iSanXoT: A standalone application for the integrative analysis of mass spectrometry-based quantitative proteomics data
Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes re...
Saved in:
| Published in: | Computational and structural biotechnology journal Vol. 23; pp. 452 - 459 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.12.2024
Research Network of Computational and Structural Biotechnology Elsevier |
| Subjects: | |
| ISSN: | 2001-0370, 2001-0370 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases.
[Display omitted] |
|---|---|
| AbstractList | Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases. Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases. ga1 Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases. [Display omitted] Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases.Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to derive absolute quantitative protein values from mass spectrometry (MS) data. Here, we present iSanXoT, a standalone application that processes relative abundances between MS signals and then integrates them sequentially to upper levels using the previously published Generic Integration Algorithm (GIA). iSanXoT offers unique capabilities that complement conventional quantitative software applications, including statistical weighting and independent modeling of error distributions in each integration, aggregation of technical or biological replicates, quantification of posttranslational modifications, and analysis of coordinated protein behavior. iSanXoT is a standalone, user-friendly application that accepts output from popular proteomics pipelines and enables unrestricted creation of quantification workflows and fully customizable reports that can be reused across projects or shared among users. Numerous publications attest the successful application of diverse integrative workflows constructed using the GIA for the analysis of high-throughput quantitative proteomics experiments. iSanXoT has been tested with the main operating systems. Download links for the corresponding distributions are available at https://github.com/CNIC-Proteomics/iSanXoT/releases. |
| Author | Vázquez, Jesús Barrero-Rodríguez, Rafael Martinez-Val, Ana Camafeita, Emilio Núñez, Estefanía López, Juan A. Devesa, Cristina A. Laguillo, Andrea Magni, Ricardo Rodríguez, Jose Manuel Jorge, Inmaculada |
| Author_xml | – sequence: 1 givenname: Jose Manuel surname: Rodríguez fullname: Rodríguez, Jose Manuel organization: Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain – sequence: 2 givenname: Inmaculada surname: Jorge fullname: Jorge, Inmaculada organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 3 givenname: Ana surname: Martinez-Val fullname: Martinez-Val, Ana organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 4 givenname: Rafael surname: Barrero-Rodríguez fullname: Barrero-Rodríguez, Rafael organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 5 givenname: Ricardo surname: Magni fullname: Magni, Ricardo organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 6 givenname: Estefanía surname: Núñez fullname: Núñez, Estefanía organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 7 givenname: Andrea orcidid: 0000-0001-6390-6967 surname: Laguillo fullname: Laguillo, Andrea organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 8 givenname: Cristina A. surname: Devesa fullname: Devesa, Cristina A. organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain – sequence: 9 givenname: Juan A. surname: López fullname: López, Juan A. organization: Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain – sequence: 10 givenname: Emilio orcidid: 0000-0002-4577-5331 surname: Camafeita fullname: Camafeita, Emilio email: ecamafeita@cnic.es organization: Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain – sequence: 11 givenname: Jesús orcidid: 0000-0003-1461-5092 surname: Vázquez fullname: Vázquez, Jesús email: jvazquez@cnic.es organization: Laboratory of Cardiovascular Proteomics. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38235360$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUstqHDEQHIJD7Dj-gRyCjrnMRo95aEIgGJOHwZBDHMhN9Eg9aw0z0ljSLuzfR-u1g52Do4tEd1epqK7XxZHzDoviLaMrRlnzYVzp2I8rTrlYMb6ionpRnHBKWUlFS48evY-LsxhHmo9kTSfoq-JYSC5q0dCTYmt_gvvtrz-ScxITOANT_ofAskxWQ7LekcEHkm6QWJdwHXJtm_sOpl20kfiBzBAjiQvqFPyMKezKHiIacrsBl2w6AJbgE_rZ6kgMJHhTvBxginh2f58Wv75-ub74Xl79-HZ5cX5V6rquU8mgq3RleD-A1G0z8KHldd9qgxKElGCq1mQ3OlabQQy80Y3AThjGWhQw9ChOi8sDr_EwqiXYGcJOebDqruDDWkFIVk-oWN9L2TFZacErKvvsVFVxip1kmL3ac30-cC2bfkaj0aUA0xPSpx1nb9TabxWjbccbLjLD-3uG4G83GJOabdQ4TeDQb6ISrBasbUTezf9GeceairZC8Dz67rGuv4IelpwH5GFABx9jwEHpu7X4vUw7ZX1qHyk1qn2k1D5SinGVI5Wh_B_oA_uzoE8HEObNbi0GFbVFp9HYkFOSrbfPwf8AAObmfA |
| CitedBy_id | crossref_primary_10_3390_biomedicines12092118 crossref_primary_10_1038_s41586_025_09263_w crossref_primary_10_1126_scitranslmed_ado6467 crossref_primary_10_1016_j_celrep_2025_115590 crossref_primary_10_1021_acs_analchem_5c03294 crossref_primary_10_3390_ijms26146753 crossref_primary_10_1038_s41467_024_54353_4 crossref_primary_10_1186_s12967_025_06758_y crossref_primary_10_1016_j_jlr_2025_100865 |
| Cites_doi | 10.1016/j.ebiom.2022.103874 10.1016/j.jprot.2019.103624 10.1074/mcp.M800260-MCP200 10.1016/j.jacc.2020.02.058 10.1038/s41467-022-28693-y 10.1161/CIRCULATIONAHA.121.055313 10.1126/sciadv.abb7242 10.1038/nbt.3685 10.1074/mcp.M110.003335 10.1093/bioinformatics/bty815 10.1038/s41467-021-22933-3 10.1016/j.celrep.2018.05.080 10.1016/j.cell.2020.08.031 10.1016/j.cmet.2020.09.001 10.1074/mcp.M111.016469 10.1038/nprot.2016.136 10.1016/j.jacc.2020.11.059 10.1021/acs.jproteome.2c00624 10.1021/pr4006958 10.1038/s41586-020-2993-2 10.1038/nmeth.4256 10.1074/mcp.M115.055905 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023 |
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. – notice: 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2023 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.csbj.2023.12.034 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2001-0370 |
| EndPage | 459 |
| ExternalDocumentID | oai_doaj_org_article_1bb889184c32408b9304420e981e536e PMC10792623 38235360 10_1016_j_csbj_2023_12_034 S2001037023005093 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c555t-1a94c4d2bfa8c76f2f725b7cde8a388ad47d101915df3f26c63e93d117e3afbe3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001164922700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2001-0370 |
| IngestDate | Fri Oct 03 12:43:37 EDT 2025 Tue Nov 04 02:05:56 EST 2025 Fri Aug 22 20:39:34 EDT 2025 Thu Oct 02 11:27:01 EDT 2025 Mon Jul 21 05:55:29 EDT 2025 Tue Nov 18 21:44:06 EST 2025 Sat Nov 29 08:10:27 EST 2025 Sat Mar 08 15:48:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | WSPP model Protein coordination Quantitative proteomics Proteomics pipeline Generic integration algorithm Mass spectrometry |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c555t-1a94c4d2bfa8c76f2f725b7cde8a388ad47d101915df3f26c63e93d117e3afbe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1461-5092 0000-0002-4577-5331 0000-0001-6390-6967 |
| OpenAccessLink | https://doaj.org/article/1bb889184c32408b9304420e981e536e |
| PMID | 38235360 |
| PQID | 2916407332 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1bb889184c32408b9304420e981e536e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10792623 proquest_miscellaneous_3153176335 proquest_miscellaneous_2916407332 pubmed_primary_38235360 crossref_citationtrail_10_1016_j_csbj_2023_12_034 crossref_primary_10_1016_j_csbj_2023_12_034 elsevier_sciencedirect_doi_10_1016_j_csbj_2023_12_034 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Computational and structural biotechnology journal |
| PublicationTitleAlternate | Comput Struct Biotechnol J |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
| References | Nicolas-Avila, Lechuga-Vieco, Esteban-Martinez, Sanchez-Diaz, Diaz-Garcia (bib16) 2020; 183 Al-Mashhadi, Al-Mashhadi, Nasr, Mortensen, Lewis (bib15) 2021; 77 Lorenzo, Delgado, Busse, Sanz-Bravo, Martos-Folgado (bib13) 2021; 589 Martinez-Acedo, Nunez, Gomez, Moreno, Ramos (bib8) 2012; 11 Nunez, Fuster, Gomez-Serrano, Valdivielso, Fernandez-Alvira (bib10) 2022; 76 Deutsch, Mendoza, Shteynberg, Hoopmann, Sun (bib3) 2023; 22 Trevisan-Herraz, Bagwan, Garcia-Marques, Rodriguez, Jorge (bib4) 2019; 35 de la Fuente-Alonso, Toral, Alfayate, Ruiz-Rodriguez, Bonzon-Kulichenko (bib14) 2021; 12 Bonzon-Kulichenko, Perez-Hernandez, Nunez, Martinez-Acedo, Navarro (bib23) 2011; 10 Garcia-Garcia, Sanchez-Perales, Jarabo, Calvo, Huyton (bib11) 2022; 13 Sanchez-Lopez, Espinos-Estevez, Gonzalez-Gomez, Gonzalo, Andres-Manzano (bib12) 2021; 144 Jorge, Navarro, Martinez-Acedo, Nunez, Serrano (bib6) 2009; 8 Martin-Cofreces, Chichon, Calvo, Torralba, Bustos-Moran (bib18) 2020; 6 Navarro, Kuharev, Gillet, Bernhardt, MacLean (bib22) 2016; 34 Kong, Leprevost, Avtonomov, Mellacheruvu, Nesvizhskii (bib2) 2017; 14 Navarro, Trevisan-Herraz, Bonzon-Kulichenko, Nunez, Martinez-Acedo (bib7) 2014; 13 Gonzalez-Amor, Garcia-Redondo, Jorge, Zalba, Becares (bib21) 2021 Bonzon-Kulichenko, Camafeita, Lopez, Gomez-Serrano, Jorge (bib20) 2020; 214 Martinez-Lopez, Roldan-Montero, Garcia-Marques, Nunez, Jorge (bib17) 2020; 75 Forte, Garcia-Fernandez, Sanchez-Aguilera, Stavropoulou, Fielding (bib19) 2020; 32 Bagwan, Bonzon-Kulichenko, Calvo, Lechuga-Vieco, Michalakopoulos (bib9) 2018; 23 Tyanova, Temu, Cox (bib1) 2016; 11 Garcia-Marques, Trevisan-Herraz, Martinez-Martinez, Camafeita, Jorge (bib5) 2016; 15 Gonzalez-Amor (10.1016/j.csbj.2023.12.034_bib21) 2021 Jorge (10.1016/j.csbj.2023.12.034_bib6) 2009; 8 Martin-Cofreces (10.1016/j.csbj.2023.12.034_bib18) 2020; 6 Bonzon-Kulichenko (10.1016/j.csbj.2023.12.034_bib23) 2011; 10 Forte (10.1016/j.csbj.2023.12.034_bib19) 2020; 32 Trevisan-Herraz (10.1016/j.csbj.2023.12.034_bib4) 2019; 35 Navarro (10.1016/j.csbj.2023.12.034_bib7) 2014; 13 Garcia-Garcia (10.1016/j.csbj.2023.12.034_bib11) 2022; 13 Sanchez-Lopez (10.1016/j.csbj.2023.12.034_bib12) 2021; 144 Martinez-Lopez (10.1016/j.csbj.2023.12.034_bib17) 2020; 75 Kong (10.1016/j.csbj.2023.12.034_bib2) 2017; 14 Al-Mashhadi (10.1016/j.csbj.2023.12.034_bib15) 2021; 77 Bagwan (10.1016/j.csbj.2023.12.034_bib9) 2018; 23 Bonzon-Kulichenko (10.1016/j.csbj.2023.12.034_bib20) 2020; 214 Martinez-Acedo (10.1016/j.csbj.2023.12.034_bib8) 2012; 11 Nunez (10.1016/j.csbj.2023.12.034_bib10) 2022; 76 Nicolas-Avila (10.1016/j.csbj.2023.12.034_bib16) 2020; 183 Tyanova (10.1016/j.csbj.2023.12.034_bib1) 2016; 11 Deutsch (10.1016/j.csbj.2023.12.034_bib3) 2023; 22 Garcia-Marques (10.1016/j.csbj.2023.12.034_bib5) 2016; 15 de la Fuente-Alonso (10.1016/j.csbj.2023.12.034_bib14) 2021; 12 Navarro (10.1016/j.csbj.2023.12.034_bib22) 2016; 34 Lorenzo (10.1016/j.csbj.2023.12.034_bib13) 2021; 589 |
| References_xml | – volume: 144 start-page: 1777 year: 2021 end-page: 1794 ident: bib12 article-title: Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome publication-title: Circulation – volume: 12 year: 2021 ident: bib14 article-title: Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO publication-title: Nat Commun – volume: 13 year: 2022 ident: bib11 article-title: Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP publication-title: Nat Commun – volume: 22 start-page: 615 year: 2023 end-page: 624 ident: bib3 article-title: Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite publication-title: J Proteome Res – volume: 13 start-page: 1234 year: 2014 end-page: 1247 ident: bib7 article-title: General statistical framework for quantitative proteomics by stable isotope labeling publication-title: J Proteome Res – volume: 183 start-page: 94 year: 2020 end-page: 109 ident: bib16 article-title: A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart publication-title: Cell – volume: 77 start-page: 575 year: 2021 end-page: 589 ident: bib15 article-title: Local Pressure Drives Low-Density Lipoprotein Accumulation and Coronary Atherosclerosis in Hypertensive Minipigs publication-title: J Am Coll Cardiol – volume: 34 start-page: 1130 year: 2016 end-page: 1136 ident: bib22 article-title: A multicenter study benchmarks software tools for label-free proteome quantification publication-title: Nat Biotechnol – volume: 589 start-page: 287 year: 2021 end-page: 292 ident: bib13 article-title: ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies publication-title: Nature – volume: 11 start-page: 2301 year: 2016 end-page: 2319 ident: bib1 article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics publication-title: Nat Protoc – volume: 8 start-page: 1130 year: 2009 end-page: 1149 ident: bib6 article-title: Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells publication-title: Mol Cell Prote: MCP – volume: 10 year: 2011 ident: bib23 article-title: A robust method for quantitative high-throughput analysis of proteomes by 18O labeling publication-title: Mol Cell Proteom – volume: 32 start-page: 829 year: 2020 end-page: 843 ident: bib19 article-title: Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy publication-title: Cell Metab – volume: 76 year: 2022 ident: bib10 article-title: Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis publication-title: EBioMedicine – volume: 214 year: 2020 ident: bib20 article-title: Improved integrative analysis of the thiol redox proteome using filter-aided sample preparation publication-title: J Proteom – volume: 14 start-page: 513 year: 2017 end-page: 520 ident: bib2 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics publication-title: Nat Methods – volume: 15 start-page: 1740 year: 2016 end-page: 1760 ident: bib5 article-title: A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics publication-title: Mol Cell Prote: MCP – volume: 35 start-page: 1594 year: 2019 end-page: 1596 ident: bib4 article-title: SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments publication-title: Bioinformatics – volume: 6 year: 2020 ident: bib18 article-title: The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles publication-title: Sci Adv – year: 2021 ident: bib21 article-title: Interferon stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress publication-title: Cardiovasc Res – volume: 11 start-page: 800 year: 2012 end-page: 813 ident: bib8 article-title: A novel strategy for global analysis of the dynamic thiol redox proteome publication-title: Mol Cell Prote: MCP – volume: 75 start-page: 1926 year: 2020 end-page: 1941 ident: bib17 article-title: Complement C5 Protein as a Marker of Subclinical Atherosclerosis publication-title: J Am Coll Cardiol – volume: 23 start-page: 3685 year: 2018 end-page: 3697 ident: bib9 article-title: Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy publication-title: Cell Rep – volume: 76 year: 2022 ident: 10.1016/j.csbj.2023.12.034_bib10 article-title: Unbiased plasma proteomics discovery of biomarkers for improved detection of subclinical atherosclerosis publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103874 – volume: 214 year: 2020 ident: 10.1016/j.csbj.2023.12.034_bib20 article-title: Improved integrative analysis of the thiol redox proteome using filter-aided sample preparation publication-title: J Proteom doi: 10.1016/j.jprot.2019.103624 – volume: 8 start-page: 1130 issue: 5 year: 2009 ident: 10.1016/j.csbj.2023.12.034_bib6 article-title: Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells publication-title: Mol Cell Prote: MCP doi: 10.1074/mcp.M800260-MCP200 – year: 2021 ident: 10.1016/j.csbj.2023.12.034_bib21 article-title: Interferon stimulated gene 15 pathway is a novel mediator of endothelial dysfunction and aneurysms development in angiotensin II infused mice through increased oxidative stress publication-title: Cardiovasc Res – volume: 75 start-page: 1926 issue: 16 year: 2020 ident: 10.1016/j.csbj.2023.12.034_bib17 article-title: Complement C5 Protein as a Marker of Subclinical Atherosclerosis publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.02.058 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.csbj.2023.12.034_bib11 article-title: Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP publication-title: Nat Commun doi: 10.1038/s41467-022-28693-y – volume: 144 start-page: 1777 issue: 22 year: 2021 ident: 10.1016/j.csbj.2023.12.034_bib12 article-title: Cardiovascular Progerin Suppression and Lamin A Restoration Rescue Hutchinson-Gilford Progeria Syndrome publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.055313 – volume: 6 issue: 49 year: 2020 ident: 10.1016/j.csbj.2023.12.034_bib18 article-title: The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles publication-title: Sci Adv doi: 10.1126/sciadv.abb7242 – volume: 34 start-page: 1130 issue: 11 year: 2016 ident: 10.1016/j.csbj.2023.12.034_bib22 article-title: A multicenter study benchmarks software tools for label-free proteome quantification publication-title: Nat Biotechnol doi: 10.1038/nbt.3685 – volume: 10 issue: 1 year: 2011 ident: 10.1016/j.csbj.2023.12.034_bib23 article-title: A robust method for quantitative high-throughput analysis of proteomes by 18O labeling publication-title: Mol Cell Proteom doi: 10.1074/mcp.M110.003335 – volume: 35 start-page: 1594 issue: 9 year: 2019 ident: 10.1016/j.csbj.2023.12.034_bib4 article-title: SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty815 – volume: 12 issue: 1 year: 2021 ident: 10.1016/j.csbj.2023.12.034_bib14 article-title: Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO publication-title: Nat Commun doi: 10.1038/s41467-021-22933-3 – volume: 23 start-page: 3685 issue: 12 year: 2018 ident: 10.1016/j.csbj.2023.12.034_bib9 article-title: Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy publication-title: Cell Rep doi: 10.1016/j.celrep.2018.05.080 – volume: 183 start-page: 94 issue: 1 year: 2020 ident: 10.1016/j.csbj.2023.12.034_bib16 article-title: A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart publication-title: Cell doi: 10.1016/j.cell.2020.08.031 – volume: 32 start-page: 829 issue: 5 year: 2020 ident: 10.1016/j.csbj.2023.12.034_bib19 article-title: Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy publication-title: Cell Metab doi: 10.1016/j.cmet.2020.09.001 – volume: 11 start-page: 800 issue: 9 year: 2012 ident: 10.1016/j.csbj.2023.12.034_bib8 article-title: A novel strategy for global analysis of the dynamic thiol redox proteome publication-title: Mol Cell Prote: MCP doi: 10.1074/mcp.M111.016469 – volume: 11 start-page: 2301 issue: 12 year: 2016 ident: 10.1016/j.csbj.2023.12.034_bib1 article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics publication-title: Nat Protoc doi: 10.1038/nprot.2016.136 – volume: 77 start-page: 575 issue: 5 year: 2021 ident: 10.1016/j.csbj.2023.12.034_bib15 article-title: Local Pressure Drives Low-Density Lipoprotein Accumulation and Coronary Atherosclerosis in Hypertensive Minipigs publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.11.059 – volume: 22 start-page: 615 issue: 2 year: 2023 ident: 10.1016/j.csbj.2023.12.034_bib3 article-title: Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite publication-title: J Proteome Res doi: 10.1021/acs.jproteome.2c00624 – volume: 13 start-page: 1234 issue: 3 year: 2014 ident: 10.1016/j.csbj.2023.12.034_bib7 article-title: General statistical framework for quantitative proteomics by stable isotope labeling publication-title: J Proteome Res doi: 10.1021/pr4006958 – volume: 589 start-page: 287 issue: 7841 year: 2021 ident: 10.1016/j.csbj.2023.12.034_bib13 article-title: ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies publication-title: Nature doi: 10.1038/s41586-020-2993-2 – volume: 14 start-page: 513 issue: 5 year: 2017 ident: 10.1016/j.csbj.2023.12.034_bib2 article-title: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics publication-title: Nat Methods doi: 10.1038/nmeth.4256 – volume: 15 start-page: 1740 issue: 5 year: 2016 ident: 10.1016/j.csbj.2023.12.034_bib5 article-title: A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics publication-title: Mol Cell Prote: MCP doi: 10.1074/mcp.M115.055905 |
| SSID | ssj0000816930 |
| Score | 2.3858285 |
| Snippet | Many bioinformatics tools are available for the quantitative analysis of proteomics experiments. Most of these tools use a dedicated statistical model to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 452 |
| SubjectTerms | algorithms bioinformatics biotechnology computer software Generic integration algorithm Mass spectrometry Protein coordination proteomics Proteomics pipeline quantitative analysis Quantitative proteomics Software/Web Server statistical models WSPP model |
| Title | iSanXoT: A standalone application for the integrative analysis of mass spectrometry-based quantitative proteomics data |
| URI | https://dx.doi.org/10.1016/j.csbj.2023.12.034 https://www.ncbi.nlm.nih.gov/pubmed/38235360 https://www.proquest.com/docview/2916407332 https://www.proquest.com/docview/3153176335 https://pubmed.ncbi.nlm.nih.gov/PMC10792623 https://doaj.org/article/1bb889184c32408b9304420e981e536e |
| Volume | 23 |
| WOSCitedRecordID | wos001164922700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gCHijdboDISNxSIYzu2uRXUigNUSBRpb5bjh9iqZGEflbjw25lxklUColy45JDYiT0z8czYM98Q8lw5jmrBF1EYUQjelIUOkhdKN1Lr5GsVc9WS9-r0VM_n5uOo1BfGhHXwwB3hXrGm0dqAH-IROk43BvxvUZXRaBYlryOuvqUyI2cqr8EaQUbKPkumC-jy6-b8JVYLz_t_XEw0UQbsnyikPw3O3-MmR4ro5DbZ7y1IetSN_A65Ftu75NYIV_AeuVx8cu18efaaHtFur-Bi2UY6OqymYKtSsP3oABcBix51PUAJXSb6FYxqmtMwEc9gs_pRoL4L9PvWtTkvDTtkkAdMa15TjDS9Tz6fHJ-9fVf0BRYKL6XcFMwZ4UWomuS0V3Wqkqpko3yI2nGtXRAqAPEMkyHxVNW-5tHwwJiK3KUm8gdkr4XxPyI0eJZMxZIIKog6lsBw4JHiQVTRqaRmhA3Etr5HH8ciGBd2CDM7t8ggiwyyrLLAoBl5sevzrcPeuLL1G-ThriXiZucbIE22lyb7L2maETlIgO1NkM60gFctrvz4s0FcLPyfeOji2rjcrm0F9rfAypjV39twUDsMFnouZ-RhJ2K7aeA5LYysnBE9Eb7JPKdP2sWXjBMOnj2iQfKD_0GZx-QmzFd0kTxPyN5mtY1PyQ1_uVmsV4fkuprrw_wPwvXDz-NfHe43dQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=iSanXoT%3A+A+standalone+application+for+the+integrative+analysis+of+mass+spectrometry-based+quantitative+proteomics+data&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Rodr%C3%ADguez%2C+Jose+Manuel&rft.au=Jorge%2C+Inmaculada&rft.au=Martinez-Val%2C+Ana&rft.au=Barrero-Rodr%C3%ADguez%2C+Rafael&rft.date=2024-12-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=23+p.452-459&rft.spage=452&rft.epage=459&rft_id=info:doi/10.1016%2Fj.csbj.2023.12.034&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |