The Convex Geometry of Linear Inverse Problems
In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 12; číslo 6; s. 805 - 849 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer-Verlag
01.12.2012
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the
atomic norm
. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming. |
|---|---|
| AbstractList | In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming. In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm . The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming. In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.[PUBLICATION ABSTRACT] |
| Author | Chandrasekaran, Venkat Recht, Benjamin Parrilo, Pablo A. Willsky, Alan S. |
| Author_xml | – sequence: 1 givenname: Venkat surname: Chandrasekaran fullname: Chandrasekaran, Venkat email: venkatc@caltech.edu organization: Department of Computing and Mathematical Sciences, California Institute of Technology – sequence: 2 givenname: Benjamin surname: Recht fullname: Recht, Benjamin organization: Computer Sciences Department, University of Wisconsin – sequence: 3 givenname: Pablo A. surname: Parrilo fullname: Parrilo, Pablo A. organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 4 givenname: Alan S. surname: Willsky fullname: Willsky, Alan S. organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology |
| BookMark | eNp9kE1Lw0AQhhepYK3-AG8BL15Sd_YjmxylaC0U9FDPyyad1ZQkW3dTsf_eLRGRgp5mYJ5nZnjPyahzHRJyBXQKlKrbAJTRPKXA0gK4TNUJGUMGMuU856OfXskzch7ChlKQBYgxma7eMJm57gM_kzm6Fnu_T5xNlnWHxieLOPABk2fvygbbcEFOrWkCXn7XCXl5uF_NHtPl03wxu1umlZSiTy0KaTMF1mYo4unKAkqkIDJmqtKsS5XzNc1ZYQpamJxxxlUJQkmRCaQ05xNyM-zdeve-w9Drtg4VNo3p0O2CBsYgL6QQNKLXR-jG7XwXv9MAIKnMmJKRUgNVeReCR6urujd97brem7rRQPUhRz3kqGOO-pCjVtGEI3Pr69b4_b8OG5wQ2e4V_a-f_pS-AD9mg6Y |
| CODEN | FCMOA3 |
| CitedBy_id | crossref_primary_10_3390_s20216111 crossref_primary_10_1016_j_sigpro_2016_10_010 crossref_primary_10_1109_TIT_2025_3550960 crossref_primary_10_1109_MCS_2023_3291625 crossref_primary_10_1214_18_AOS1742 crossref_primary_10_1007_s10463_018_0693_6 crossref_primary_10_1016_j_sigpro_2021_108061 crossref_primary_10_1109_TSP_2018_2872012 crossref_primary_10_1109_TSP_2015_2472365 crossref_primary_10_1007_s10208_018_9386_z crossref_primary_10_1155_2021_2999001 crossref_primary_10_3389_fams_2023_1153184 crossref_primary_10_1109_TSP_2020_3032234 crossref_primary_10_1007_s10107_023_01975_z crossref_primary_10_1109_TCSVT_2016_2595328 crossref_primary_10_1016_j_sigpro_2016_09_018 crossref_primary_10_1109_TPAMI_2017_2780094 crossref_primary_10_1017_S0962492920000021 crossref_primary_10_1109_TVT_2018_2817638 crossref_primary_10_1145_3458825 crossref_primary_10_1109_TIT_2016_2642993 crossref_primary_10_1016_j_automatica_2014_01_001 crossref_primary_10_1109_TIT_2018_2842216 crossref_primary_10_1214_23_AOS2301 crossref_primary_10_1080_03610926_2019_1670846 crossref_primary_10_1016_j_acha_2016_02_003 crossref_primary_10_1121_1_4996460 crossref_primary_10_1007_s11228_025_00741_x crossref_primary_10_1007_s11075_020_01029_x crossref_primary_10_1109_TIT_2014_2368122 crossref_primary_10_1137_21M1455000 crossref_primary_10_1137_17M1113436 crossref_primary_10_1109_TAC_2017_2723959 crossref_primary_10_1109_TIT_2021_3095375 crossref_primary_10_1109_ACCESS_2019_2915189 crossref_primary_10_1109_TCSVT_2019_2936135 crossref_primary_10_1007_s10107_015_0937_7 crossref_primary_10_1109_TSP_2022_3176491 crossref_primary_10_1016_j_acha_2020_12_002 crossref_primary_10_1137_18M1220790 crossref_primary_10_1016_j_sigpro_2019_07_012 crossref_primary_10_3390_rs16142517 crossref_primary_10_1109_ACCESS_2019_2928130 crossref_primary_10_1007_s10107_023_02040_5 crossref_primary_10_1109_TIT_2018_2841379 crossref_primary_10_1109_TSP_2017_2669900 crossref_primary_10_1109_LCSYS_2020_3045664 crossref_primary_10_1109_TWC_2024_3495978 crossref_primary_10_1088_2040_8986_aa65b7 crossref_primary_10_1080_01621459_2018_1434531 crossref_primary_10_1109_TMI_2014_2319055 crossref_primary_10_1214_23_AOS2327 crossref_primary_10_1109_JSTSP_2016_2543462 crossref_primary_10_1109_TIT_2016_2606500 crossref_primary_10_1038_s41746_021_00532_2 crossref_primary_10_1109_TIT_2017_2757003 crossref_primary_10_1109_LAWP_2020_3032894 crossref_primary_10_1177_0278364918784361 crossref_primary_10_2298_FIL2506797H crossref_primary_10_1109_LAWP_2021_3103514 crossref_primary_10_3390_math11112559 crossref_primary_10_1109_TCI_2017_2761742 crossref_primary_10_1109_TIT_2022_3228508 crossref_primary_10_1109_TSP_2016_2546221 crossref_primary_10_3390_app14020595 crossref_primary_10_1109_JSTSP_2021_3066126 crossref_primary_10_1007_s10107_022_01793_9 crossref_primary_10_1109_LSP_2015_2457403 crossref_primary_10_1109_MSP_2019_2962209 crossref_primary_10_1155_2019_6797168 crossref_primary_10_1016_j_comcom_2022_09_010 crossref_primary_10_1137_19M1247115 crossref_primary_10_1137_16M1062089 crossref_primary_10_1109_TAC_2018_2813009 crossref_primary_10_1109_TIT_2023_3293830 crossref_primary_10_1007_s10208_015_9278_4 crossref_primary_10_1109_TIT_2020_2993327 crossref_primary_10_1109_TIT_2015_2403263 crossref_primary_10_1016_j_jsv_2016_01_017 crossref_primary_10_1109_TSP_2021_3087900 crossref_primary_10_1016_j_acha_2015_07_007 crossref_primary_10_1007_s10208_022_09562_y crossref_primary_10_1214_15_AOS1324 crossref_primary_10_1109_TAES_2019_2897035 crossref_primary_10_1007_s10957_021_01956_2 crossref_primary_10_1016_j_ymssp_2019_02_011 crossref_primary_10_1109_JIOT_2018_2881486 crossref_primary_10_1109_TSP_2016_2543211 crossref_primary_10_3934_ipi_2017025 crossref_primary_10_1109_JIOT_2017_2787785 crossref_primary_10_1073_pnas_1302293110 crossref_primary_10_1093_jrsssb_qkae039 crossref_primary_10_1109_TIT_2015_2429634 crossref_primary_10_1109_TWC_2023_3292385 crossref_primary_10_1016_j_dsp_2016_09_003 crossref_primary_10_1080_2150704X_2021_1906976 crossref_primary_10_1137_17M1113874 crossref_primary_10_1007_s10208_025_09693_y crossref_primary_10_1109_TSC_2024_3407516 crossref_primary_10_3390_rs14143439 crossref_primary_10_1109_LRA_2022_3141763 crossref_primary_10_1109_ACCESS_2015_2407194 crossref_primary_10_1109_TSP_2017_2711501 crossref_primary_10_1137_20M1337417 crossref_primary_10_1088_1361_6420_aaf9c6 crossref_primary_10_1016_j_sigpro_2019_06_023 crossref_primary_10_3390_e23020178 crossref_primary_10_1214_15_AOS1426 crossref_primary_10_1214_16_AOS1488 crossref_primary_10_1016_j_jfa_2021_108995 crossref_primary_10_1109_TIP_2024_3404338 crossref_primary_10_1109_TSP_2015_2452223 crossref_primary_10_1109_TSP_2018_2827326 crossref_primary_10_1109_LSP_2020_3039479 crossref_primary_10_1109_TSP_2017_2788431 crossref_primary_10_1109_JSEN_2021_3068351 crossref_primary_10_1109_TSP_2013_2273443 crossref_primary_10_1137_19M124071X crossref_primary_10_1137_24M1637532 crossref_primary_10_1109_TCYB_2015_2389232 crossref_primary_10_3390_electronics8050557 crossref_primary_10_1016_j_acha_2016_12_001 crossref_primary_10_1007_s11075_018_0568_1 crossref_primary_10_1088_1361_6420_ab779b crossref_primary_10_1109_JIOT_2023_3264790 crossref_primary_10_1186_s13634_020_00701_7 crossref_primary_10_1109_TSP_2015_2461515 crossref_primary_10_1016_j_sigpro_2017_02_011 crossref_primary_10_1145_2796314_2745854 crossref_primary_10_1109_TIT_2022_3217698 crossref_primary_10_1007_s10851_025_01263_9 crossref_primary_10_1109_TSP_2022_3170688 crossref_primary_10_1109_TGRS_2024_3395510 crossref_primary_10_1016_j_acha_2015_06_006 crossref_primary_10_1121_1_4916269 crossref_primary_10_1016_j_sigpro_2019_107406 crossref_primary_10_1109_TIT_2016_2587772 crossref_primary_10_1109_TSP_2015_2407319 crossref_primary_10_1016_j_acha_2015_10_005 crossref_primary_10_1109_TWC_2016_2535310 crossref_primary_10_3390_rs15030671 crossref_primary_10_1109_JSTSP_2012_2237381 crossref_primary_10_1109_TIT_2014_2331344 crossref_primary_10_1109_ACCESS_2022_3169135 crossref_primary_10_1109_TIT_2017_2695614 crossref_primary_10_1109_TWC_2018_2797969 crossref_primary_10_3390_sym11050638 crossref_primary_10_1007_s11081_021_09676_2 crossref_primary_10_1109_TCSII_2020_3045226 crossref_primary_10_1137_22M150071X crossref_primary_10_1109_TSP_2022_3150964 crossref_primary_10_1137_21M142770X crossref_primary_10_1109_TIP_2025_3539472 crossref_primary_10_1109_ACCESS_2021_3054660 crossref_primary_10_1109_TIT_2018_2826459 crossref_primary_10_1109_TSP_2017_2695566 crossref_primary_10_1007_s00041_020_09809_8 crossref_primary_10_1016_j_acha_2016_08_004 crossref_primary_10_1016_j_acha_2020_05_006 crossref_primary_10_1017_S096249291300007X crossref_primary_10_1137_24M1629328 crossref_primary_10_1214_16_AOS1434 crossref_primary_10_1007_s10479_021_04033_z crossref_primary_10_1109_TNNLS_2021_3134717 crossref_primary_10_1146_annurev_control_053018_023744 crossref_primary_10_1016_j_ifacol_2015_12_309 crossref_primary_10_1137_17M1136390 crossref_primary_10_1007_s10107_016_1059_6 crossref_primary_10_1155_2022_1456713 crossref_primary_10_1016_j_acha_2021_07_002 crossref_primary_10_1007_s10107_013_0738_9 crossref_primary_10_1109_TVT_2023_3341417 crossref_primary_10_1109_TSP_2022_3182224 crossref_primary_10_1007_s10440_014_9984_y crossref_primary_10_1109_TIT_2015_2442922 crossref_primary_10_1137_21M1407902 crossref_primary_10_1109_TIP_2015_2492819 crossref_primary_10_1109_LSP_2022_3226111 crossref_primary_10_3390_en13143609 crossref_primary_10_1080_02331934_2020_1723584 crossref_primary_10_1109_TIT_2016_2553041 crossref_primary_10_1049_cmu2_12393 crossref_primary_10_1016_j_apacoust_2023_109730 crossref_primary_10_1109_LSP_2022_3159402 crossref_primary_10_3390_en13215775 crossref_primary_10_1016_j_dsp_2021_103313 crossref_primary_10_1016_j_ymssp_2022_109263 crossref_primary_10_1137_18M1183388 crossref_primary_10_1109_MSP_2013_2296605 crossref_primary_10_1109_TSP_2018_2831626 crossref_primary_10_1109_TIT_2022_3191339 crossref_primary_10_3390_s18061761 crossref_primary_10_1109_TCNS_2015_2497100 crossref_primary_10_1109_LSP_2020_3039428 crossref_primary_10_1049_iet_rsn_2019_0350 crossref_primary_10_1109_TSP_2018_2831622 crossref_primary_10_1109_LSP_2017_2700442 crossref_primary_10_1088_1742_6596_1626_1_012018 crossref_primary_10_1137_130941961 crossref_primary_10_1016_j_ymssp_2019_106425 crossref_primary_10_1109_ACCESS_2019_2950016 crossref_primary_10_1016_j_acha_2015_11_003 crossref_primary_10_1088_1361_6420_aad1c3 crossref_primary_10_1007_s43670_022_00032_8 crossref_primary_10_1214_25_EJS2419 crossref_primary_10_1109_TIT_2014_2364403 crossref_primary_10_1109_TIT_2021_3073566 crossref_primary_10_1109_TSP_2016_2580523 crossref_primary_10_1109_TCOMM_2017_2746099 crossref_primary_10_1109_TSP_2018_2885494 crossref_primary_10_1007_s10107_023_02055_y crossref_primary_10_1109_TSP_2022_3178191 crossref_primary_10_1109_TPAMI_2016_2605097 crossref_primary_10_1007_s10107_022_01774_y crossref_primary_10_1016_j_ifacol_2019_12_342 crossref_primary_10_1016_j_acha_2021_12_006 crossref_primary_10_1016_j_dsp_2022_103898 crossref_primary_10_1109_TCI_2020_3010360 crossref_primary_10_1109_TIM_2024_3379077 crossref_primary_10_1137_130940785 crossref_primary_10_1007_s00526_019_1658_1 crossref_primary_10_1137_18M1200750 crossref_primary_10_1088_1361_6420_aa5e12 crossref_primary_10_1109_JSTSP_2016_2539100 crossref_primary_10_1137_17M1115770 crossref_primary_10_1214_15_AOP1079 crossref_primary_10_1137_16M1093094 crossref_primary_10_1137_18M118116X crossref_primary_10_1155_2020_3012952 crossref_primary_10_1016_j_jco_2016_12_002 crossref_primary_10_1016_j_laa_2016_04_017 crossref_primary_10_1109_TASLP_2015_2425213 crossref_primary_10_1007_s41237_017_0014_z crossref_primary_10_1109_TSP_2015_2493987 crossref_primary_10_1109_TSP_2016_2551697 crossref_primary_10_1109_TSP_2018_2793907 crossref_primary_10_1109_TIT_2019_2932426 crossref_primary_10_1109_TPAMI_2019_2900306 crossref_primary_10_1016_j_sigpro_2019_04_024 crossref_primary_10_1214_17_AOS1566 crossref_primary_10_1109_TIT_2016_2515078 crossref_primary_10_1007_s10107_014_0774_0 crossref_primary_10_1007_s10957_025_02723_3 crossref_primary_10_1109_LSP_2020_3045343 crossref_primary_10_1109_TIT_2015_2450722 crossref_primary_10_1109_TGRS_2024_3393972 crossref_primary_10_1109_ACCESS_2020_2982413 crossref_primary_10_1109_MSP_2014_2329397 crossref_primary_10_1109_TSP_2015_2425803 crossref_primary_10_1007_s11045_019_00696_x crossref_primary_10_1109_TIT_2016_2517008 crossref_primary_10_1109_TIT_2018_2859327 crossref_primary_10_1137_18M1172843 crossref_primary_10_1137_23M1587737 crossref_primary_10_1214_22_AOS2246 crossref_primary_10_1109_TGRS_2022_3223524 crossref_primary_10_1109_TIT_2017_2686880 crossref_primary_10_1109_TIT_2016_2632162 crossref_primary_10_1109_TSP_2013_2278516 crossref_primary_10_1109_TCSVT_2019_2907324 crossref_primary_10_1109_TIT_2018_2840720 crossref_primary_10_1214_25_AOS2489 crossref_primary_10_1007_s10851_024_01191_0 crossref_primary_10_1109_TIT_2018_2881113 crossref_primary_10_1016_j_acha_2018_09_005 crossref_primary_10_1109_TIT_2022_3188753 crossref_primary_10_1155_2021_6635220 crossref_primary_10_1121_10_0006389 crossref_primary_10_1016_j_automatica_2016_02_012 crossref_primary_10_1109_TIT_2015_2401574 crossref_primary_10_1016_j_acha_2017_01_005 crossref_primary_10_1109_TIT_2013_2293654 crossref_primary_10_1109_TIT_2018_2890194 crossref_primary_10_1109_LSP_2014_2323973 crossref_primary_10_1088_1361_6420_addffb crossref_primary_10_1016_j_dsp_2021_103266 crossref_primary_10_1109_TSP_2023_3254140 crossref_primary_10_1007_s00034_016_0296_5 crossref_primary_10_1007_s11222_015_9574_5 crossref_primary_10_1049_iet_spr_2017_0366 crossref_primary_10_1007_s10107_022_01809_4 crossref_primary_10_1109_TSP_2014_2339792 crossref_primary_10_1016_j_acha_2018_11_005 crossref_primary_10_1109_TVT_2017_2758024 crossref_primary_10_1007_s10994_014_5478_4 crossref_primary_10_1214_18_AAP1391 crossref_primary_10_1002_cpa_21957 crossref_primary_10_1007_s10208_014_9191_2 crossref_primary_10_1088_1751_8121_aa9100 crossref_primary_10_1016_j_automatica_2024_111907 crossref_primary_10_1109_TSP_2022_3141884 crossref_primary_10_1016_j_dsp_2020_102900 crossref_primary_10_1109_TSP_2016_2600507 crossref_primary_10_1016_j_jsv_2020_115758 crossref_primary_10_1109_LSP_2018_2881927 crossref_primary_10_1214_16_AAP1195 crossref_primary_10_1214_14_AOS1254 crossref_primary_10_1088_1361_6420_abbd7e crossref_primary_10_1109_ACCESS_2019_2961787 crossref_primary_10_1214_19_AOS1840 crossref_primary_10_1109_TIT_2016_2549040 crossref_primary_10_1109_TSP_2016_2576422 crossref_primary_10_1109_TWC_2018_2877757 crossref_primary_10_1109_LCSYS_2025_3575436 crossref_primary_10_1109_TIT_2020_2985015 crossref_primary_10_1109_TSP_2020_3001399 crossref_primary_10_1016_j_acha_2024_101746 crossref_primary_10_1109_TIT_2016_2586083 crossref_primary_10_1109_JPROC_2019_2936204 crossref_primary_10_1109_TAC_2016_2517570 crossref_primary_10_1109_LSP_2024_3453753 crossref_primary_10_1109_TVT_2016_2590943 crossref_primary_10_1109_TSP_2016_2544744 crossref_primary_10_1016_j_ins_2018_10_041 crossref_primary_10_1109_TIT_2024_3360951 crossref_primary_10_1109_TIT_2017_2773497 crossref_primary_10_1109_TSP_2015_2420541 crossref_primary_10_1007_s10957_016_1004_0 crossref_primary_10_1016_j_ymssp_2017_10_025 crossref_primary_10_1016_j_acha_2022_05_001 crossref_primary_10_1016_j_neunet_2017_12_009 crossref_primary_10_1109_TAES_2022_3175465 crossref_primary_10_1109_TIT_2017_2717583 crossref_primary_10_1109_LSP_2020_3021276 crossref_primary_10_1088_1742_6596_1131_1_012009 crossref_primary_10_1109_LSP_2014_2349904 crossref_primary_10_1016_j_sigpro_2017_07_024 crossref_primary_10_1109_LCOMM_2022_3199460 crossref_primary_10_1109_TIT_2021_3059657 crossref_primary_10_1109_LSP_2015_2497543 crossref_primary_10_1016_j_acha_2015_03_003 crossref_primary_10_1109_TIT_2024_3458953 crossref_primary_10_1016_j_sigpro_2017_07_028 crossref_primary_10_1007_s00041_020_09797_9 crossref_primary_10_1109_TCYB_2019_2903205 crossref_primary_10_1109_TPAMI_2017_2739147 crossref_primary_10_1016_j_laa_2020_06_010 crossref_primary_10_1049_el_2018_6532 crossref_primary_10_1016_j_acha_2024_101650 crossref_primary_10_1109_JSEN_2025_3573568 crossref_primary_10_1109_TIT_2020_2965733 crossref_primary_10_3390_en13123235 crossref_primary_10_3390_rs15010013 crossref_primary_10_1016_j_acha_2024_101658 crossref_primary_10_1016_j_automatica_2015_05_012 crossref_primary_10_1038_s41598_019_47845_7 crossref_primary_10_1088_1742_6596_1624_3_032020 crossref_primary_10_1007_s10115_018_1294_7 crossref_primary_10_1214_22_AOS2190 crossref_primary_10_1109_ACCESS_2018_2831905 crossref_primary_10_1137_15M1035793 crossref_primary_10_1109_TIP_2018_2790481 crossref_primary_10_1109_TIT_2018_2846643 crossref_primary_10_1016_j_sigpro_2021_108238 crossref_primary_10_1007_s43670_021_00016_0 crossref_primary_10_1109_TIM_2025_3556225 crossref_primary_10_1109_TSIPN_2017_2668146 crossref_primary_10_1109_TVT_2022_3194409 crossref_primary_10_1109_TIT_2022_3161227 crossref_primary_10_1190_geo2015_0066_1 crossref_primary_10_1214_21_AOS2100 crossref_primary_10_1109_TSP_2014_2331612 crossref_primary_10_1109_TSP_2021_3056591 crossref_primary_10_1007_s10851_019_00919_7 crossref_primary_10_1109_TIT_2017_2749330 crossref_primary_10_1007_s11235_025_01300_3 crossref_primary_10_1137_16M1071730 crossref_primary_10_1109_JSAC_2020_3005472 crossref_primary_10_1007_s11425_021_2151_0 crossref_primary_10_1109_TIT_2014_2302005 crossref_primary_10_1109_TIT_2019_2891653 crossref_primary_10_1109_TIT_2015_2391251 crossref_primary_10_1109_TWC_2021_3062558 crossref_primary_10_1007_s10957_022_02013_2 crossref_primary_10_1109_TIT_2017_2726549 crossref_primary_10_1109_ACCESS_2018_2791580 crossref_primary_10_1007_s10589_016_9871_8 crossref_primary_10_1109_TVT_2025_3557010 crossref_primary_10_1016_j_acha_2020_01_002 crossref_primary_10_1016_j_sigpro_2021_108016 crossref_primary_10_1109_TSP_2015_2496294 crossref_primary_10_1109_TSP_2024_3386018 crossref_primary_10_1088_1751_8121_ab59ef crossref_primary_10_1016_j_phycom_2023_101999 crossref_primary_10_1016_j_acha_2017_03_003 crossref_primary_10_1109_TSP_2018_2872886 crossref_primary_10_1109_TPAMI_2021_3074467 crossref_primary_10_1109_TSP_2018_2869122 crossref_primary_10_1109_LSP_2019_2922500 crossref_primary_10_1109_TWC_2024_3436059 crossref_primary_10_1016_j_sigpro_2022_108786 crossref_primary_10_1109_TSP_2018_2835426 crossref_primary_10_1016_j_acha_2018_05_002 crossref_primary_10_3390_electronics11162578 crossref_primary_10_1109_TIT_2019_2920640 crossref_primary_10_1109_TSP_2022_3156731 crossref_primary_10_1111_rssb_12485 crossref_primary_10_1109_JSTSP_2019_2937632 crossref_primary_10_1214_25_EJP1378 crossref_primary_10_1109_TSP_2020_2964216 crossref_primary_10_1109_TSP_2023_3254919 crossref_primary_10_1109_TASLP_2017_2775800 crossref_primary_10_1109_TIP_2018_2831915 crossref_primary_10_1515_freq_2019_0131 crossref_primary_10_1109_TCI_2022_3174803 crossref_primary_10_1109_TSP_2022_3215651 crossref_primary_10_1017_S0956792515000236 crossref_primary_10_1016_j_sigpro_2017_11_008 crossref_primary_10_1109_TAC_2021_3115449 crossref_primary_10_1016_j_jat_2020_105456 crossref_primary_10_1016_j_sigpro_2018_06_019 crossref_primary_10_1155_2016_4156358 crossref_primary_10_1007_s10444_016_9467_y crossref_primary_10_1109_TSP_2018_2791945 crossref_primary_10_1109_TVT_2017_2695226 crossref_primary_10_1049_el_2015_2525 crossref_primary_10_1109_TSP_2019_2935910 crossref_primary_10_1137_18M1189464 crossref_primary_10_1109_TIT_2019_2940673 crossref_primary_10_1109_TSP_2022_3216708 crossref_primary_10_1109_TSP_2023_3244091 crossref_primary_10_1109_TIM_2025_3545500 crossref_primary_10_1109_LCOMM_2020_3000755 crossref_primary_10_1109_ACCESS_2020_3011161 crossref_primary_10_3390_app13053067 crossref_primary_10_1016_j_sigpro_2023_108939 crossref_primary_10_1109_LSP_2022_3165759 crossref_primary_10_1109_TCSI_2020_3000745 crossref_primary_10_1109_TSP_2018_2890374 crossref_primary_10_1145_3594234 crossref_primary_10_1109_TAP_2022_3230561 crossref_primary_10_3390_s141121981 crossref_primary_10_1007_s10208_022_09580_w crossref_primary_10_1016_j_acha_2022_03_007 crossref_primary_10_1016_j_automatica_2018_03_065 crossref_primary_10_1109_TIT_2020_2965720 crossref_primary_10_1109_TSP_2019_2953582 crossref_primary_10_1109_TIT_2019_2919632 crossref_primary_10_1109_TSP_2025_3544463 crossref_primary_10_1109_ACCESS_2019_2960826 crossref_primary_10_1109_TIT_2025_3566885 |
| Cites_doi | 10.1137/070697835 10.1007/BFb0081737 10.1137/06066518X 10.1016/j.neuroimage.2004.10.043 10.1007/s10208-009-9045-5 10.1109/TIT.2005.858979 10.1016/0022-1236(67)90017-1 10.1007/978-1-84882-299-3 10.1145/1970392.1970395 10.1007/s10107-009-0306-5 10.1137/S0097539704441629 10.1073/pnas.0502269102 10.1002/cpa.20132 10.1214/aos/1176348546 10.1093/qmath/42.1.9 10.1007/978-1-4613-0039-7 10.1137/S0895479800368354 10.1109/TIT.2006.871582 10.1007/978-3-642-20212-4 10.1515/9781400873173 10.1109/TIT.2011.2165825 10.1016/S1874-5849(01)80010-3 10.1214/08-AOS620 10.1007/BFb0076302 10.1137/050626090 10.1007/978-1-4419-8853-9 10.1007/s00454-009-9221-z 10.1007/978-1-4612-0663-7 10.1007/s10107-010-0422-2 10.1080/00207728108963798 10.1137/070698920 10.1109/TSP.2009.2016892 10.1137/090746525 10.1145/227683.227684 10.1007/s00454-005-1220-0 10.1214/09-EJS506 10.1137/090761793 10.1137/07070111X 10.1109/TIT.2011.2111771 10.1109/18.256500 10.1109/TIT.2010.2070191 10.1007/s10107-003-0387-5 10.1145/102782.102783 10.1109/TIT.2011.2165827 10.1090/S0025-5718-08-02189-3 10.1016/j.ejor.2011.04.010 10.1109/TIP.2003.814255 10.1007/978-3-642-04295-9 10.1002/cpa.20042 10.1007/978-1-4613-8431-1 10.1090/gsm/054 10.1137/070703983 10.1007/BF02124742 10.1109/TIT.2005.862083 10.1090/S0894-0347-08-00600-0 10.1137/080738970 |
| ContentType | Journal Article |
| Copyright | SFoCM 2012 |
| Copyright_xml | – notice: SFoCM 2012 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-012-9135-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 849 |
| ExternalDocumentID | 2798731871 10_1007_s10208_012_9135_7 |
| Genre | Feature |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c554t-fe45f671ff6e4161cf1e5e01462acbadb783d0829a909a823237b1475464e0083 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 817 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310338700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Thu Oct 02 12:10:41 EDT 2025 Fri Jul 25 19:28:40 EDT 2025 Tue Nov 18 22:34:15 EST 2025 Sat Nov 29 06:41:13 EST 2025 Fri Feb 21 02:36:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | 60D05 41A45 Semidefinite programming 52A41 Convex optimization 90C25 90C22 Atomic norms Real algebraic geometry Gaussian width Symmetry |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-fe45f671ff6e4161cf1e5e01462acbadb783d0829a909a823237b1475464e0083 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| PQID | 1115056275 |
| PQPubID | 43692 |
| PageCount | 45 |
| ParticipantIDs | proquest_miscellaneous_1221895440 proquest_journals_1115056275 crossref_citationtrail_10_1007_s10208_012_9135_7 crossref_primary_10_1007_s10208_012_9135_7 springer_journals_10_1007_s10208_012_9135_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2012 |
| Publisher | Springer-Verlag Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer Nature B.V |
| References | DeVoreR.TemlyakovV.Some remarks on greedy algorithmsAdv. Comput. Math.1996517318713993790857.6501610.1007/BF02124742 CandèsE.J.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009971777225652401219.9012410.1007/s10208-009-9045-5 CandèsE.PlanY.Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurementsIEEE Trans. Inf. Theory2011572342235910.1109/TIT.2011.2111771 BonsallF.F.A general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math.19914291410943370747.4600710.1093/qmath/42.1.9 CaiJ.OsherS.ShenZ.Linearized Bregman iterations for compressed sensingMath. Comput.2009781515153625010611198.6510210.1090/S0025-5718-08-02189-3 Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997). BarvinokA.A Course in Convexity2002ProvidenceAmerican Mathematical Society1014.52001 BochnakJ.CosteM.RoyM.Real Algebraic Geometry1988BerlinSpringer Aja-FernandezS.GarciaR.TaoD.LiX.Tensors in Image Processing and Computer Vision2009BerlinSpringer1175.6800210.1007/978-1-84882-299-3 RechtB.FazelM.ParriloP.A.Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimizationSIAM Rev.20105247150126805431198.9032110.1137/070697835 PisierG.Probabilistic methods in the geometry of Banach spacesProbability and Analysis198616724110.1007/BFb0076302 CaiJ.CandèsE.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.2008201956198210.1137/080738970 FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255 DyerM.FriezeA.KannanR.A random polynomial-time algorithm for approximating the volume of convex bodiesJ. ACM19913811710959160799.6810710.1145/102782.102783 Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007). D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005). DezaM.LaurentM.Geometry of Cuts and Metrics1997BerlinSpringer0885.52001 DonohoD.L.Compressed sensingIEEE Trans. Inf. Theory20065212891306224118910.1109/TIT.2006.871582 TohK.YunS.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problemsPac. J. Optim.2010661564027430471205.90218 BriedenA.GritzmannP.KannanR.KleeV.LovaszL.SimonovitsM.Approximation of diameters: randomization doesn’t helpProceedings of the 39th Annual Symposium on Foundations of Computer Science1998244251 GoemansM.WilliamsonD.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115114514122280885.6808810.1145/227683.227684 ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Program.20039629332019930501043.1401810.1007/s10107-003-0387-5 BeckmannC.SmithS.Tensorial extensions of independent component analysis for multisubject FMRI analysisNeuroImage20052529431110.1016/j.neuroimage.2004.10.043 ChandrasekaranV.SanghaviS.ParriloP.A.WillskyA.S.Rank-sparsity incoherence for matrix decompositionSIAM J. Optim.20112157259628174791226.9006710.1137/090761793 DavidsonK.R.SzarekS.J.Local operator theory, random matrices and Banach spacesHandbook of the Geometry of Banach Spaces200131736610.1016/S1874-5849(01)80010-3 GouveiaJ.ParriloP.ThomasR.Theta bodies for polynomial idealsSIAM J. Optim.2010202097211826300351213.9019010.1137/090746525 AlonN.NaorA.Approximating the cut-norm via Grothendieck’s inequalitySIAM J. Comput.20063578780322035671096.6816310.1137/S0097539704441629 DonohoD.TannerJ.Counting the faces of randomly-projected hypercubes and orthants with applicationsDiscrete Comput. Geom.20104352254125878351191.5200410.1007/s00454-009-9221-z CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006524895091231.9401710.1109/TIT.2005.862083 S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010). PolakE.Optimization: Algorithms and Consistent Approximations1997BerlinSpringer0899.90148 JonesL.A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network trainingAnn. Stat.1992206086130746.6206010.1214/aos/1176348546 MatoušekJ.Lectures on Discrete Geometry2002BerlinSpringer0999.5200610.1007/978-1-4613-0039-7 DaubechiesI.DefrieseM.De MolC.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.2004LVII1413145710.1002/cpa.20042 J. Harris, Algebraic Geometry: A First Course (Springer, Berlin). MaS.GoldfarbD.ChenL.Fixed point and Bregman iterative methods for matrix rank minimizationMath. Program.201112832135328109611221.6514610.1007/s10107-009-0306-5 BertsekasD.Constrained Optimization and Lagrange Multiplier Methods2007NashuaAthena Scientific HauptJ.BajwaW.U.RazG.NowakR.Toeplitz compressed sensing matrices with applications to sparse channel estimationIEEE Trans. Inform. Theory2010561158625875280893810.1109/TIT.2010.2070191 LöfbergJ.YALMIP: A toolbox for modeling and optimization in MATLABProceedings of the CACSD Conference2004Available from http://control.ee.ethz.ch/~joloef/yalmip.php K. Toh, M. Todd, R. Tutuncu, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html. RechtB.XuW.HassibiB.Null space conditions and thresholds for rank minimizationMath. Program., Ser. B201112717521127767141211.9017210.1007/s10107-010-0422-2 RudelsonM.VershyninR.Sparse reconstruction by convex relaxation: Fourier and Gaussian measurementsCISS 2006 (40th Annual Conference on Information Sciences and Systems)2006 PisierG.Remarques sur un résultat non publié de B. Maurey1981PalaiseauEcole Polytechnique Centre de Mathematiques BertsekasD.NedicA.OzdaglarA.Convex Analysis and Optimization2003NashuaAthena Scientific1140.90001 BickelP.RitovY.TsybakovA.Simultaneous analysis of Lasso and Dantzig selectorAnn. Stat.2009371705173225334691173.6202210.1214/08-AOS620 BarronA.Universal approximation bounds for superpositions of a sigmoidal functionIEEE Trans. Inf. Theory19933993094512377200818.6812610.1109/18.256500 de SilvaV.LimL.Tensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X GordonY.On Milman’s inequality and random subspaces which escape through a mesh in ℝnGeometric Aspects of Functional Analysis, Israel Seminar 1986–198719888410610.1007/BFb0081737 DonohoD.TannerJ.Counting faces of randomly-projected polytopes when the projection radically lowers dimensionJ. Am. Math. Soc.20092215324490531206.5201010.1090/S0894-0347-08-00600-0 XuW.HassibiB.Compressive sensing over the Grassmann manifold: a unified geometric frameworkIEEE Trans. Inform. Theory2011571068946919288227010.1109/TIT.2011.2165825 RauhutH.Circulant and Toeplitz matrices in compressed sensingProceedings of SPARS’092009 NesterovY.Introductory Lectures on Convex Optimization2004AmsterdamKluwer Academic1086.90045 CandèsE.LiX.MaY.WrightJ.Robust principal component analysis?J. ACM20115813710.1145/1970392.1970395 JagabathulaS.ShahD.Inferring rankings using constrained sensingIEEE Trans. Inf. Theory20115772887306288365610.1109/TIT.2011.2165827 M. Stojnic, Various thresholds for ℓ1-optimization in compressed sensing, Preprint, arXiv:0907.3666 (2009). ZieglerG.Lectures on Polytopes1995BerlinSpringer0823.5200210.1007/978-1-4613-8431-1 LedouxM.The Concentration of Measure Phenomenon2000ProvidenceAmerican Mathematical Society LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004 WrightS.NowakR.FigueiredoM.Sparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892 CombettesP.WajsV.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.200541168120022038491179.9403110.1137/050626090 M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002). FukushimaM.MineH.A generalized proximal point algorithm for certain non-convex minimization problemsInt. J. Inf. Syst. Sci.19811298910006280840467.6502810.1080/00207728108963798 KlainD.RotaG.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004 CandèsE.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory2005514203421510.1109/TIT.2005.858979 HaleT.YinW.ZhangY.A fixed-point continuation method for ℓ1-regularized minimization: methodology and convergenceSIAM J. Optim.2008191107113024607341180.6507610.1137/070698920 DonohoD.L.For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solutionCommun. Pure Appl. Math.20065979782922176061113.1500410.1002/cpa.20132 MangasarianO.RechtB.Probability of unique integer solution to a system of linear equationsEur. J. Oper. Res.2011214273028047891218.9011210.1016/j.ejor.2011.04.010 KoldaT.BaderB.Tensor decompositions and applicationsSIAM Rev.20095145550025350561173.6502910.1137/07070111X YinW.OsherS.DarbonJ.GoldfarbD.Bregman iterative algorithms for compressed sensing and related problemsSIAM J. Imaging Sci.2008114316824758281203.9015310.1137/070703983 SrebroN.ShraibmanA.Rank, trace-norm and max-norm18th Annual Conference on Learning Theory (COLT)2005 DudleyR.M.The sizes of compact subsets of Hilbert space and continuity of Gaussian processesJ. Funct. Anal.196712903302203400188.2050210.1016/0022-1236(67)90017-1 van de GeerS.BühlmannP.On the conditions used to prove oracle results for the LassoElectron. J. Stat.2009313601392257631610.1214/09-EJS506 KoldaT.Orthogonal tensor decompositionsSIAM J. Matrix Anal. Appl.20012324325518566081005.1502010.1137/S0895479800368354 DonohoD.TannerJ.Sparse nonnegative solution of underdetermined line E.J. Candès (9135_CR16) 2006; 52 T. Kolda (9135_CR47) 2009; 51 D. Klain (9135_CR45) 1997 G. Pisier (9135_CR59) 1981 G. Ziegler (9135_CR76) 1995 F.F. Bonsall (9135_CR10) 1991; 42 J. Matoušek (9135_CR53) 2002 W. Yin (9135_CR75) 2008; 1 T. Hale (9135_CR40) 2008; 19 9135_CR57 P. Combettes (9135_CR20) 2005; 4 B. Recht (9135_CR64) 2011; 127 9135_CR55 9135_CR54 S. Geer van de (9135_CR72) 2009; 3 D.L. Donoho (9135_CR27) 2006; 59 M. Dyer (9135_CR33) 1991; 38 Y. Nesterov (9135_CR56) 2004 J. Cai (9135_CR13) 2009; 78 E. Candès (9135_CR18) 2005; 51 C. Beckmann (9135_CR5) 2005; 25 H. Rauhut (9135_CR62) 2009 M. Figueiredo (9135_CR35) 2003; 12 S. Jagabathula (9135_CR43) 2011; 57 9135_CR41 M. Rudelson (9135_CR66) 2006 P. Bickel (9135_CR8) 2009; 37 S. Ma (9135_CR51) 2011; 128 A. Brieden (9135_CR11) 1998 O. Mangasarian (9135_CR52) 2011; 214 V. Silva de (9135_CR23) 2008; 30 G. Pisier (9135_CR60) 1986 M. Fukushima (9135_CR36) 1981; 12 W. Xu (9135_CR74) 2011; 57 L. Jones (9135_CR44) 1992; 20 K. Toh (9135_CR71) 2010; 6 B. Recht (9135_CR63) 2010; 52 R. DeVore (9135_CR24) 1996; 5 R.T. Rockafellar (9135_CR65) 1970 I. Daubechies (9135_CR21) 2004; LVII P.A. Parrilo (9135_CR58) 2003; 96 9135_CR34 D.L. Donoho (9135_CR28) 2006; 52 A. Barvinok (9135_CR4) 2002 D. Donoho (9135_CR30) 2009; 22 A. Barron (9135_CR3) 1993; 39 M. Ledoux (9135_CR49) 1991 9135_CR70 S. Wright (9135_CR73) 2009; 57 T. Kolda (9135_CR46) 2001; 23 M. Ledoux (9135_CR48) 2000 N. Alon (9135_CR2) 2006; 35 D. Bertsekas (9135_CR6) 2007 E. Candès (9135_CR14) 2011; 58 J. Bochnak (9135_CR9) 1988 E.J. Candès (9135_CR17) 2009; 9 Y. Gordon (9135_CR38) 1988 E. Polak (9135_CR61) 1997 K.R. Davidson (9135_CR22) 2001 N. Srebro (9135_CR68) 2005 E. Candès (9135_CR15) 2011; 57 R.M. Dudley (9135_CR32) 1967; 1 V. Chandrasekaran (9135_CR19) 2011; 21 9135_CR26 9135_CR69 9135_CR67 J. Haupt (9135_CR42) 2010; 56 D. Donoho (9135_CR29) 2005; 102 J. Löfberg (9135_CR50) 2004 J. Cai (9135_CR12) 2008; 20 D. Donoho (9135_CR31) 2010; 43 D. Bertsekas (9135_CR7) 2003 J. Gouveia (9135_CR39) 2010; 20 S. Aja-Fernandez (9135_CR1) 2009 M. Goemans (9135_CR37) 1995; 42 M. Deza (9135_CR25) 1997 |
| References_xml | – reference: BarvinokA.A Course in Convexity2002ProvidenceAmerican Mathematical Society1014.52001 – reference: WrightS.NowakR.FigueiredoM.Sparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892 – reference: RauhutH.Circulant and Toeplitz matrices in compressed sensingProceedings of SPARS’092009 – reference: DavidsonK.R.SzarekS.J.Local operator theory, random matrices and Banach spacesHandbook of the Geometry of Banach Spaces200131736610.1016/S1874-5849(01)80010-3 – reference: Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007). – reference: LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004 – reference: FukushimaM.MineH.A generalized proximal point algorithm for certain non-convex minimization problemsInt. J. Inf. Syst. Sci.19811298910006280840467.6502810.1080/00207728108963798 – reference: NesterovY.Introductory Lectures on Convex Optimization2004AmsterdamKluwer Academic1086.90045 – reference: RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401 – reference: SrebroN.ShraibmanA.Rank, trace-norm and max-norm18th Annual Conference on Learning Theory (COLT)2005 – reference: MatoušekJ.Lectures on Discrete Geometry2002BerlinSpringer0999.5200610.1007/978-1-4613-0039-7 – reference: D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005). – reference: MaS.GoldfarbD.ChenL.Fixed point and Bregman iterative methods for matrix rank minimizationMath. Program.201112832135328109611221.6514610.1007/s10107-009-0306-5 – reference: KoldaT.Orthogonal tensor decompositionsSIAM J. Matrix Anal. Appl.20012324325518566081005.1502010.1137/S0895479800368354 – reference: KoldaT.BaderB.Tensor decompositions and applicationsSIAM Rev.20095145550025350561173.6502910.1137/07070111X – reference: van de GeerS.BühlmannP.On the conditions used to prove oracle results for the LassoElectron. J. Stat.2009313601392257631610.1214/09-EJS506 – reference: PisierG.Remarques sur un résultat non publié de B. Maurey1981PalaiseauEcole Polytechnique Centre de Mathematiques – reference: CandèsE.PlanY.Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurementsIEEE Trans. Inf. Theory2011572342235910.1109/TIT.2011.2111771 – reference: BertsekasD.Constrained Optimization and Lagrange Multiplier Methods2007NashuaAthena Scientific – reference: MangasarianO.RechtB.Probability of unique integer solution to a system of linear equationsEur. J. Oper. Res.2011214273028047891218.9011210.1016/j.ejor.2011.04.010 – reference: CaiJ.CandèsE.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.2008201956198210.1137/080738970 – reference: CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006524895091231.9401710.1109/TIT.2005.862083 – reference: GouveiaJ.ParriloP.ThomasR.Theta bodies for polynomial idealsSIAM J. Optim.2010202097211826300351213.9019010.1137/090746525 – reference: HauptJ.BajwaW.U.RazG.NowakR.Toeplitz compressed sensing matrices with applications to sparse channel estimationIEEE Trans. Inform. Theory2010561158625875280893810.1109/TIT.2010.2070191 – reference: K. Toh, M. Todd, R. Tutuncu, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html. – reference: BeckmannC.SmithS.Tensorial extensions of independent component analysis for multisubject FMRI analysisNeuroImage20052529431110.1016/j.neuroimage.2004.10.043 – reference: R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes, Preprint, arXiv:0911.5436 (2009). – reference: LedouxM.The Concentration of Measure Phenomenon2000ProvidenceAmerican Mathematical Society – reference: RechtB.FazelM.ParriloP.A.Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimizationSIAM Rev.20105247150126805431198.9032110.1137/070697835 – reference: YinW.OsherS.DarbonJ.GoldfarbD.Bregman iterative algorithms for compressed sensing and related problemsSIAM J. Imaging Sci.2008114316824758281203.9015310.1137/070703983 – reference: Aja-FernandezS.GarciaR.TaoD.LiX.Tensors in Image Processing and Computer Vision2009BerlinSpringer1175.6800210.1007/978-1-84882-299-3 – reference: GordonY.On Milman’s inequality and random subspaces which escape through a mesh in ℝnGeometric Aspects of Functional Analysis, Israel Seminar 1986–198719888410610.1007/BFb0081737 – reference: ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Program.20039629332019930501043.1401810.1007/s10107-003-0387-5 – reference: PolakE.Optimization: Algorithms and Consistent Approximations1997BerlinSpringer0899.90148 – reference: BickelP.RitovY.TsybakovA.Simultaneous analysis of Lasso and Dantzig selectorAnn. Stat.2009371705173225334691173.6202210.1214/08-AOS620 – reference: S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010). – reference: CandèsE.LiX.MaY.WrightJ.Robust principal component analysis?J. ACM20115813710.1145/1970392.1970395 – reference: JonesL.A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network trainingAnn. Stat.1992206086130746.6206010.1214/aos/1176348546 – reference: ChandrasekaranV.SanghaviS.ParriloP.A.WillskyA.S.Rank-sparsity incoherence for matrix decompositionSIAM J. Optim.20112157259628174791226.9006710.1137/090761793 – reference: de SilvaV.LimL.Tensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X – reference: M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002). – reference: DezaM.LaurentM.Geometry of Cuts and Metrics1997BerlinSpringer0885.52001 – reference: DonohoD.TannerJ.Counting faces of randomly-projected polytopes when the projection radically lowers dimensionJ. Am. Math. Soc.20092215324490531206.5201010.1090/S0894-0347-08-00600-0 – reference: CandèsE.J.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009971777225652401219.9012410.1007/s10208-009-9045-5 – reference: JagabathulaS.ShahD.Inferring rankings using constrained sensingIEEE Trans. Inf. Theory20115772887306288365610.1109/TIT.2011.2165827 – reference: AlonN.NaorA.Approximating the cut-norm via Grothendieck’s inequalitySIAM J. Comput.20063578780322035671096.6816310.1137/S0097539704441629 – reference: M. Stojnic, Various thresholds for ℓ1-optimization in compressed sensing, Preprint, arXiv:0907.3666 (2009). – reference: DaubechiesI.DefrieseM.De MolC.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.2004LVII1413145710.1002/cpa.20042 – reference: BochnakJ.CosteM.RoyM.Real Algebraic Geometry1988BerlinSpringer – reference: DonohoD.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA200510294469451216871510.1073/pnas.0502269102 – reference: RudelsonM.VershyninR.Sparse reconstruction by convex relaxation: Fourier and Gaussian measurementsCISS 2006 (40th Annual Conference on Information Sciences and Systems)2006 – reference: TohK.YunS.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problemsPac. J. Optim.2010661564027430471205.90218 – reference: BarronA.Universal approximation bounds for superpositions of a sigmoidal functionIEEE Trans. Inf. Theory19933993094512377200818.6812610.1109/18.256500 – reference: BertsekasD.NedicA.OzdaglarA.Convex Analysis and Optimization2003NashuaAthena Scientific1140.90001 – reference: DeVoreR.TemlyakovV.Some remarks on greedy algorithmsAdv. Comput. Math.1996517318713993790857.6501610.1007/BF02124742 – reference: DonohoD.L.For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solutionCommun. Pure Appl. Math.20065979782922176061113.1500410.1002/cpa.20132 – reference: XuW.HassibiB.Compressive sensing over the Grassmann manifold: a unified geometric frameworkIEEE Trans. Inform. Theory2011571068946919288227010.1109/TIT.2011.2165825 – reference: ZieglerG.Lectures on Polytopes1995BerlinSpringer0823.5200210.1007/978-1-4613-8431-1 – reference: BonsallF.F.A general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math.19914291410943370747.4600710.1093/qmath/42.1.9 – reference: DonohoD.TannerJ.Counting the faces of randomly-projected hypercubes and orthants with applicationsDiscrete Comput. Geom.20104352254125878351191.5200410.1007/s00454-009-9221-z – reference: KlainD.RotaG.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004 – reference: RechtB.XuW.HassibiB.Null space conditions and thresholds for rank minimizationMath. Program., Ser. B201112717521127767141211.9017210.1007/s10107-010-0422-2 – reference: CaiJ.OsherS.ShenZ.Linearized Bregman iterations for compressed sensingMath. Comput.2009781515153625010611198.6510210.1090/S0025-5718-08-02189-3 – reference: CombettesP.WajsV.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.200541168120022038491179.9403110.1137/050626090 – reference: J. Harris, Algebraic Geometry: A First Course (Springer, Berlin). – reference: Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997). – reference: FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255 – reference: BriedenA.GritzmannP.KannanR.KleeV.LovaszL.SimonovitsM.Approximation of diameters: randomization doesn’t helpProceedings of the 39th Annual Symposium on Foundations of Computer Science1998244251 – reference: DudleyR.M.The sizes of compact subsets of Hilbert space and continuity of Gaussian processesJ. Funct. Anal.196712903302203400188.2050210.1016/0022-1236(67)90017-1 – reference: DonohoD.L.Compressed sensingIEEE Trans. Inf. Theory20065212891306224118910.1109/TIT.2006.871582 – reference: DyerM.FriezeA.KannanR.A random polynomial-time algorithm for approximating the volume of convex bodiesJ. ACM19913811710959160799.6810710.1145/102782.102783 – reference: HaleT.YinW.ZhangY.A fixed-point continuation method for ℓ1-regularized minimization: methodology and convergenceSIAM J. Optim.2008191107113024607341180.6507610.1137/070698920 – reference: LöfbergJ.YALMIP: A toolbox for modeling and optimization in MATLABProceedings of the CACSD Conference2004Available from http://control.ee.ethz.ch/~joloef/yalmip.php – reference: PisierG.Probabilistic methods in the geometry of Banach spacesProbability and Analysis198616724110.1007/BFb0076302 – reference: CandèsE.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory2005514203421510.1109/TIT.2005.858979 – reference: GoemansM.WilliamsonD.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115114514122280885.6808810.1145/227683.227684 – volume: 52 start-page: 471 year: 2010 ident: 9135_CR63 publication-title: SIAM Rev. doi: 10.1137/070697835 – start-page: 84 volume-title: Geometric Aspects of Functional Analysis, Israel Seminar 1986–1987 year: 1988 ident: 9135_CR38 doi: 10.1007/BFb0081737 – volume: 6 start-page: 615 year: 2010 ident: 9135_CR71 publication-title: Pac. J. Optim. – volume: 30 start-page: 1084 year: 2008 ident: 9135_CR23 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/06066518X – volume: 25 start-page: 294 year: 2005 ident: 9135_CR5 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.043 – volume-title: Proceedings of SPARS’09 year: 2009 ident: 9135_CR62 – volume: 9 start-page: 717 year: 2009 ident: 9135_CR17 publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – ident: 9135_CR69 – volume-title: CISS 2006 (40th Annual Conference on Information Sciences and Systems) year: 2006 ident: 9135_CR66 – volume: 51 start-page: 4203 year: 2005 ident: 9135_CR18 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858979 – volume: 1 start-page: 290 year: 1967 ident: 9135_CR32 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(67)90017-1 – volume-title: Tensors in Image Processing and Computer Vision year: 2009 ident: 9135_CR1 doi: 10.1007/978-1-84882-299-3 – volume: 58 start-page: 1 year: 2011 ident: 9135_CR14 publication-title: J. ACM doi: 10.1145/1970392.1970395 – volume: 128 start-page: 321 year: 2011 ident: 9135_CR51 publication-title: Math. Program. doi: 10.1007/s10107-009-0306-5 – volume-title: 18th Annual Conference on Learning Theory (COLT) year: 2005 ident: 9135_CR68 – volume: 35 start-page: 787 year: 2006 ident: 9135_CR2 publication-title: SIAM J. Comput. doi: 10.1137/S0097539704441629 – volume: 102 start-page: 9446 year: 2005 ident: 9135_CR29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502269102 – volume: 59 start-page: 797 year: 2006 ident: 9135_CR27 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20132 – volume: 20 start-page: 608 year: 1992 ident: 9135_CR44 publication-title: Ann. Stat. doi: 10.1214/aos/1176348546 – volume: 42 start-page: 9 year: 1991 ident: 9135_CR10 publication-title: Q. J. Math. doi: 10.1093/qmath/42.1.9 – volume-title: Lectures on Discrete Geometry year: 2002 ident: 9135_CR53 doi: 10.1007/978-1-4613-0039-7 – volume: 23 start-page: 243 year: 2001 ident: 9135_CR46 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479800368354 – volume-title: Constrained Optimization and Lagrange Multiplier Methods year: 2007 ident: 9135_CR6 – volume-title: Remarques sur un résultat non publié de B. Maurey year: 1981 ident: 9135_CR59 – volume: 52 start-page: 1289 year: 2006 ident: 9135_CR28 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume-title: Probability in Banach Spaces year: 1991 ident: 9135_CR49 doi: 10.1007/978-3-642-20212-4 – volume-title: Convex Analysis year: 1970 ident: 9135_CR65 doi: 10.1515/9781400873173 – volume: 57 start-page: 6894 issue: 10 year: 2011 ident: 9135_CR74 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2011.2165825 – ident: 9135_CR70 – start-page: 317 volume-title: Handbook of the Geometry of Banach Spaces year: 2001 ident: 9135_CR22 doi: 10.1016/S1874-5849(01)80010-3 – volume-title: Real Algebraic Geometry year: 1988 ident: 9135_CR9 – volume: 37 start-page: 1705 year: 2009 ident: 9135_CR8 publication-title: Ann. Stat. doi: 10.1214/08-AOS620 – volume-title: Proceedings of the CACSD Conference year: 2004 ident: 9135_CR50 – ident: 9135_CR67 – volume-title: Introduction to Geometric Probability year: 1997 ident: 9135_CR45 – start-page: 167 volume-title: Probability and Analysis year: 1986 ident: 9135_CR60 doi: 10.1007/BFb0076302 – volume: 4 start-page: 1168 year: 2005 ident: 9135_CR20 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – start-page: 244 volume-title: Proceedings of the 39th Annual Symposium on Foundations of Computer Science year: 1998 ident: 9135_CR11 – volume-title: Introductory Lectures on Convex Optimization year: 2004 ident: 9135_CR56 doi: 10.1007/978-1-4419-8853-9 – volume-title: Convex Analysis and Optimization year: 2003 ident: 9135_CR7 – volume: 43 start-page: 522 year: 2010 ident: 9135_CR31 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-009-9221-z – volume-title: Optimization: Algorithms and Consistent Approximations year: 1997 ident: 9135_CR61 doi: 10.1007/978-1-4612-0663-7 – volume: 127 start-page: 175 year: 2011 ident: 9135_CR64 publication-title: Math. Program., Ser. B doi: 10.1007/s10107-010-0422-2 – volume: 12 start-page: 989 year: 1981 ident: 9135_CR36 publication-title: Int. J. Inf. Syst. Sci. doi: 10.1080/00207728108963798 – volume: 19 start-page: 1107 year: 2008 ident: 9135_CR40 publication-title: SIAM J. Optim. doi: 10.1137/070698920 – ident: 9135_CR54 – volume: 57 start-page: 2479 year: 2009 ident: 9135_CR73 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2016892 – volume: 20 start-page: 2097 year: 2010 ident: 9135_CR39 publication-title: SIAM J. Optim. doi: 10.1137/090746525 – volume: 42 start-page: 1115 year: 1995 ident: 9135_CR37 publication-title: J. ACM doi: 10.1145/227683.227684 – ident: 9135_CR26 doi: 10.1007/s00454-005-1220-0 – volume: 3 start-page: 1360 year: 2009 ident: 9135_CR72 publication-title: Electron. J. Stat. doi: 10.1214/09-EJS506 – volume: 21 start-page: 572 year: 2011 ident: 9135_CR19 publication-title: SIAM J. Optim. doi: 10.1137/090761793 – volume: 51 start-page: 455 year: 2009 ident: 9135_CR47 publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 57 start-page: 2342 year: 2011 ident: 9135_CR15 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2111771 – volume: 39 start-page: 930 year: 1993 ident: 9135_CR3 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.256500 – volume: 56 start-page: 5862 issue: 11 year: 2010 ident: 9135_CR42 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2070191 – volume: 96 start-page: 293 year: 2003 ident: 9135_CR58 publication-title: Math. Program. doi: 10.1007/s10107-003-0387-5 – volume: 38 start-page: 1 year: 1991 ident: 9135_CR33 publication-title: J. ACM doi: 10.1145/102782.102783 – ident: 9135_CR41 – volume: 57 start-page: 7288 year: 2011 ident: 9135_CR43 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2165827 – ident: 9135_CR57 – volume: 78 start-page: 1515 year: 2009 ident: 9135_CR13 publication-title: Math. Comput. doi: 10.1090/S0025-5718-08-02189-3 – volume: 214 start-page: 27 year: 2011 ident: 9135_CR52 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2011.04.010 – volume: 12 start-page: 906 year: 2003 ident: 9135_CR35 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.814255 – volume-title: Geometry of Cuts and Metrics year: 1997 ident: 9135_CR25 doi: 10.1007/978-3-642-04295-9 – volume: LVII start-page: 1413 year: 2004 ident: 9135_CR21 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20042 – volume-title: The Concentration of Measure Phenomenon year: 2000 ident: 9135_CR48 – ident: 9135_CR55 – volume-title: Lectures on Polytopes year: 1995 ident: 9135_CR76 doi: 10.1007/978-1-4613-8431-1 – ident: 9135_CR34 – volume-title: A Course in Convexity year: 2002 ident: 9135_CR4 doi: 10.1090/gsm/054 – volume: 1 start-page: 143 year: 2008 ident: 9135_CR75 publication-title: SIAM J. Imaging Sci. doi: 10.1137/070703983 – volume: 5 start-page: 173 year: 1996 ident: 9135_CR24 publication-title: Adv. Comput. Math. doi: 10.1007/BF02124742 – volume: 52 start-page: 489 year: 2006 ident: 9135_CR16 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.862083 – volume: 22 start-page: 1 year: 2009 ident: 9135_CR30 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-08-00600-0 – volume: 20 start-page: 1956 year: 2008 ident: 9135_CR12 publication-title: SIAM J. Optim. doi: 10.1137/080738970 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.5495474 |
| Snippet | In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 805 |
| SubjectTerms | Algebra Applications of Mathematics Atomic structure Computational mathematics Computer Science Economics Geometry Inverse problems Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matrices Matrix methods Matrix Theory Norms Numerical Analysis Optimization Programming |
| Title | The Convex Geometry of Linear Inverse Problems |
| URI | https://link.springer.com/article/10.1007/s10208-012-9135-7 https://www.proquest.com/docview/1115056275 https://www.proquest.com/docview/1221895440 |
| Volume | 12 |
| WOSCitedRecordID | wos000310338700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06lYnRLBJyWytsnSPspw-uIYfrG3krYJCNpJu4n-9166Zpuigr42aVruI_mFu_sdwLFQOggQGaPxspSy1E1onPA2lUoqFuIFoRXKstmE6PWCwSDsV3Xchc12tyHJcqeeK3bzysQrz0SLORWLsISnXWC88eb2YRo64GFJ6G2QDPV9wW0o87slPh9GM4T5JShanjXd-r_-cgPWK2hJzie2sAkLKmtAvYKZpHLiAh_ZTg72WQNWbH0yDq9dT5lciy04QzsiHZOa_kYu1fBZjfJ3MtQE77DoI8TQdOSFIv1JX5piG-67F3edK1r1WKAJAokR1Ypx3Rau1m1l7jqJdhVXhlHGk0ks01gEfmrqb2WIWgsQf_kidpngrM2UwW87UMuGmdoFkoY6TTyNCvYl82JDOuxKFzfbOEUMJlwHWlbYUVIRkJs-GE_RjDrZCC9C4UVGeJFw4GT6ysuEfeO3yU2rwahyxMJccEqMJ7gDR9NhdCETF5GZGo5xjoc4J-SMtRw4tVqdW-KnD-79afY-rHrGLMpUmCbURvlYHcBy8jp6LPLD0oY_ANi75tE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4nRrBJ6WytsnSPspwTtzG0Cl7K2mbgKCbrJ3of--la7YpKuhrk6blfiRfuLvvAE64VJ6HyBiNl8YWje3ICiNWs4QUkvp4Qaj6Ims2wTsdr9_3u3kdd2Ky3U1IMtup54rdnCzxytHRYmbxRViieGDpPL7bu4dp6ID5GaG3RjKW63JmQpnfLfH5MJohzC9B0eysaRT_9ZcbsJ5DS3IxsYVNWJCDEhRzmElyJ07wkenkYJ6VYMXUJ-PwWnvK5JpswTnaEanr1PQ3ciWHzzIdvZOhIniHRR8hmqZjlEjSnfSlSbbhvnHZqzetvMeCFSGQSC0lKVM1bitVk_quEylbMqkZZRwRhSIOuefGuv5W-Kg1D_GXy0ObckZrVGr8tgOFwXAgd4HEvoojR6GCXUGdUJMO28LGzTaMEYNxuwxVI-wgygnIdR-Mp2BGnayFF6DwAi28gJfhdPrKy4R947fJFaPBIHfERF9wMozHWRmOp8PoQjouIgZyOMY5DuIcn1FaLcOZ0ercEj99cO9Ps49gpdlrt4LWdedmH1YdbSJZWkwFCuloLA9gOXpNH5PRYWbPH7Kd6bU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688HjwFtczgk9K3W2bbNpHUVdFXRY88K2kbQKCdmVbRf-9M91mPVBBfE3StMzRfMNMvgHYltoEASJjNF6eOjx1EydORNNRWmkeYoDQCFXZbEK228Htbdip-pzmttrdpiT7dxqIpSkr6o-pqX-4-OaVRVgeZY6FI4dhlFPPIArXL28GaQQRluTehGoc35fCpjW_2-LzwfSONr8kSMtzpzXz7y-ehekKcrL9vo3MwZDO5mGmgp-scu4ch2yHBzs2DxP23jJOT10MGF7zBdhD-2IHVLL-wo5190EXvVfWNQxjW_QdRvQdvVyzTr9fTb4I162jq4MTp-q94CQIMArHaC5MU7rGNDXFQIlxtdDENOOpJFZpLAM_pXu5KkRtBojLfBm7XAre5Jpw3RKMZN1MLwNLQ5MmnkHF-4p7MZERu8rFn3CcIjaTbg0aVvBRUhGTU3-M--idUpmEF6HwIhJeJGuwM3jksc_K8dviNavNqHLQnAKfEvtJUYOtwTS6FuVLVKa7T7jGQ_wTCs4bNdi1Gv6wxU8vXPnT6k0Y7xy2ovPT9tkqTHpkIWW1zBqMFL0nvQ5jyXNxl_c2StN-A4py8pk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Convex+Geometry+of+Linear+Inverse+Problems&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Chandrasekaran%2C+Venkat&rft.au=Recht%2C+Benjamin&rft.au=Parrilo%2C+Pablo+A&rft.au=Willsky%2C+Alan+S&rft.date=2012-12-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=12&rft.issue=6&rft.spage=805&rft.epage=849&rft_id=info:doi/10.1007%2Fs10208-012-9135-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |