 2020
O’Connor, Gavves, Welling (bib37) 2019
Falez, Tirilly, Bilasco, Devienne, Boulet (bib8) 2019; 93
Kirkwood, Rioult, Bear (bib22) 1996; 381
Mesnard, Gerstner, Brea (bib31) 2016
Frenkel, Lefebvre, Legat, Bol (bib10) 2019; 13
Pedretti, Milo, Ambrogio, Carboni, Bianchi, Calderoni, Ramaswamy, Spinelli, Ielmini (bib42) 2017; 7
Bichler, Querlioz, Thorpe, Bourgoin, Gamrat (bib4) 2012; 32
Serb, Bill, Khiat, Berdan, Legenstein, Prodromakis (bib53) 2016; 7
Ernoult (10.1016/j.isci.2021.102222_bib7) 2020
Pfeiffer (10.1016/j.isci.2021.102222_bib43) 2018; 12
Wan (10.1016/j.isci.2021.102222_bib57) 2020
Frenkel (10.1016/j.isci.2021.102222_bib10) 2019; 13
Feldmann (10.1016/j.isci.2021.102222_bib9) 2019; 569
Bellec (10.1016/j.isci.2021.102222_bib1) 2020; 11
Serb (10.1016/j.isci.2021.102222_bib53) 2016; 7
Neftci (10.1016/j.isci.2021.102222_bib36) 2019; 36
Masquelier (10.1016/j.isci.2021.102222_bib28) 2007; 3
Zamarreño-Ramos (10.1016/j.isci.2021.102222_bib26) 2011; 5
Scellier (10.1016/j.isci.2021.102222_bib49) 2018
Falez (10.1016/j.isci.2021.102222_bib8) 2019; 93
Davies (10.1016/j.isci.2021.102222_bib5) 2018; 38
Huh (10.1016/j.isci.2021.102222_bib15) 2018
Zhang (10.1016/j.isci.2021.102222_bib60) 2020; 3
Neftci (10.1016/j.isci.2021.102222_bib35) 2017; 11
Hirtzlin (10.1016/j.isci.2021.102222_bib13) 2019
Kheradpisheh (10.1016/j.isci.2021.102222_bib21) 2020; 30
O’Connor (10.1016/j.isci.2021.102222_bib38) 2016
Marković (10.1016/j.isci.2021.102222_bib27) 2020
Bengio (10.1016/j.isci.2021.102222_bib2) 2017; 29
Bichler (10.1016/j.isci.2021.102222_bib4) 2012; 32
Laborieux (10.1016/j.isci.2021.102222_bib23) 2021; 15
Schemmel (10.1016/j.isci.2021.102222_bib51) 2010
Navarro (10.1016/j.isci.2021.102222_bib34) 2020; 9
Thiele (10.1016/j.isci.2021.102222_bib56) 2019
Wang (10.1016/j.isci.2021.102222_bib58) 2020; 5
Ernoult (10.1016/j.isci.2021.102222_bib6) 2019
(10.1016/j.isci.2021.102222_bib29) 1989
Merolla (10.1016/j.isci.2021.102222_bib30) 2014; 345
Ishii (10.1016/j.isci.2021.102222_bib16) 2019
Milo (10.1016/j.isci.2021.102222_bib32) 2020; 13
Kendall (10.1016/j.isci.2021.102222_bib20) 2020
Jo (10.1016/j.isci.2021.102222_bib17) 2010; 10
Zoppo (10.1016/j.isci.2021.102222_bib61) 2020; 14
Rastegari (10.1016/j.isci.2021.102222_bib46) 2016
Kaiser (10.1016/j.isci.2021.102222_bib19) 2020; 14
Mesnard (10.1016/j.isci.2021.102222_bib31) 2016
Park (10.1016/j.isci.2021.102222_bib39) 2020; 55
Scellier (10.1016/j.isci.2021.102222_bib50) 2017; 11
Lee (10.1016/j.isci.2021.102222_bib24) 2016; 10
O’Connor (10.1016/j.isci.2021.102222_bib37) 2019
Furber (10.1016/j.isci.2021.102222_bib11) 2014; 102
Sebastian (10.1016/j.isci.2021.102222_bib52) 2020; 15
Hubara (10.1016/j.isci.2021.102222_bib14) 2016
Sacramento (10.1016/j.isci.2021.102222_bib48) 2018; 31
10.1016/j.isci.2021.102222_bib18
Thakur (10.1016/j.isci.2021.102222_bib55) 2018; 12
Gerstner (10.1016/j.isci.2021.102222_bib12) 2014
Qiao (10.1016/j.isci.2021.102222_bib45) 2015; 9
Prezioso (10.1016/j.isci.2021.102222_bib44) 2018; 9
Bi (10.1016/j.isci.2021.102222_bib3) 2001; 24
Pedretti (10.1016/j.isci.2021.102222_bib42) 2017; 7
Xi (10.1016/j.isci.2021.102222_bib59) 2020; 109
Payvand (10.1016/j.isci.2021.102222_bib41) 2020
Kirkwood (10.1016/j.isci.2021.102222_bib22) 1996; 381
Mostafa (10.1016/j.isci.2021.102222_bib33) 2018; 29
Richards (10.1016/j.isci.2021.102222_bib47) 2019; 22
Li (10.1016/j.isci.2021.102222_bib25) 2015; 106
Tavanaei (10.1016/j.isci.2021.102222_bib54) 2019; 330
Payeur (10.1016/j.isci.2021.102222_bib40) 2020
References_xml – volume: 10
  start-page: 508
  year: 2016
  ident: bib24
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Front. Neurosci.
– volume: 15
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib52
  article-title: Memory devices and applications for in-memory computing
  publication-title: Nat. Nanotechnology
– volume: 330
  start-page: 39
  year: 2019
  end-page: 47
  ident: bib54
  article-title: BP-STDP: approximating backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
– start-page: 14.2.1
  year: 2019
  end-page: 14.2.4
  ident: bib16
  article-title: On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF neurons for spiking RBM
  publication-title: 2019 IEEE International Electron Devices Meeting (IEDM)
– volume: 14
  start-page: 424
  year: 2020
  ident: bib19
  article-title: Synaptic plasticity dynamics for deep continuous local learning (DECOLLE)
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 173
  year: 2020
  end-page: 195
  ident: bib58
  article-title: Resistive switching materials for information processing
  publication-title: Nat. Rev. Mater.
– volume: 569
  start-page: 208
  year: 2019
  end-page: 214
  ident: bib9
  article-title: All-optical spiking neurosynaptic networks with self-learning capabilities
  publication-title: Nature
– start-page: 7081
  year: 2019
  end-page: 7091
  ident: bib6
  article-title: Updates of equilibrium prop match gradients of backprop through time in an RNN with static input
  publication-title: Advances in Neural Information Processing Systems 32
– year: 2016
  ident: bib38
  article-title: Deep spiking networks
  publication-title: arXiv
– volume: 15
  start-page: 129
  year: 2021
  ident: bib23
  article-title: Scaling equilibrium propagation to deep ConvNets by drastically reducing its gradient estimator bias
  publication-title: Frontiers in Neuroscience
– volume: 13
  start-page: 145
  year: 2019
  end-page: 158
  ident: bib10
  article-title: A 0.086-mm
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 55
  start-page: 108
  year: 2020
  end-page: 119
  ident: bib39
  article-title: A 65-nm neuromorphic image classification processor with energy-efficient training through direct spike-only feedback
  publication-title: IEEE J. Solid-State Circuits
– start-page: 4107
  year: 2016
  end-page: 4115
  ident: bib14
  article-title: Binarized neural networks
  publication-title: Advances in Neural Information Processing Systems 29
– volume: 30
  start-page: 2050027
  year: 2020
  ident: bib21
  article-title: Temporal backpropagation for spiking neural networks with one spike per neuron
  publication-title: Int. J. Neural Syst.
– year: 1989
  ident: bib29
  publication-title: Analog VLSI Implementation of Neural Systems
– year: 2014
  ident: bib12
  article-title: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition
– year: 2020
  ident: bib7
  article-title: Equilibrium Propagation with Continual Weight Updates
  publication-title: arXiv
– volume: 31
  start-page: 8721
  year: 2018
  end-page: 8732
  ident: bib48
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 555
  year: 2017
  end-page: 577
  ident: bib2
  article-title: STDP-compatible approximation of backpropagation in an energy-based model
  publication-title: Neural Comput.
– start-page: 22.6.1
  year: 2019
  end-page: 22.6.4
  ident: bib13
  article-title: Hybrid analog-digital learning with differential RRAM synapses
  publication-title: 2019 IEEE International Electron Devices Meeting (IEDM). 2019 IEEE International Electron Devices Meeting (IEDM)
– volume: 12
  start-page: 991
  year: 2018
  ident: bib55
  article-title: Large-scale neuromorphic spiking array processors: a quest to mimic the brain
  publication-title: Front. Neurosci.
– volume: 106
  start-page: 212902
  year: 2015
  ident: bib25
  article-title: High-endurance megahertz electrical self-oscillation in Ti/NbOx bilayer structures
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: e54940
  year: 2020
  ident: bib34
  article-title: Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing
  publication-title: eLife
– year: 2018
  ident: bib49
  article-title: Generalization of Equilibrium Propagation to Vector Field Dynamics
  publication-title: arXiv
– volume: 3
  start-page: 371
  year: 2020
  end-page: 382
  ident: bib60
  article-title: Neuro-inspired computing chips
  publication-title: Nat. Electronics
– start-page: 1947
  year: 2010
  end-page: 1950
  ident: bib51
  article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling
  publication-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems
– volume: 36
  start-page: 51
  year: 2019
  end-page: 63
  ident: bib36
  article-title: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag.
– volume: 13
  start-page: 166
  year: 2020
  ident: bib32
  article-title: Memristive and CMOS devices for neuromorphic computing
  publication-title: Materials
– year: 2016
  ident: bib31
  article-title: Towards deep learning with spiking neurons in energy based models with contrastive Hebbian plasticity
  publication-title: arXiv
– volume: 9
  start-page: 141
  year: 2015
  ident: bib45
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 5288
  year: 2017
  ident: bib42
  article-title: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
  publication-title: Sci. Rep.
– year: 2019
  ident: bib56
  article-title: SpikeGrad: an ANN-equivalent computation model for implementing backpropagation with spikes
  publication-title: arXiv
– volume: 24
  start-page: 139
  year: 2001
  end-page: 166
  ident: bib3
  article-title: Synaptic modification by correlated activity: hebb’s postulate revisited
  publication-title: Annu. Rev. Neurosci.
– volume: 32
  start-page: 339
  year: 2012
  end-page: 348
  ident: bib4
  article-title: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
  publication-title: Neural Networks
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib27
  article-title: Physics for neuromorphic computing
  publication-title: Nat. Rev. Phys.
– volume: 11
  start-page: 24
  year: 2017
  ident: bib50
  article-title: Equilibrium propagation: bridging the gap between energy-based models and backpropagation
  publication-title: Front. Comput. Neurosci.
– volume: 10
  start-page: 1297
  year: 2010
  end-page: 1301
  ident: bib17
  article-title: Nanoscale memristor device as synapse in neuromorphic systems
  publication-title: Nano Lett.
– volume: 381
  start-page: 526
  year: 1996
  end-page: 528
  ident: bib22
  article-title: Experience-dependent modification of synaptic plasticity in visual cortex
  publication-title: Nature
– volume: 7
  year: 2016
  ident: bib53
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Nat. Commun.
– volume: 93
  start-page: 418
  year: 2019
  end-page: 429
  ident: bib8
  article-title: Unsupervised visual feature learning with spike-timing-dependent plasticity: how far are we from traditional feature learning approaches?
  publication-title: Pattern Recognit.
– year: 2020
  ident: bib40
  article-title: Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits
  publication-title: bioRxiv
– start-page: 1516
  year: 2019
  end-page: 1523
  ident: bib37
  article-title: Training a spiking neural network with equilibrium propagation
  publication-title: The 22nd International Conference on Artificial Intelligence and Statistics. The 22nd International Conference on Artificial Intelligence and Statistics
– volume: 3
  start-page: e31
  year: 2007
  ident: bib28
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLoS Comput. Biol.
– volume: 9
  start-page: 5311
  year: 2018
  ident: bib44
  article-title: Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1621
  year: 2017
  end-page: 1671
  ident: bib35
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 3625
  year: 2020
  ident: bib1
  article-title: A solution to the learning dilemma for recurrent networks of spiking neurons
  publication-title: Nat. Commun.
– year: 2020
  ident: bib20
  article-title: Training end-to-end analog neural networks with equilibrium propagation
  publication-title: arXiv
– volume: 29
  start-page: 3227
  year: 2018
  end-page: 3235
  ident: bib33
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 102
  start-page: 652
  year: 2014
  end-page: 665
  ident: bib11
  article-title: The SpiNNaker project
  publication-title: Proc. IEEE
– volume: 22
  start-page: 1761
  year: 2019
  end-page: 1770
  ident: bib47
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
– volume: 38
  start-page: 82
  year: 2018
  end-page: 99
  ident: bib5
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
– start-page: 1433
  year: 2018
  end-page: 1443
  ident: bib15
  article-title: Gradient descent for spiking neural networks
  publication-title: Advances in Neural Information Processing Systems 31
– start-page: 525
  year: 2016
  end-page: 542
  ident: bib46
  article-title: XNOR-net: ImageNet classification using binary convolutional neural networks
  publication-title: Computer Vision – ECCV 2016
– start-page: 498
  year: 2020
  end-page: 500
  ident: bib57
  article-title: 33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models
  publication-title: 2020 IEEE International Solid- State Circuits Conference - (ISSCC). 2020
– volume: 14
  start-page: 240
  year: 2020
  ident: bib61
  article-title: Equilibrium propagation for memristor-based recurrent neural networks
  publication-title: Front. Neurosci.
– volume: 5
  start-page: 26
  year: 2011
  ident: bib26
  article-title: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex
  publication-title: Front. Neurosci.
– start-page: 218
  year: 2020
  end-page: 222
  ident: bib41
  article-title: Error-triggered three-factor learning dynamics for crossbar arrays
  publication-title: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
– volume: 12
  start-page: 126
  year: 2018
  ident: bib43
  article-title: Deep learning with spiking neurons: opportunities and challenges
  publication-title: Front. Neurosci.
– reference: Joseph, V. and Nagarajan, C. (2020 )MADONNA: A Framework for Energy Measurements and Assistance in Designing Low Power Deep Neural Networks. p. 7.
– volume: 109
  start-page: 1
  year: 2020
  end-page: 29
  ident: bib59
  article-title: In-memory learning with analog resistive switching memory: a review and perspective
  publication-title: Proc. IEEE
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: bib30
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– year: 2016
  ident: 10.1016/j.isci.2021.102222_bib31
  article-title: Towards deep learning with spiking neurons in energy based models with contrastive Hebbian plasticity
  publication-title: arXiv
– volume: 9
  start-page: 141
  year: 2015
  ident: 10.1016/j.isci.2021.102222_bib45
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00141
– start-page: 14.2.1
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib16
  article-title: On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF neurons for spiking RBM
– volume: 15
  start-page: 129
  year: 2021
  ident: 10.1016/j.isci.2021.102222_bib23
  article-title: Scaling equilibrium propagation to deep ConvNets by drastically reducing its gradient estimator bias
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.633674
– ident: 10.1016/j.isci.2021.102222_bib18
– volume: 14
  start-page: 424
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib19
  article-title: Synaptic plasticity dynamics for deep continuous local learning (DECOLLE)
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00424
– volume: 11
  start-page: 1621
  year: 2017
  ident: 10.1016/j.isci.2021.102222_bib35
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00324
– volume: 93
  start-page: 418
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib8
  article-title: Unsupervised visual feature learning with spike-timing-dependent plasticity: how far are we from traditional feature learning approaches?
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.016
– volume: 5
  start-page: 173
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib58
  article-title: Resistive switching materials for information processing
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0159-3
– year: 2018
  ident: 10.1016/j.isci.2021.102222_bib49
  article-title: Generalization of Equilibrium Propagation to Vector Field Dynamics
  publication-title: arXiv
– volume: 3
  start-page: 371
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib60
  article-title: Neuro-inspired computing chips
  publication-title: Nat. Electronics
  doi: 10.1038/s41928-020-0435-7
– start-page: 525
  year: 2016
  ident: 10.1016/j.isci.2021.102222_bib46
  article-title: XNOR-net: ImageNet classification using binary convolutional neural networks
– volume: 7
  year: 2016
  ident: 10.1016/j.isci.2021.102222_bib53
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12611
– volume: 109
  start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib59
  article-title: In-memory learning with analog resistive switching memory: a review and perspective
  publication-title: Proc. IEEE
– volume: 29
  start-page: 555
  year: 2017
  ident: 10.1016/j.isci.2021.102222_bib2
  article-title: STDP-compatible approximation of backpropagation in an energy-based model
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00934
– start-page: 1947
  year: 2010
  ident: 10.1016/j.isci.2021.102222_bib51
  article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling
– volume: 12
  start-page: 126
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib43
  article-title: Deep learning with spiking neurons: opportunities and challenges
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00774
– volume: 10
  start-page: 1297
  year: 2010
  ident: 10.1016/j.isci.2021.102222_bib17
  article-title: Nanoscale memristor device as synapse in neuromorphic systems
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– volume: 32
  start-page: 339
  year: 2012
  ident: 10.1016/j.isci.2021.102222_bib4
  article-title: Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.022
– volume: 569
  start-page: 208
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib9
  article-title: All-optical spiking neurosynaptic networks with self-learning capabilities
  publication-title: Nature
  doi: 10.1038/s41586-019-1157-8
– start-page: 1516
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib37
  article-title: Training a spiking neural network with equilibrium propagation
– volume: 30
  start-page: 2050027
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib21
  article-title: Temporal backpropagation for spiking neural networks with one spike per neuron
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065720500276
– volume: 5
  start-page: 26
  year: 2011
  ident: 10.1016/j.isci.2021.102222_bib26
  article-title: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00026
– volume: 9
  start-page: 5311
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib44
  article-title: Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07757-y
– volume: 9
  start-page: e54940
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib34
  article-title: Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing
  publication-title: eLife
  doi: 10.7554/eLife.54940
– volume: 31
  start-page: 8721
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib48
  article-title: Dendritic cortical microcircuits approximate the backpropagation algorithm
– start-page: 218
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib41
  article-title: Error-triggered three-factor learning dynamics for crossbar arrays
– start-page: 498
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib57
  article-title: 33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models
– start-page: 22.6.1
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib13
  article-title: Hybrid analog-digital learning with differential RRAM synapses
– start-page: 4107
  year: 2016
  ident: 10.1016/j.isci.2021.102222_bib14
  article-title: Binarized neural networks
– volume: 14
  start-page: 240
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib61
  article-title: Equilibrium propagation for memristor-based recurrent neural networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00240
– volume: 7
  start-page: 5288
  year: 2017
  ident: 10.1016/j.isci.2021.102222_bib42
  article-title: Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05480-0
– year: 2019
  ident: 10.1016/j.isci.2021.102222_bib56
  article-title: SpikeGrad: an ANN-equivalent computation model for implementing backpropagation with spikes
  publication-title: arXiv
– volume: 102
  start-page: 652
  year: 2014
  ident: 10.1016/j.isci.2021.102222_bib11
  article-title: The SpiNNaker project
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2304638
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib27
  article-title: Physics for neuromorphic computing
  publication-title: Nat. Rev. Phys.
– volume: 24
  start-page: 139
  year: 2001
  ident: 10.1016/j.isci.2021.102222_bib3
  article-title: Synaptic modification by correlated activity: hebb’s postulate revisited
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.139
– year: 2016
  ident: 10.1016/j.isci.2021.102222_bib38
  article-title: Deep spiking networks
  publication-title: arXiv
– volume: 345
  start-page: 668
  year: 2014
  ident: 10.1016/j.isci.2021.102222_bib30
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 29
  start-page: 3227
  issue: 7
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib33
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– year: 2020
  ident: 10.1016/j.isci.2021.102222_bib7
  article-title: Equilibrium Propagation with Continual Weight Updates
  publication-title: arXiv
– volume: 12
  start-page: 991
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib55
  article-title: Large-scale neuromorphic spiking array processors: a quest to mimic the brain
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00991
– volume: 13
  start-page: 166
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib32
  article-title: Memristive and CMOS devices for neuromorphic computing
  publication-title: Materials
  doi: 10.3390/ma13010166
– volume: 11
  start-page: 24
  year: 2017
  ident: 10.1016/j.isci.2021.102222_bib50
  article-title: Equilibrium propagation: bridging the gap between energy-based models and backpropagation
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00024
– start-page: 7081
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib6
  article-title: Updates of equilibrium prop match gradients of backprop through time in an RNN with static input
– year: 2020
  ident: 10.1016/j.isci.2021.102222_bib40
  article-title: Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits
  publication-title: bioRxiv
– volume: 13
  start-page: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib10
  article-title: A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– start-page: 1433
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib15
  article-title: Gradient descent for spiking neural networks
– volume: 381
  start-page: 526
  year: 1996
  ident: 10.1016/j.isci.2021.102222_bib22
  article-title: Experience-dependent modification of synaptic plasticity in visual cortex
  publication-title: Nature
  doi: 10.1038/381526a0
– volume: 330
  start-page: 39
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib54
  article-title: BP-STDP: approximating backpropagation using spike timing dependent plasticity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.014
– volume: 36
  start-page: 51
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib36
  article-title: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2931595
– volume: 22
  start-page: 1761
  year: 2019
  ident: 10.1016/j.isci.2021.102222_bib47
  article-title: A deep learning framework for neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0520-2
– year: 2020
  ident: 10.1016/j.isci.2021.102222_bib20
  article-title: Training end-to-end analog neural networks with equilibrium propagation
  publication-title: arXiv
– volume: 55
  start-page: 108
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib39
  article-title: A 65-nm neuromorphic image classification processor with energy-efficient training through direct spike-only feedback
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2019.2942367
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib52
  article-title: Memory devices and applications for in-memory computing
  publication-title: Nat. Nanotechnology
– year: 2014
  ident: 10.1016/j.isci.2021.102222_bib12
– year: 1989
  ident: 10.1016/j.isci.2021.102222_bib29
– volume: 10
  start-page: 508
  year: 2016
  ident: 10.1016/j.isci.2021.102222_bib24
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00508
– volume: 38
  start-page: 82
  year: 2018
  ident: 10.1016/j.isci.2021.102222_bib5
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– volume: 106
  start-page: 212902
  year: 2015
  ident: 10.1016/j.isci.2021.102222_bib25
  article-title: High-endurance megahertz electrical self-oscillation in Ti/NbOx bilayer structures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921745
– volume: 3
  start-page: e31
  year: 2007
  ident: 10.1016/j.isci.2021.102222_bib28
  article-title: Unsupervised learning of visual features through spike timing dependent plasticity
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030031
– volume: 11
  start-page: 3625
  year: 2020
  ident: 10.1016/j.isci.2021.102222_bib1
  article-title: A solution to the learning dilemma for recurrent networks of spiking neurons
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17236-y
SSID ssj0002002496
Score 2.4311783
Snippet Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102222
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Physics
Title EqSpike: Spike-driven equilibrium propagation for neuromorphic implementations
URI https://dx.doi.org/10.1016/j.isci.2021.102222
https://www.ncbi.nlm.nih.gov/pubmed/33748709
https://www.proquest.com/docview/2503682050
https://hal.science/hal-03451693
https://pubmed.ncbi.nlm.nih.gov/PMC7970361
https://doaj.org/article/15fecf18376346d68c50bc97ba8803cd
Volume 24
WOSCitedRecordID wos000631646000072&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVoxYIN70cKVAGxQwE7tuOYXUGtukAjJECaneVX1BQm005n-v2910lGE5DKhlUk52HF99g-Vzk5l5B3WMxdhVoX1leuEM7HwgKzKGjjBNMK0jHZF5tQs1k9n-tvO6W-UBPW2wP3A_eRySb6BoAHE0FUoaq9pM5r5Swgj_uAqy9VeieZOk-f19AKL1WWk6gJAmgOf8z04i784xWSw5J9SBlPOdmVknn_ZHPaO0OV5N8U9E8l5c7WdPKQ3B84ZX7Uv8sjcid2j8mDsV5DPkzfJ2R2fPn9ov0VP-XpUIQVLnV5vNy0Sfm_WeTQN6wwKVo50Nk82V0ulhCM1uftYhSbJ7A-JT9Pjn98OS2GegqFl1KuCx6F46osvW0ChzwFuEfdaOq9qrwsNa2DDAEIXPSi5o2wynoWmBccx5zRwJ-R_W7ZxRckr2xTKeUaSNa4cI7ZykoNTUK7mnvaZISN42n8YDaONS9-m1FVdm4wBgZjYPoYZOT99p6L3mrj1qs_Y5i2V6JNdmoA8JgBPOZf4MmIHINsBsbRMwl4VHtr528BEZO-T4--GmyjHEsfa37NMvJmBIyBOYsfYmwXl5srA7STV0C9JM3I8x5A22dx9ANSVGdETaA16Wx6pmvPki-40uimxg7-x8i8JPfwfVFtx_Qrsr9ebeJrctdfr9ur1SHZU_P6ME25G_rnLY8
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EqSpike%3A+spike-driven+equilibrium+propagation+for+neuromorphic+implementations&rft.jtitle=iScience&rft.au=Martin%2C+Erwann&rft.au=Ernoult%2C+Maxence&rft.au=Laydevant%2C+J%C3%A9r%C3%A9mie&rft.au=Li%2C+Shuai&rft.date=2021-03-19&rft.eissn=2589-0042&rft.volume=24&rft.issue=3&rft.spage=102222&rft_id=info:doi/10.1016%2Fj.isci.2021.102222&rft_id=info%3Apmid%2F33748709&rft.externalDocID=33748709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon