The Convex Geometry of Linear Inverse Problems

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Foundations of computational mathematics Ročník 12; číslo 6; s. 805 - 849
Hlavní autoři: Chandrasekaran, Venkat, Recht, Benjamin, Parrilo, Pablo A., Willsky, Alan S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.12.2012
Springer Nature B.V
Témata:
ISSN:1615-3375, 1615-3383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm . The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.
AbstractList In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.
In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm . The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.
In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.[PUBLICATION ABSTRACT]
Author Chandrasekaran, Venkat
Recht, Benjamin
Parrilo, Pablo A.
Willsky, Alan S.
Author_xml – sequence: 1
  givenname: Venkat
  surname: Chandrasekaran
  fullname: Chandrasekaran, Venkat
  email: venkatc@caltech.edu
  organization: Department of Computing and Mathematical Sciences, California Institute of Technology
– sequence: 2
  givenname: Benjamin
  surname: Recht
  fullname: Recht, Benjamin
  organization: Computer Sciences Department, University of Wisconsin
– sequence: 3
  givenname: Pablo A.
  surname: Parrilo
  fullname: Parrilo, Pablo A.
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 4
  givenname: Alan S.
  surname: Willsky
  fullname: Willsky, Alan S.
  organization: Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology
BookMark eNp9kE1Lw0AQhhepYK3-AG8BL15Sd_YjmxylaC0U9FDPyyad1ZQkW3dTsf_eLRGRgp5mYJ5nZnjPyahzHRJyBXQKlKrbAJTRPKXA0gK4TNUJGUMGMuU856OfXskzch7ChlKQBYgxma7eMJm57gM_kzm6Fnu_T5xNlnWHxieLOPABk2fvygbbcEFOrWkCXn7XCXl5uF_NHtPl03wxu1umlZSiTy0KaTMF1mYo4unKAkqkIDJmqtKsS5XzNc1ZYQpamJxxxlUJQkmRCaQ05xNyM-zdeve-w9Drtg4VNo3p0O2CBsYgL6QQNKLXR-jG7XwXv9MAIKnMmJKRUgNVeReCR6urujd97brem7rRQPUhRz3kqGOO-pCjVtGEI3Pr69b4_b8OG5wQ2e4V_a-f_pS-AD9mg6Y
CODEN FCMOA3
CitedBy_id crossref_primary_10_3390_s20216111
crossref_primary_10_1016_j_sigpro_2016_10_010
crossref_primary_10_1109_TIT_2025_3550960
crossref_primary_10_1109_MCS_2023_3291625
crossref_primary_10_1214_18_AOS1742
crossref_primary_10_1007_s10463_018_0693_6
crossref_primary_10_1016_j_sigpro_2021_108061
crossref_primary_10_1109_TSP_2018_2872012
crossref_primary_10_1109_TSP_2015_2472365
crossref_primary_10_1007_s10208_018_9386_z
crossref_primary_10_1155_2021_2999001
crossref_primary_10_3389_fams_2023_1153184
crossref_primary_10_1109_TSP_2020_3032234
crossref_primary_10_1007_s10107_023_01975_z
crossref_primary_10_1109_TCSVT_2016_2595328
crossref_primary_10_1016_j_sigpro_2016_09_018
crossref_primary_10_1109_TPAMI_2017_2780094
crossref_primary_10_1017_S0962492920000021
crossref_primary_10_1109_TVT_2018_2817638
crossref_primary_10_1145_3458825
crossref_primary_10_1109_TIT_2016_2642993
crossref_primary_10_1016_j_automatica_2014_01_001
crossref_primary_10_1109_TIT_2018_2842216
crossref_primary_10_1214_23_AOS2301
crossref_primary_10_1080_03610926_2019_1670846
crossref_primary_10_1016_j_acha_2016_02_003
crossref_primary_10_1121_1_4996460
crossref_primary_10_1007_s11228_025_00741_x
crossref_primary_10_1007_s11075_020_01029_x
crossref_primary_10_1109_TIT_2014_2368122
crossref_primary_10_1137_21M1455000
crossref_primary_10_1137_17M1113436
crossref_primary_10_1109_TAC_2017_2723959
crossref_primary_10_1109_TIT_2021_3095375
crossref_primary_10_1109_ACCESS_2019_2915189
crossref_primary_10_1109_TCSVT_2019_2936135
crossref_primary_10_1007_s10107_015_0937_7
crossref_primary_10_1109_TSP_2022_3176491
crossref_primary_10_1016_j_acha_2020_12_002
crossref_primary_10_1137_18M1220790
crossref_primary_10_1016_j_sigpro_2019_07_012
crossref_primary_10_3390_rs16142517
crossref_primary_10_1109_ACCESS_2019_2928130
crossref_primary_10_1007_s10107_023_02040_5
crossref_primary_10_1109_TIT_2018_2841379
crossref_primary_10_1109_TSP_2017_2669900
crossref_primary_10_1109_LCSYS_2020_3045664
crossref_primary_10_1109_TWC_2024_3495978
crossref_primary_10_1088_2040_8986_aa65b7
crossref_primary_10_1080_01621459_2018_1434531
crossref_primary_10_1109_TMI_2014_2319055
crossref_primary_10_1214_23_AOS2327
crossref_primary_10_1109_JSTSP_2016_2543462
crossref_primary_10_1109_TIT_2016_2606500
crossref_primary_10_1038_s41746_021_00532_2
crossref_primary_10_1109_TIT_2017_2757003
crossref_primary_10_1109_LAWP_2020_3032894
crossref_primary_10_1177_0278364918784361
crossref_primary_10_2298_FIL2506797H
crossref_primary_10_1109_LAWP_2021_3103514
crossref_primary_10_3390_math11112559
crossref_primary_10_1109_TCI_2017_2761742
crossref_primary_10_1109_TIT_2022_3228508
crossref_primary_10_1109_TSP_2016_2546221
crossref_primary_10_3390_app14020595
crossref_primary_10_1109_JSTSP_2021_3066126
crossref_primary_10_1007_s10107_022_01793_9
crossref_primary_10_1109_LSP_2015_2457403
crossref_primary_10_1109_MSP_2019_2962209
crossref_primary_10_1155_2019_6797168
crossref_primary_10_1016_j_comcom_2022_09_010
crossref_primary_10_1137_19M1247115
crossref_primary_10_1137_16M1062089
crossref_primary_10_1109_TAC_2018_2813009
crossref_primary_10_1109_TIT_2023_3293830
crossref_primary_10_1007_s10208_015_9278_4
crossref_primary_10_1109_TIT_2020_2993327
crossref_primary_10_1109_TIT_2015_2403263
crossref_primary_10_1016_j_jsv_2016_01_017
crossref_primary_10_1109_TSP_2021_3087900
crossref_primary_10_1016_j_acha_2015_07_007
crossref_primary_10_1007_s10208_022_09562_y
crossref_primary_10_1214_15_AOS1324
crossref_primary_10_1109_TAES_2019_2897035
crossref_primary_10_1007_s10957_021_01956_2
crossref_primary_10_1016_j_ymssp_2019_02_011
crossref_primary_10_1109_JIOT_2018_2881486
crossref_primary_10_1109_TSP_2016_2543211
crossref_primary_10_3934_ipi_2017025
crossref_primary_10_1109_JIOT_2017_2787785
crossref_primary_10_1073_pnas_1302293110
crossref_primary_10_1093_jrsssb_qkae039
crossref_primary_10_1109_TIT_2015_2429634
crossref_primary_10_1109_TWC_2023_3292385
crossref_primary_10_1016_j_dsp_2016_09_003
crossref_primary_10_1080_2150704X_2021_1906976
crossref_primary_10_1137_17M1113874
crossref_primary_10_1007_s10208_025_09693_y
crossref_primary_10_1109_TSC_2024_3407516
crossref_primary_10_3390_rs14143439
crossref_primary_10_1109_LRA_2022_3141763
crossref_primary_10_1109_ACCESS_2015_2407194
crossref_primary_10_1109_TSP_2017_2711501
crossref_primary_10_1137_20M1337417
crossref_primary_10_1088_1361_6420_aaf9c6
crossref_primary_10_1016_j_sigpro_2019_06_023
crossref_primary_10_3390_e23020178
crossref_primary_10_1214_15_AOS1426
crossref_primary_10_1214_16_AOS1488
crossref_primary_10_1016_j_jfa_2021_108995
crossref_primary_10_1109_TIP_2024_3404338
crossref_primary_10_1109_TSP_2015_2452223
crossref_primary_10_1109_TSP_2018_2827326
crossref_primary_10_1109_LSP_2020_3039479
crossref_primary_10_1109_TSP_2017_2788431
crossref_primary_10_1109_JSEN_2021_3068351
crossref_primary_10_1109_TSP_2013_2273443
crossref_primary_10_1137_19M124071X
crossref_primary_10_1137_24M1637532
crossref_primary_10_1109_TCYB_2015_2389232
crossref_primary_10_3390_electronics8050557
crossref_primary_10_1016_j_acha_2016_12_001
crossref_primary_10_1007_s11075_018_0568_1
crossref_primary_10_1088_1361_6420_ab779b
crossref_primary_10_1109_JIOT_2023_3264790
crossref_primary_10_1186_s13634_020_00701_7
crossref_primary_10_1109_TSP_2015_2461515
crossref_primary_10_1016_j_sigpro_2017_02_011
crossref_primary_10_1145_2796314_2745854
crossref_primary_10_1109_TIT_2022_3217698
crossref_primary_10_1007_s10851_025_01263_9
crossref_primary_10_1109_TSP_2022_3170688
crossref_primary_10_1109_TGRS_2024_3395510
crossref_primary_10_1016_j_acha_2015_06_006
crossref_primary_10_1121_1_4916269
crossref_primary_10_1016_j_sigpro_2019_107406
crossref_primary_10_1109_TIT_2016_2587772
crossref_primary_10_1109_TSP_2015_2407319
crossref_primary_10_1016_j_acha_2015_10_005
crossref_primary_10_1109_TWC_2016_2535310
crossref_primary_10_3390_rs15030671
crossref_primary_10_1109_JSTSP_2012_2237381
crossref_primary_10_1109_TIT_2014_2331344
crossref_primary_10_1109_ACCESS_2022_3169135
crossref_primary_10_1109_TIT_2017_2695614
crossref_primary_10_1109_TWC_2018_2797969
crossref_primary_10_3390_sym11050638
crossref_primary_10_1007_s11081_021_09676_2
crossref_primary_10_1109_TCSII_2020_3045226
crossref_primary_10_1137_22M150071X
crossref_primary_10_1109_TSP_2022_3150964
crossref_primary_10_1137_21M142770X
crossref_primary_10_1109_TIP_2025_3539472
crossref_primary_10_1109_ACCESS_2021_3054660
crossref_primary_10_1109_TIT_2018_2826459
crossref_primary_10_1109_TSP_2017_2695566
crossref_primary_10_1007_s00041_020_09809_8
crossref_primary_10_1016_j_acha_2016_08_004
crossref_primary_10_1016_j_acha_2020_05_006
crossref_primary_10_1017_S096249291300007X
crossref_primary_10_1137_24M1629328
crossref_primary_10_1214_16_AOS1434
crossref_primary_10_1007_s10479_021_04033_z
crossref_primary_10_1109_TNNLS_2021_3134717
crossref_primary_10_1146_annurev_control_053018_023744
crossref_primary_10_1016_j_ifacol_2015_12_309
crossref_primary_10_1137_17M1136390
crossref_primary_10_1007_s10107_016_1059_6
crossref_primary_10_1155_2022_1456713
crossref_primary_10_1016_j_acha_2021_07_002
crossref_primary_10_1007_s10107_013_0738_9
crossref_primary_10_1109_TVT_2023_3341417
crossref_primary_10_1109_TSP_2022_3182224
crossref_primary_10_1007_s10440_014_9984_y
crossref_primary_10_1109_TIT_2015_2442922
crossref_primary_10_1137_21M1407902
crossref_primary_10_1109_TIP_2015_2492819
crossref_primary_10_1109_LSP_2022_3226111
crossref_primary_10_3390_en13143609
crossref_primary_10_1080_02331934_2020_1723584
crossref_primary_10_1109_TIT_2016_2553041
crossref_primary_10_1049_cmu2_12393
crossref_primary_10_1016_j_apacoust_2023_109730
crossref_primary_10_1109_LSP_2022_3159402
crossref_primary_10_3390_en13215775
crossref_primary_10_1016_j_dsp_2021_103313
crossref_primary_10_1016_j_ymssp_2022_109263
crossref_primary_10_1137_18M1183388
crossref_primary_10_1109_MSP_2013_2296605
crossref_primary_10_1109_TSP_2018_2831626
crossref_primary_10_1109_TIT_2022_3191339
crossref_primary_10_3390_s18061761
crossref_primary_10_1109_TCNS_2015_2497100
crossref_primary_10_1109_LSP_2020_3039428
crossref_primary_10_1049_iet_rsn_2019_0350
crossref_primary_10_1109_TSP_2018_2831622
crossref_primary_10_1109_LSP_2017_2700442
crossref_primary_10_1088_1742_6596_1626_1_012018
crossref_primary_10_1137_130941961
crossref_primary_10_1016_j_ymssp_2019_106425
crossref_primary_10_1109_ACCESS_2019_2950016
crossref_primary_10_1016_j_acha_2015_11_003
crossref_primary_10_1088_1361_6420_aad1c3
crossref_primary_10_1007_s43670_022_00032_8
crossref_primary_10_1214_25_EJS2419
crossref_primary_10_1109_TIT_2014_2364403
crossref_primary_10_1109_TIT_2021_3073566
crossref_primary_10_1109_TSP_2016_2580523
crossref_primary_10_1109_TCOMM_2017_2746099
crossref_primary_10_1109_TSP_2018_2885494
crossref_primary_10_1007_s10107_023_02055_y
crossref_primary_10_1109_TSP_2022_3178191
crossref_primary_10_1109_TPAMI_2016_2605097
crossref_primary_10_1007_s10107_022_01774_y
crossref_primary_10_1016_j_ifacol_2019_12_342
crossref_primary_10_1016_j_acha_2021_12_006
crossref_primary_10_1016_j_dsp_2022_103898
crossref_primary_10_1109_TCI_2020_3010360
crossref_primary_10_1109_TIM_2024_3379077
crossref_primary_10_1137_130940785
crossref_primary_10_1007_s00526_019_1658_1
crossref_primary_10_1137_18M1200750
crossref_primary_10_1088_1361_6420_aa5e12
crossref_primary_10_1109_JSTSP_2016_2539100
crossref_primary_10_1137_17M1115770
crossref_primary_10_1214_15_AOP1079
crossref_primary_10_1137_16M1093094
crossref_primary_10_1137_18M118116X
crossref_primary_10_1155_2020_3012952
crossref_primary_10_1016_j_jco_2016_12_002
crossref_primary_10_1016_j_laa_2016_04_017
crossref_primary_10_1109_TASLP_2015_2425213
crossref_primary_10_1007_s41237_017_0014_z
crossref_primary_10_1109_TSP_2015_2493987
crossref_primary_10_1109_TSP_2016_2551697
crossref_primary_10_1109_TSP_2018_2793907
crossref_primary_10_1109_TIT_2019_2932426
crossref_primary_10_1109_TPAMI_2019_2900306
crossref_primary_10_1016_j_sigpro_2019_04_024
crossref_primary_10_1214_17_AOS1566
crossref_primary_10_1109_TIT_2016_2515078
crossref_primary_10_1007_s10107_014_0774_0
crossref_primary_10_1007_s10957_025_02723_3
crossref_primary_10_1109_LSP_2020_3045343
crossref_primary_10_1109_TIT_2015_2450722
crossref_primary_10_1109_TGRS_2024_3393972
crossref_primary_10_1109_ACCESS_2020_2982413
crossref_primary_10_1109_MSP_2014_2329397
crossref_primary_10_1109_TSP_2015_2425803
crossref_primary_10_1007_s11045_019_00696_x
crossref_primary_10_1109_TIT_2016_2517008
crossref_primary_10_1109_TIT_2018_2859327
crossref_primary_10_1137_18M1172843
crossref_primary_10_1137_23M1587737
crossref_primary_10_1214_22_AOS2246
crossref_primary_10_1109_TGRS_2022_3223524
crossref_primary_10_1109_TIT_2017_2686880
crossref_primary_10_1109_TIT_2016_2632162
crossref_primary_10_1109_TSP_2013_2278516
crossref_primary_10_1109_TCSVT_2019_2907324
crossref_primary_10_1109_TIT_2018_2840720
crossref_primary_10_1214_25_AOS2489
crossref_primary_10_1007_s10851_024_01191_0
crossref_primary_10_1109_TIT_2018_2881113
crossref_primary_10_1016_j_acha_2018_09_005
crossref_primary_10_1109_TIT_2022_3188753
crossref_primary_10_1155_2021_6635220
crossref_primary_10_1121_10_0006389
crossref_primary_10_1016_j_automatica_2016_02_012
crossref_primary_10_1109_TIT_2015_2401574
crossref_primary_10_1016_j_acha_2017_01_005
crossref_primary_10_1109_TIT_2013_2293654
crossref_primary_10_1109_TIT_2018_2890194
crossref_primary_10_1109_LSP_2014_2323973
crossref_primary_10_1088_1361_6420_addffb
crossref_primary_10_1016_j_dsp_2021_103266
crossref_primary_10_1109_TSP_2023_3254140
crossref_primary_10_1007_s00034_016_0296_5
crossref_primary_10_1007_s11222_015_9574_5
crossref_primary_10_1049_iet_spr_2017_0366
crossref_primary_10_1007_s10107_022_01809_4
crossref_primary_10_1109_TSP_2014_2339792
crossref_primary_10_1016_j_acha_2018_11_005
crossref_primary_10_1109_TVT_2017_2758024
crossref_primary_10_1007_s10994_014_5478_4
crossref_primary_10_1214_18_AAP1391
crossref_primary_10_1002_cpa_21957
crossref_primary_10_1007_s10208_014_9191_2
crossref_primary_10_1088_1751_8121_aa9100
crossref_primary_10_1016_j_automatica_2024_111907
crossref_primary_10_1109_TSP_2022_3141884
crossref_primary_10_1016_j_dsp_2020_102900
crossref_primary_10_1109_TSP_2016_2600507
crossref_primary_10_1016_j_jsv_2020_115758
crossref_primary_10_1109_LSP_2018_2881927
crossref_primary_10_1214_16_AAP1195
crossref_primary_10_1214_14_AOS1254
crossref_primary_10_1088_1361_6420_abbd7e
crossref_primary_10_1109_ACCESS_2019_2961787
crossref_primary_10_1214_19_AOS1840
crossref_primary_10_1109_TIT_2016_2549040
crossref_primary_10_1109_TSP_2016_2576422
crossref_primary_10_1109_TWC_2018_2877757
crossref_primary_10_1109_LCSYS_2025_3575436
crossref_primary_10_1109_TIT_2020_2985015
crossref_primary_10_1109_TSP_2020_3001399
crossref_primary_10_1016_j_acha_2024_101746
crossref_primary_10_1109_TIT_2016_2586083
crossref_primary_10_1109_JPROC_2019_2936204
crossref_primary_10_1109_TAC_2016_2517570
crossref_primary_10_1109_LSP_2024_3453753
crossref_primary_10_1109_TVT_2016_2590943
crossref_primary_10_1109_TSP_2016_2544744
crossref_primary_10_1016_j_ins_2018_10_041
crossref_primary_10_1109_TIT_2024_3360951
crossref_primary_10_1109_TIT_2017_2773497
crossref_primary_10_1109_TSP_2015_2420541
crossref_primary_10_1007_s10957_016_1004_0
crossref_primary_10_1016_j_ymssp_2017_10_025
crossref_primary_10_1016_j_acha_2022_05_001
crossref_primary_10_1016_j_neunet_2017_12_009
crossref_primary_10_1109_TAES_2022_3175465
crossref_primary_10_1109_TIT_2017_2717583
crossref_primary_10_1109_LSP_2020_3021276
crossref_primary_10_1088_1742_6596_1131_1_012009
crossref_primary_10_1109_LSP_2014_2349904
crossref_primary_10_1016_j_sigpro_2017_07_024
crossref_primary_10_1109_LCOMM_2022_3199460
crossref_primary_10_1109_TIT_2021_3059657
crossref_primary_10_1109_LSP_2015_2497543
crossref_primary_10_1016_j_acha_2015_03_003
crossref_primary_10_1109_TIT_2024_3458953
crossref_primary_10_1016_j_sigpro_2017_07_028
crossref_primary_10_1007_s00041_020_09797_9
crossref_primary_10_1109_TCYB_2019_2903205
crossref_primary_10_1109_TPAMI_2017_2739147
crossref_primary_10_1016_j_laa_2020_06_010
crossref_primary_10_1049_el_2018_6532
crossref_primary_10_1016_j_acha_2024_101650
crossref_primary_10_1109_JSEN_2025_3573568
crossref_primary_10_1109_TIT_2020_2965733
crossref_primary_10_3390_en13123235
crossref_primary_10_3390_rs15010013
crossref_primary_10_1016_j_acha_2024_101658
crossref_primary_10_1016_j_automatica_2015_05_012
crossref_primary_10_1038_s41598_019_47845_7
crossref_primary_10_1088_1742_6596_1624_3_032020
crossref_primary_10_1007_s10115_018_1294_7
crossref_primary_10_1214_22_AOS2190
crossref_primary_10_1109_ACCESS_2018_2831905
crossref_primary_10_1137_15M1035793
crossref_primary_10_1109_TIP_2018_2790481
crossref_primary_10_1109_TIT_2018_2846643
crossref_primary_10_1016_j_sigpro_2021_108238
crossref_primary_10_1007_s43670_021_00016_0
crossref_primary_10_1109_TIM_2025_3556225
crossref_primary_10_1109_TSIPN_2017_2668146
crossref_primary_10_1109_TVT_2022_3194409
crossref_primary_10_1109_TIT_2022_3161227
crossref_primary_10_1190_geo2015_0066_1
crossref_primary_10_1214_21_AOS2100
crossref_primary_10_1109_TSP_2014_2331612
crossref_primary_10_1109_TSP_2021_3056591
crossref_primary_10_1007_s10851_019_00919_7
crossref_primary_10_1109_TIT_2017_2749330
crossref_primary_10_1007_s11235_025_01300_3
crossref_primary_10_1137_16M1071730
crossref_primary_10_1109_JSAC_2020_3005472
crossref_primary_10_1007_s11425_021_2151_0
crossref_primary_10_1109_TIT_2014_2302005
crossref_primary_10_1109_TIT_2019_2891653
crossref_primary_10_1109_TIT_2015_2391251
crossref_primary_10_1109_TWC_2021_3062558
crossref_primary_10_1007_s10957_022_02013_2
crossref_primary_10_1109_TIT_2017_2726549
crossref_primary_10_1109_ACCESS_2018_2791580
crossref_primary_10_1007_s10589_016_9871_8
crossref_primary_10_1109_TVT_2025_3557010
crossref_primary_10_1016_j_acha_2020_01_002
crossref_primary_10_1016_j_sigpro_2021_108016
crossref_primary_10_1109_TSP_2015_2496294
crossref_primary_10_1109_TSP_2024_3386018
crossref_primary_10_1088_1751_8121_ab59ef
crossref_primary_10_1016_j_phycom_2023_101999
crossref_primary_10_1016_j_acha_2017_03_003
crossref_primary_10_1109_TSP_2018_2872886
crossref_primary_10_1109_TPAMI_2021_3074467
crossref_primary_10_1109_TSP_2018_2869122
crossref_primary_10_1109_LSP_2019_2922500
crossref_primary_10_1109_TWC_2024_3436059
crossref_primary_10_1016_j_sigpro_2022_108786
crossref_primary_10_1109_TSP_2018_2835426
crossref_primary_10_1016_j_acha_2018_05_002
crossref_primary_10_3390_electronics11162578
crossref_primary_10_1109_TIT_2019_2920640
crossref_primary_10_1109_TSP_2022_3156731
crossref_primary_10_1111_rssb_12485
crossref_primary_10_1109_JSTSP_2019_2937632
crossref_primary_10_1214_25_EJP1378
crossref_primary_10_1109_TSP_2020_2964216
crossref_primary_10_1109_TSP_2023_3254919
crossref_primary_10_1109_TASLP_2017_2775800
crossref_primary_10_1109_TIP_2018_2831915
crossref_primary_10_1515_freq_2019_0131
crossref_primary_10_1109_TCI_2022_3174803
crossref_primary_10_1109_TSP_2022_3215651
crossref_primary_10_1017_S0956792515000236
crossref_primary_10_1016_j_sigpro_2017_11_008
crossref_primary_10_1109_TAC_2021_3115449
crossref_primary_10_1016_j_jat_2020_105456
crossref_primary_10_1016_j_sigpro_2018_06_019
crossref_primary_10_1155_2016_4156358
crossref_primary_10_1007_s10444_016_9467_y
crossref_primary_10_1109_TSP_2018_2791945
crossref_primary_10_1109_TVT_2017_2695226
crossref_primary_10_1049_el_2015_2525
crossref_primary_10_1109_TSP_2019_2935910
crossref_primary_10_1137_18M1189464
crossref_primary_10_1109_TIT_2019_2940673
crossref_primary_10_1109_TSP_2022_3216708
crossref_primary_10_1109_TSP_2023_3244091
crossref_primary_10_1109_TIM_2025_3545500
crossref_primary_10_1109_LCOMM_2020_3000755
crossref_primary_10_1109_ACCESS_2020_3011161
crossref_primary_10_3390_app13053067
crossref_primary_10_1016_j_sigpro_2023_108939
crossref_primary_10_1109_LSP_2022_3165759
crossref_primary_10_1109_TCSI_2020_3000745
crossref_primary_10_1109_TSP_2018_2890374
crossref_primary_10_1145_3594234
crossref_primary_10_1109_TAP_2022_3230561
crossref_primary_10_3390_s141121981
crossref_primary_10_1007_s10208_022_09580_w
crossref_primary_10_1016_j_acha_2022_03_007
crossref_primary_10_1016_j_automatica_2018_03_065
crossref_primary_10_1109_TIT_2020_2965720
crossref_primary_10_1109_TSP_2019_2953582
crossref_primary_10_1109_TIT_2019_2919632
crossref_primary_10_1109_TSP_2025_3544463
crossref_primary_10_1109_ACCESS_2019_2960826
crossref_primary_10_1109_TIT_2025_3566885
Cites_doi 10.1137/070697835
10.1007/BFb0081737
10.1137/06066518X
10.1016/j.neuroimage.2004.10.043
10.1007/s10208-009-9045-5
10.1109/TIT.2005.858979
10.1016/0022-1236(67)90017-1
10.1007/978-1-84882-299-3
10.1145/1970392.1970395
10.1007/s10107-009-0306-5
10.1137/S0097539704441629
10.1073/pnas.0502269102
10.1002/cpa.20132
10.1214/aos/1176348546
10.1093/qmath/42.1.9
10.1007/978-1-4613-0039-7
10.1137/S0895479800368354
10.1109/TIT.2006.871582
10.1007/978-3-642-20212-4
10.1515/9781400873173
10.1109/TIT.2011.2165825
10.1016/S1874-5849(01)80010-3
10.1214/08-AOS620
10.1007/BFb0076302
10.1137/050626090
10.1007/978-1-4419-8853-9
10.1007/s00454-009-9221-z
10.1007/978-1-4612-0663-7
10.1007/s10107-010-0422-2
10.1080/00207728108963798
10.1137/070698920
10.1109/TSP.2009.2016892
10.1137/090746525
10.1145/227683.227684
10.1007/s00454-005-1220-0
10.1214/09-EJS506
10.1137/090761793
10.1137/07070111X
10.1109/TIT.2011.2111771
10.1109/18.256500
10.1109/TIT.2010.2070191
10.1007/s10107-003-0387-5
10.1145/102782.102783
10.1109/TIT.2011.2165827
10.1090/S0025-5718-08-02189-3
10.1016/j.ejor.2011.04.010
10.1109/TIP.2003.814255
10.1007/978-3-642-04295-9
10.1002/cpa.20042
10.1007/978-1-4613-8431-1
10.1090/gsm/054
10.1137/070703983
10.1007/BF02124742
10.1109/TIT.2005.862083
10.1090/S0894-0347-08-00600-0
10.1137/080738970
ContentType Journal Article
Copyright SFoCM 2012
Copyright_xml – notice: SFoCM 2012
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-012-9135-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 849
ExternalDocumentID 2798731871
10_1007_s10208_012_9135_7
Genre Feature
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c554t-fe45f671ff6e4161cf1e5e01462acbadb783d0829a909a823237b1475464e0083
IEDL.DBID RSV
ISICitedReferencesCount 817
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310338700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Thu Oct 02 12:10:41 EDT 2025
Fri Jul 25 19:28:40 EDT 2025
Tue Nov 18 22:34:15 EST 2025
Sat Nov 29 06:41:13 EST 2025
Fri Feb 21 02:36:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 60D05
41A45
Semidefinite programming
52A41
Convex optimization
90C25
90C22
Atomic norms
Real algebraic geometry
Gaussian width
Symmetry
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-fe45f671ff6e4161cf1e5e01462acbadb783d0829a909a823237b1475464e0083
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1115056275
PQPubID 43692
PageCount 45
ParticipantIDs proquest_miscellaneous_1221895440
proquest_journals_1115056275
crossref_citationtrail_10_1007_s10208_012_9135_7
crossref_primary_10_1007_s10208_012_9135_7
springer_journals_10_1007_s10208_012_9135_7
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2012
Publisher Springer-Verlag
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
References DeVoreR.TemlyakovV.Some remarks on greedy algorithmsAdv. Comput. Math.1996517318713993790857.6501610.1007/BF02124742
CandèsE.J.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009971777225652401219.9012410.1007/s10208-009-9045-5
CandèsE.PlanY.Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurementsIEEE Trans. Inf. Theory2011572342235910.1109/TIT.2011.2111771
BonsallF.F.A general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math.19914291410943370747.4600710.1093/qmath/42.1.9
CaiJ.OsherS.ShenZ.Linearized Bregman iterations for compressed sensingMath. Comput.2009781515153625010611198.6510210.1090/S0025-5718-08-02189-3
Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997).
BarvinokA.A Course in Convexity2002ProvidenceAmerican Mathematical Society1014.52001
BochnakJ.CosteM.RoyM.Real Algebraic Geometry1988BerlinSpringer
Aja-FernandezS.GarciaR.TaoD.LiX.Tensors in Image Processing and Computer Vision2009BerlinSpringer1175.6800210.1007/978-1-84882-299-3
RechtB.FazelM.ParriloP.A.Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimizationSIAM Rev.20105247150126805431198.9032110.1137/070697835
PisierG.Probabilistic methods in the geometry of Banach spacesProbability and Analysis198616724110.1007/BFb0076302
CaiJ.CandèsE.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.2008201956198210.1137/080738970
FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255
DyerM.FriezeA.KannanR.A random polynomial-time algorithm for approximating the volume of convex bodiesJ. ACM19913811710959160799.6810710.1145/102782.102783
Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007).
D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005).
DezaM.LaurentM.Geometry of Cuts and Metrics1997BerlinSpringer0885.52001
DonohoD.L.Compressed sensingIEEE Trans. Inf. Theory20065212891306224118910.1109/TIT.2006.871582
TohK.YunS.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problemsPac. J. Optim.2010661564027430471205.90218
BriedenA.GritzmannP.KannanR.KleeV.LovaszL.SimonovitsM.Approximation of diameters: randomization doesn’t helpProceedings of the 39th Annual Symposium on Foundations of Computer Science1998244251
GoemansM.WilliamsonD.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115114514122280885.6808810.1145/227683.227684
ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Program.20039629332019930501043.1401810.1007/s10107-003-0387-5
BeckmannC.SmithS.Tensorial extensions of independent component analysis for multisubject FMRI analysisNeuroImage20052529431110.1016/j.neuroimage.2004.10.043
ChandrasekaranV.SanghaviS.ParriloP.A.WillskyA.S.Rank-sparsity incoherence for matrix decompositionSIAM J. Optim.20112157259628174791226.9006710.1137/090761793
DavidsonK.R.SzarekS.J.Local operator theory, random matrices and Banach spacesHandbook of the Geometry of Banach Spaces200131736610.1016/S1874-5849(01)80010-3
GouveiaJ.ParriloP.ThomasR.Theta bodies for polynomial idealsSIAM J. Optim.2010202097211826300351213.9019010.1137/090746525
AlonN.NaorA.Approximating the cut-norm via Grothendieck’s inequalitySIAM J. Comput.20063578780322035671096.6816310.1137/S0097539704441629
DonohoD.TannerJ.Counting the faces of randomly-projected hypercubes and orthants with applicationsDiscrete Comput. Geom.20104352254125878351191.5200410.1007/s00454-009-9221-z
CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006524895091231.9401710.1109/TIT.2005.862083
S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010).
PolakE.Optimization: Algorithms and Consistent Approximations1997BerlinSpringer0899.90148
JonesL.A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network trainingAnn. Stat.1992206086130746.6206010.1214/aos/1176348546
MatoušekJ.Lectures on Discrete Geometry2002BerlinSpringer0999.5200610.1007/978-1-4613-0039-7
DaubechiesI.DefrieseM.De MolC.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.2004LVII1413145710.1002/cpa.20042
J. Harris, Algebraic Geometry: A First Course (Springer, Berlin).
MaS.GoldfarbD.ChenL.Fixed point and Bregman iterative methods for matrix rank minimizationMath. Program.201112832135328109611221.6514610.1007/s10107-009-0306-5
BertsekasD.Constrained Optimization and Lagrange Multiplier Methods2007NashuaAthena Scientific
HauptJ.BajwaW.U.RazG.NowakR.Toeplitz compressed sensing matrices with applications to sparse channel estimationIEEE Trans. Inform. Theory2010561158625875280893810.1109/TIT.2010.2070191
LöfbergJ.YALMIP: A toolbox for modeling and optimization in MATLABProceedings of the CACSD Conference2004Available from http://control.ee.ethz.ch/~joloef/yalmip.php
K. Toh, M. Todd, R. Tutuncu, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
RechtB.XuW.HassibiB.Null space conditions and thresholds for rank minimizationMath. Program., Ser. B201112717521127767141211.9017210.1007/s10107-010-0422-2
RudelsonM.VershyninR.Sparse reconstruction by convex relaxation: Fourier and Gaussian measurementsCISS 2006 (40th Annual Conference on Information Sciences and Systems)2006
PisierG.Remarques sur un résultat non publié de B. Maurey1981PalaiseauEcole Polytechnique Centre de Mathematiques
BertsekasD.NedicA.OzdaglarA.Convex Analysis and Optimization2003NashuaAthena Scientific1140.90001
BickelP.RitovY.TsybakovA.Simultaneous analysis of Lasso and Dantzig selectorAnn. Stat.2009371705173225334691173.6202210.1214/08-AOS620
BarronA.Universal approximation bounds for superpositions of a sigmoidal functionIEEE Trans. Inf. Theory19933993094512377200818.6812610.1109/18.256500
de SilvaV.LimL.Tensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X
GordonY.On Milman’s inequality and random subspaces which escape through a mesh in ℝnGeometric Aspects of Functional Analysis, Israel Seminar 1986–198719888410610.1007/BFb0081737
DonohoD.TannerJ.Counting faces of randomly-projected polytopes when the projection radically lowers dimensionJ. Am. Math. Soc.20092215324490531206.5201010.1090/S0894-0347-08-00600-0
XuW.HassibiB.Compressive sensing over the Grassmann manifold: a unified geometric frameworkIEEE Trans. Inform. Theory2011571068946919288227010.1109/TIT.2011.2165825
RauhutH.Circulant and Toeplitz matrices in compressed sensingProceedings of SPARS’092009
NesterovY.Introductory Lectures on Convex Optimization2004AmsterdamKluwer Academic1086.90045
CandèsE.LiX.MaY.WrightJ.Robust principal component analysis?J. ACM20115813710.1145/1970392.1970395
JagabathulaS.ShahD.Inferring rankings using constrained sensingIEEE Trans. Inf. Theory20115772887306288365610.1109/TIT.2011.2165827
M. Stojnic, Various thresholds for ℓ1-optimization in compressed sensing, Preprint, arXiv:0907.3666 (2009).
ZieglerG.Lectures on Polytopes1995BerlinSpringer0823.5200210.1007/978-1-4613-8431-1
LedouxM.The Concentration of Measure Phenomenon2000ProvidenceAmerican Mathematical Society
LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004
WrightS.NowakR.FigueiredoM.Sparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892
CombettesP.WajsV.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.200541168120022038491179.9403110.1137/050626090
M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002).
FukushimaM.MineH.A generalized proximal point algorithm for certain non-convex minimization problemsInt. J. Inf. Syst. Sci.19811298910006280840467.6502810.1080/00207728108963798
KlainD.RotaG.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004
CandèsE.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory2005514203421510.1109/TIT.2005.858979
HaleT.YinW.ZhangY.A fixed-point continuation method for ℓ1-regularized minimization: methodology and convergenceSIAM J. Optim.2008191107113024607341180.6507610.1137/070698920
DonohoD.L.For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solutionCommun. Pure Appl. Math.20065979782922176061113.1500410.1002/cpa.20132
MangasarianO.RechtB.Probability of unique integer solution to a system of linear equationsEur. J. Oper. Res.2011214273028047891218.9011210.1016/j.ejor.2011.04.010
KoldaT.BaderB.Tensor decompositions and applicationsSIAM Rev.20095145550025350561173.6502910.1137/07070111X
YinW.OsherS.DarbonJ.GoldfarbD.Bregman iterative algorithms for compressed sensing and related problemsSIAM J. Imaging Sci.2008114316824758281203.9015310.1137/070703983
SrebroN.ShraibmanA.Rank, trace-norm and max-norm18th Annual Conference on Learning Theory (COLT)2005
DudleyR.M.The sizes of compact subsets of Hilbert space and continuity of Gaussian processesJ. Funct. Anal.196712903302203400188.2050210.1016/0022-1236(67)90017-1
van de GeerS.BühlmannP.On the conditions used to prove oracle results for the LassoElectron. J. Stat.2009313601392257631610.1214/09-EJS506
KoldaT.Orthogonal tensor decompositionsSIAM J. Matrix Anal. Appl.20012324325518566081005.1502010.1137/S0895479800368354
DonohoD.TannerJ.Sparse nonnegative solution of underdetermined line
E.J. Candès (9135_CR16) 2006; 52
T. Kolda (9135_CR47) 2009; 51
D. Klain (9135_CR45) 1997
G. Pisier (9135_CR59) 1981
G. Ziegler (9135_CR76) 1995
F.F. Bonsall (9135_CR10) 1991; 42
J. Matoušek (9135_CR53) 2002
W. Yin (9135_CR75) 2008; 1
T. Hale (9135_CR40) 2008; 19
9135_CR57
P. Combettes (9135_CR20) 2005; 4
B. Recht (9135_CR64) 2011; 127
9135_CR55
9135_CR54
S. Geer van de (9135_CR72) 2009; 3
D.L. Donoho (9135_CR27) 2006; 59
M. Dyer (9135_CR33) 1991; 38
Y. Nesterov (9135_CR56) 2004
J. Cai (9135_CR13) 2009; 78
E. Candès (9135_CR18) 2005; 51
C. Beckmann (9135_CR5) 2005; 25
H. Rauhut (9135_CR62) 2009
M. Figueiredo (9135_CR35) 2003; 12
S. Jagabathula (9135_CR43) 2011; 57
9135_CR41
M. Rudelson (9135_CR66) 2006
P. Bickel (9135_CR8) 2009; 37
S. Ma (9135_CR51) 2011; 128
A. Brieden (9135_CR11) 1998
O. Mangasarian (9135_CR52) 2011; 214
V. Silva de (9135_CR23) 2008; 30
G. Pisier (9135_CR60) 1986
M. Fukushima (9135_CR36) 1981; 12
W. Xu (9135_CR74) 2011; 57
L. Jones (9135_CR44) 1992; 20
K. Toh (9135_CR71) 2010; 6
B. Recht (9135_CR63) 2010; 52
R. DeVore (9135_CR24) 1996; 5
R.T. Rockafellar (9135_CR65) 1970
I. Daubechies (9135_CR21) 2004; LVII
P.A. Parrilo (9135_CR58) 2003; 96
9135_CR34
D.L. Donoho (9135_CR28) 2006; 52
A. Barvinok (9135_CR4) 2002
D. Donoho (9135_CR30) 2009; 22
A. Barron (9135_CR3) 1993; 39
M. Ledoux (9135_CR49) 1991
9135_CR70
S. Wright (9135_CR73) 2009; 57
T. Kolda (9135_CR46) 2001; 23
M. Ledoux (9135_CR48) 2000
N. Alon (9135_CR2) 2006; 35
D. Bertsekas (9135_CR6) 2007
E. Candès (9135_CR14) 2011; 58
J. Bochnak (9135_CR9) 1988
E.J. Candès (9135_CR17) 2009; 9
Y. Gordon (9135_CR38) 1988
E. Polak (9135_CR61) 1997
K.R. Davidson (9135_CR22) 2001
N. Srebro (9135_CR68) 2005
E. Candès (9135_CR15) 2011; 57
R.M. Dudley (9135_CR32) 1967; 1
V. Chandrasekaran (9135_CR19) 2011; 21
9135_CR26
9135_CR69
9135_CR67
J. Haupt (9135_CR42) 2010; 56
D. Donoho (9135_CR29) 2005; 102
J. Löfberg (9135_CR50) 2004
J. Cai (9135_CR12) 2008; 20
D. Donoho (9135_CR31) 2010; 43
D. Bertsekas (9135_CR7) 2003
J. Gouveia (9135_CR39) 2010; 20
S. Aja-Fernandez (9135_CR1) 2009
M. Goemans (9135_CR37) 1995; 42
M. Deza (9135_CR25) 1997
References_xml – reference: BarvinokA.A Course in Convexity2002ProvidenceAmerican Mathematical Society1014.52001
– reference: WrightS.NowakR.FigueiredoM.Sparse reconstruction by separable approximationIEEE Trans. Signal Process.20095724792493265016510.1109/TSP.2009.2016892
– reference: RauhutH.Circulant and Toeplitz matrices in compressed sensingProceedings of SPARS’092009
– reference: DavidsonK.R.SzarekS.J.Local operator theory, random matrices and Banach spacesHandbook of the Geometry of Banach Spaces200131736610.1016/S1874-5849(01)80010-3
– reference: Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007).
– reference: LedouxM.TalagrandM.Probability in Banach Spaces1991BerlinSpringer0748.60004
– reference: FukushimaM.MineH.A generalized proximal point algorithm for certain non-convex minimization problemsInt. J. Inf. Syst. Sci.19811298910006280840467.6502810.1080/00207728108963798
– reference: NesterovY.Introductory Lectures on Convex Optimization2004AmsterdamKluwer Academic1086.90045
– reference: RockafellarR.T.Convex Analysis1970PrincetonPrinceton University Press0193.18401
– reference: SrebroN.ShraibmanA.Rank, trace-norm and max-norm18th Annual Conference on Learning Theory (COLT)2005
– reference: MatoušekJ.Lectures on Discrete Geometry2002BerlinSpringer0999.5200610.1007/978-1-4613-0039-7
– reference: D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005).
– reference: MaS.GoldfarbD.ChenL.Fixed point and Bregman iterative methods for matrix rank minimizationMath. Program.201112832135328109611221.6514610.1007/s10107-009-0306-5
– reference: KoldaT.Orthogonal tensor decompositionsSIAM J. Matrix Anal. Appl.20012324325518566081005.1502010.1137/S0895479800368354
– reference: KoldaT.BaderB.Tensor decompositions and applicationsSIAM Rev.20095145550025350561173.6502910.1137/07070111X
– reference: van de GeerS.BühlmannP.On the conditions used to prove oracle results for the LassoElectron. J. Stat.2009313601392257631610.1214/09-EJS506
– reference: PisierG.Remarques sur un résultat non publié de B. Maurey1981PalaiseauEcole Polytechnique Centre de Mathematiques
– reference: CandèsE.PlanY.Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurementsIEEE Trans. Inf. Theory2011572342235910.1109/TIT.2011.2111771
– reference: BertsekasD.Constrained Optimization and Lagrange Multiplier Methods2007NashuaAthena Scientific
– reference: MangasarianO.RechtB.Probability of unique integer solution to a system of linear equationsEur. J. Oper. Res.2011214273028047891218.9011210.1016/j.ejor.2011.04.010
– reference: CaiJ.CandèsE.ShenZ.A singular value thresholding algorithm for matrix completionSIAM J. Optim.2008201956198210.1137/080738970
– reference: CandèsE.J.RombergJ.TaoT.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Trans. Inf. Theory2006524895091231.9401710.1109/TIT.2005.862083
– reference: GouveiaJ.ParriloP.ThomasR.Theta bodies for polynomial idealsSIAM J. Optim.2010202097211826300351213.9019010.1137/090746525
– reference: HauptJ.BajwaW.U.RazG.NowakR.Toeplitz compressed sensing matrices with applications to sparse channel estimationIEEE Trans. Inform. Theory2010561158625875280893810.1109/TIT.2010.2070191
– reference: K. Toh, M. Todd, R. Tutuncu, SDPT3—a MATLAB software package for semidefinite-quadratic-linear programming. Available from. http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
– reference: BeckmannC.SmithS.Tensorial extensions of independent component analysis for multisubject FMRI analysisNeuroImage20052529431110.1016/j.neuroimage.2004.10.043
– reference: R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes, Preprint, arXiv:0911.5436 (2009).
– reference: LedouxM.The Concentration of Measure Phenomenon2000ProvidenceAmerican Mathematical Society
– reference: RechtB.FazelM.ParriloP.A.Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimizationSIAM Rev.20105247150126805431198.9032110.1137/070697835
– reference: YinW.OsherS.DarbonJ.GoldfarbD.Bregman iterative algorithms for compressed sensing and related problemsSIAM J. Imaging Sci.2008114316824758281203.9015310.1137/070703983
– reference: Aja-FernandezS.GarciaR.TaoD.LiX.Tensors in Image Processing and Computer Vision2009BerlinSpringer1175.6800210.1007/978-1-84882-299-3
– reference: GordonY.On Milman’s inequality and random subspaces which escape through a mesh in ℝnGeometric Aspects of Functional Analysis, Israel Seminar 1986–198719888410610.1007/BFb0081737
– reference: ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Program.20039629332019930501043.1401810.1007/s10107-003-0387-5
– reference: PolakE.Optimization: Algorithms and Consistent Approximations1997BerlinSpringer0899.90148
– reference: BickelP.RitovY.TsybakovA.Simultaneous analysis of Lasso and Dantzig selectorAnn. Stat.2009371705173225334691173.6202210.1214/08-AOS620
– reference: S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010).
– reference: CandèsE.LiX.MaY.WrightJ.Robust principal component analysis?J. ACM20115813710.1145/1970392.1970395
– reference: JonesL.A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network trainingAnn. Stat.1992206086130746.6206010.1214/aos/1176348546
– reference: ChandrasekaranV.SanghaviS.ParriloP.A.WillskyA.S.Rank-sparsity incoherence for matrix decompositionSIAM J. Optim.20112157259628174791226.9006710.1137/090761793
– reference: de SilvaV.LimL.Tensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X
– reference: M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002).
– reference: DezaM.LaurentM.Geometry of Cuts and Metrics1997BerlinSpringer0885.52001
– reference: DonohoD.TannerJ.Counting faces of randomly-projected polytopes when the projection radically lowers dimensionJ. Am. Math. Soc.20092215324490531206.5201010.1090/S0894-0347-08-00600-0
– reference: CandèsE.J.RechtB.Exact matrix completion via convex optimizationFound. Comput. Math.2009971777225652401219.9012410.1007/s10208-009-9045-5
– reference: JagabathulaS.ShahD.Inferring rankings using constrained sensingIEEE Trans. Inf. Theory20115772887306288365610.1109/TIT.2011.2165827
– reference: AlonN.NaorA.Approximating the cut-norm via Grothendieck’s inequalitySIAM J. Comput.20063578780322035671096.6816310.1137/S0097539704441629
– reference: M. Stojnic, Various thresholds for ℓ1-optimization in compressed sensing, Preprint, arXiv:0907.3666 (2009).
– reference: DaubechiesI.DefrieseM.De MolC.An iterative thresholding algorithm for linear inverse problems with a sparsity constraintCommun. Pure Appl. Math.2004LVII1413145710.1002/cpa.20042
– reference: BochnakJ.CosteM.RoyM.Real Algebraic Geometry1988BerlinSpringer
– reference: DonohoD.TannerJ.Sparse nonnegative solution of underdetermined linear equations by linear programmingProc. Natl. Acad. Sci. USA200510294469451216871510.1073/pnas.0502269102
– reference: RudelsonM.VershyninR.Sparse reconstruction by convex relaxation: Fourier and Gaussian measurementsCISS 2006 (40th Annual Conference on Information Sciences and Systems)2006
– reference: TohK.YunS.An accelerated proximal gradient algorithm for nuclear norm regularized least squares problemsPac. J. Optim.2010661564027430471205.90218
– reference: BarronA.Universal approximation bounds for superpositions of a sigmoidal functionIEEE Trans. Inf. Theory19933993094512377200818.6812610.1109/18.256500
– reference: BertsekasD.NedicA.OzdaglarA.Convex Analysis and Optimization2003NashuaAthena Scientific1140.90001
– reference: DeVoreR.TemlyakovV.Some remarks on greedy algorithmsAdv. Comput. Math.1996517318713993790857.6501610.1007/BF02124742
– reference: DonohoD.L.For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solutionCommun. Pure Appl. Math.20065979782922176061113.1500410.1002/cpa.20132
– reference: XuW.HassibiB.Compressive sensing over the Grassmann manifold: a unified geometric frameworkIEEE Trans. Inform. Theory2011571068946919288227010.1109/TIT.2011.2165825
– reference: ZieglerG.Lectures on Polytopes1995BerlinSpringer0823.5200210.1007/978-1-4613-8431-1
– reference: BonsallF.F.A general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math.19914291410943370747.4600710.1093/qmath/42.1.9
– reference: DonohoD.TannerJ.Counting the faces of randomly-projected hypercubes and orthants with applicationsDiscrete Comput. Geom.20104352254125878351191.5200410.1007/s00454-009-9221-z
– reference: KlainD.RotaG.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004
– reference: RechtB.XuW.HassibiB.Null space conditions and thresholds for rank minimizationMath. Program., Ser. B201112717521127767141211.9017210.1007/s10107-010-0422-2
– reference: CaiJ.OsherS.ShenZ.Linearized Bregman iterations for compressed sensingMath. Comput.2009781515153625010611198.6510210.1090/S0025-5718-08-02189-3
– reference: CombettesP.WajsV.Signal recovery by proximal forward-backward splittingMultiscale Model. Simul.200541168120022038491179.9403110.1137/050626090
– reference: J. Harris, Algebraic Geometry: A First Course (Springer, Berlin).
– reference: Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997).
– reference: FigueiredoM.NowakR.An EM algorithm for wavelet-based image restorationIEEE Trans. Image Process.200312906916200865810.1109/TIP.2003.814255
– reference: BriedenA.GritzmannP.KannanR.KleeV.LovaszL.SimonovitsM.Approximation of diameters: randomization doesn’t helpProceedings of the 39th Annual Symposium on Foundations of Computer Science1998244251
– reference: DudleyR.M.The sizes of compact subsets of Hilbert space and continuity of Gaussian processesJ. Funct. Anal.196712903302203400188.2050210.1016/0022-1236(67)90017-1
– reference: DonohoD.L.Compressed sensingIEEE Trans. Inf. Theory20065212891306224118910.1109/TIT.2006.871582
– reference: DyerM.FriezeA.KannanR.A random polynomial-time algorithm for approximating the volume of convex bodiesJ. ACM19913811710959160799.6810710.1145/102782.102783
– reference: HaleT.YinW.ZhangY.A fixed-point continuation method for ℓ1-regularized minimization: methodology and convergenceSIAM J. Optim.2008191107113024607341180.6507610.1137/070698920
– reference: LöfbergJ.YALMIP: A toolbox for modeling and optimization in MATLABProceedings of the CACSD Conference2004Available from http://control.ee.ethz.ch/~joloef/yalmip.php
– reference: PisierG.Probabilistic methods in the geometry of Banach spacesProbability and Analysis198616724110.1007/BFb0076302
– reference: CandèsE.TaoT.Decoding by linear programmingIEEE Trans. Inf. Theory2005514203421510.1109/TIT.2005.858979
– reference: GoemansM.WilliamsonD.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM1995421115114514122280885.6808810.1145/227683.227684
– volume: 52
  start-page: 471
  year: 2010
  ident: 9135_CR63
  publication-title: SIAM Rev.
  doi: 10.1137/070697835
– start-page: 84
  volume-title: Geometric Aspects of Functional Analysis, Israel Seminar 1986–1987
  year: 1988
  ident: 9135_CR38
  doi: 10.1007/BFb0081737
– volume: 6
  start-page: 615
  year: 2010
  ident: 9135_CR71
  publication-title: Pac. J. Optim.
– volume: 30
  start-page: 1084
  year: 2008
  ident: 9135_CR23
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/06066518X
– volume: 25
  start-page: 294
  year: 2005
  ident: 9135_CR5
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.043
– volume-title: Proceedings of SPARS’09
  year: 2009
  ident: 9135_CR62
– volume: 9
  start-page: 717
  year: 2009
  ident: 9135_CR17
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– ident: 9135_CR69
– volume-title: CISS 2006 (40th Annual Conference on Information Sciences and Systems)
  year: 2006
  ident: 9135_CR66
– volume: 51
  start-page: 4203
  year: 2005
  ident: 9135_CR18
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.858979
– volume: 1
  start-page: 290
  year: 1967
  ident: 9135_CR32
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(67)90017-1
– volume-title: Tensors in Image Processing and Computer Vision
  year: 2009
  ident: 9135_CR1
  doi: 10.1007/978-1-84882-299-3
– volume: 58
  start-page: 1
  year: 2011
  ident: 9135_CR14
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 128
  start-page: 321
  year: 2011
  ident: 9135_CR51
  publication-title: Math. Program.
  doi: 10.1007/s10107-009-0306-5
– volume-title: 18th Annual Conference on Learning Theory (COLT)
  year: 2005
  ident: 9135_CR68
– volume: 35
  start-page: 787
  year: 2006
  ident: 9135_CR2
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539704441629
– volume: 102
  start-page: 9446
  year: 2005
  ident: 9135_CR29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502269102
– volume: 59
  start-page: 797
  year: 2006
  ident: 9135_CR27
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20132
– volume: 20
  start-page: 608
  year: 1992
  ident: 9135_CR44
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176348546
– volume: 42
  start-page: 9
  year: 1991
  ident: 9135_CR10
  publication-title: Q. J. Math.
  doi: 10.1093/qmath/42.1.9
– volume-title: Lectures on Discrete Geometry
  year: 2002
  ident: 9135_CR53
  doi: 10.1007/978-1-4613-0039-7
– volume: 23
  start-page: 243
  year: 2001
  ident: 9135_CR46
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479800368354
– volume-title: Constrained Optimization and Lagrange Multiplier Methods
  year: 2007
  ident: 9135_CR6
– volume-title: Remarques sur un résultat non publié de B. Maurey
  year: 1981
  ident: 9135_CR59
– volume: 52
  start-page: 1289
  year: 2006
  ident: 9135_CR28
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume-title: Probability in Banach Spaces
  year: 1991
  ident: 9135_CR49
  doi: 10.1007/978-3-642-20212-4
– volume-title: Convex Analysis
  year: 1970
  ident: 9135_CR65
  doi: 10.1515/9781400873173
– volume: 57
  start-page: 6894
  issue: 10
  year: 2011
  ident: 9135_CR74
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2165825
– ident: 9135_CR70
– start-page: 317
  volume-title: Handbook of the Geometry of Banach Spaces
  year: 2001
  ident: 9135_CR22
  doi: 10.1016/S1874-5849(01)80010-3
– volume-title: Real Algebraic Geometry
  year: 1988
  ident: 9135_CR9
– volume: 37
  start-page: 1705
  year: 2009
  ident: 9135_CR8
  publication-title: Ann. Stat.
  doi: 10.1214/08-AOS620
– volume-title: Proceedings of the CACSD Conference
  year: 2004
  ident: 9135_CR50
– ident: 9135_CR67
– volume-title: Introduction to Geometric Probability
  year: 1997
  ident: 9135_CR45
– start-page: 167
  volume-title: Probability and Analysis
  year: 1986
  ident: 9135_CR60
  doi: 10.1007/BFb0076302
– volume: 4
  start-page: 1168
  year: 2005
  ident: 9135_CR20
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– start-page: 244
  volume-title: Proceedings of the 39th Annual Symposium on Foundations of Computer Science
  year: 1998
  ident: 9135_CR11
– volume-title: Introductory Lectures on Convex Optimization
  year: 2004
  ident: 9135_CR56
  doi: 10.1007/978-1-4419-8853-9
– volume-title: Convex Analysis and Optimization
  year: 2003
  ident: 9135_CR7
– volume: 43
  start-page: 522
  year: 2010
  ident: 9135_CR31
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-009-9221-z
– volume-title: Optimization: Algorithms and Consistent Approximations
  year: 1997
  ident: 9135_CR61
  doi: 10.1007/978-1-4612-0663-7
– volume: 127
  start-page: 175
  year: 2011
  ident: 9135_CR64
  publication-title: Math. Program., Ser. B
  doi: 10.1007/s10107-010-0422-2
– volume: 12
  start-page: 989
  year: 1981
  ident: 9135_CR36
  publication-title: Int. J. Inf. Syst. Sci.
  doi: 10.1080/00207728108963798
– volume: 19
  start-page: 1107
  year: 2008
  ident: 9135_CR40
  publication-title: SIAM J. Optim.
  doi: 10.1137/070698920
– ident: 9135_CR54
– volume: 57
  start-page: 2479
  year: 2009
  ident: 9135_CR73
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2016892
– volume: 20
  start-page: 2097
  year: 2010
  ident: 9135_CR39
  publication-title: SIAM J. Optim.
  doi: 10.1137/090746525
– volume: 42
  start-page: 1115
  year: 1995
  ident: 9135_CR37
  publication-title: J. ACM
  doi: 10.1145/227683.227684
– ident: 9135_CR26
  doi: 10.1007/s00454-005-1220-0
– volume: 3
  start-page: 1360
  year: 2009
  ident: 9135_CR72
  publication-title: Electron. J. Stat.
  doi: 10.1214/09-EJS506
– volume: 21
  start-page: 572
  year: 2011
  ident: 9135_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/090761793
– volume: 51
  start-page: 455
  year: 2009
  ident: 9135_CR47
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 57
  start-page: 2342
  year: 2011
  ident: 9135_CR15
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2111771
– volume: 39
  start-page: 930
  year: 1993
  ident: 9135_CR3
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.256500
– volume: 56
  start-page: 5862
  issue: 11
  year: 2010
  ident: 9135_CR42
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2070191
– volume: 96
  start-page: 293
  year: 2003
  ident: 9135_CR58
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0387-5
– volume: 38
  start-page: 1
  year: 1991
  ident: 9135_CR33
  publication-title: J. ACM
  doi: 10.1145/102782.102783
– ident: 9135_CR41
– volume: 57
  start-page: 7288
  year: 2011
  ident: 9135_CR43
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2165827
– ident: 9135_CR57
– volume: 78
  start-page: 1515
  year: 2009
  ident: 9135_CR13
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-08-02189-3
– volume: 214
  start-page: 27
  year: 2011
  ident: 9135_CR52
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2011.04.010
– volume: 12
  start-page: 906
  year: 2003
  ident: 9135_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.814255
– volume-title: Geometry of Cuts and Metrics
  year: 1997
  ident: 9135_CR25
  doi: 10.1007/978-3-642-04295-9
– volume: LVII
  start-page: 1413
  year: 2004
  ident: 9135_CR21
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume-title: The Concentration of Measure Phenomenon
  year: 2000
  ident: 9135_CR48
– ident: 9135_CR55
– volume-title: Lectures on Polytopes
  year: 1995
  ident: 9135_CR76
  doi: 10.1007/978-1-4613-8431-1
– ident: 9135_CR34
– volume-title: A Course in Convexity
  year: 2002
  ident: 9135_CR4
  doi: 10.1090/gsm/054
– volume: 1
  start-page: 143
  year: 2008
  ident: 9135_CR75
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/070703983
– volume: 5
  start-page: 173
  year: 1996
  ident: 9135_CR24
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02124742
– volume: 52
  start-page: 489
  year: 2006
  ident: 9135_CR16
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 22
  start-page: 1
  year: 2009
  ident: 9135_CR30
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-08-00600-0
– volume: 20
  start-page: 1956
  year: 2008
  ident: 9135_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
SSID ssj0015914
ssib031263371
Score 2.5495474
Snippet In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 805
SubjectTerms Algebra
Applications of Mathematics
Atomic structure
Computational mathematics
Computer Science
Economics
Geometry
Inverse problems
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Matrices
Matrix methods
Matrix Theory
Norms
Numerical Analysis
Optimization
Programming
Title The Convex Geometry of Linear Inverse Problems
URI https://link.springer.com/article/10.1007/s10208-012-9135-7
https://www.proquest.com/docview/1115056275
https://www.proquest.com/docview/1221895440
Volume 12
WOSCitedRecordID wos000310338700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06lYnRLBJyWytsnSPspw-uIYfrG3krYJCNpJu4n-9166Zpuigr42aVruI_mFu_sdwLFQOggQGaPxspSy1E1onPA2lUoqFuIFoRXKstmE6PWCwSDsV3Xchc12tyHJcqeeK3bzysQrz0SLORWLsISnXWC88eb2YRo64GFJ6G2QDPV9wW0o87slPh9GM4T5JShanjXd-r_-cgPWK2hJzie2sAkLKmtAvYKZpHLiAh_ZTg72WQNWbH0yDq9dT5lciy04QzsiHZOa_kYu1fBZjfJ3MtQE77DoI8TQdOSFIv1JX5piG-67F3edK1r1WKAJAokR1Ypx3Rau1m1l7jqJdhVXhlHGk0ks01gEfmrqb2WIWgsQf_kidpngrM2UwW87UMuGmdoFkoY6TTyNCvYl82JDOuxKFzfbOEUMJlwHWlbYUVIRkJs-GE_RjDrZCC9C4UVGeJFw4GT6ysuEfeO3yU2rwahyxMJccEqMJ7gDR9NhdCETF5GZGo5xjoc4J-SMtRw4tVqdW-KnD-79afY-rHrGLMpUmCbURvlYHcBy8jp6LPLD0oY_ANi75tE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4nRrBJ6WytsnSPspwTtzG0Cl7K2mbgKCbrJ3of--la7YpKuhrk6blfiRfuLvvAE64VJ6HyBiNl8YWje3ICiNWs4QUkvp4Qaj6Ims2wTsdr9_3u3kdd2Ky3U1IMtup54rdnCzxytHRYmbxRViieGDpPL7bu4dp6ID5GaG3RjKW63JmQpnfLfH5MJohzC9B0eysaRT_9ZcbsJ5DS3IxsYVNWJCDEhRzmElyJ07wkenkYJ6VYMXUJ-PwWnvK5JpswTnaEanr1PQ3ciWHzzIdvZOhIniHRR8hmqZjlEjSnfSlSbbhvnHZqzetvMeCFSGQSC0lKVM1bitVk_quEylbMqkZZRwRhSIOuefGuv5W-Kg1D_GXy0ObckZrVGr8tgOFwXAgd4HEvoojR6GCXUGdUJMO28LGzTaMEYNxuwxVI-wgygnIdR-Mp2BGnayFF6DwAi28gJfhdPrKy4R947fJFaPBIHfERF9wMozHWRmOp8PoQjouIgZyOMY5DuIcn1FaLcOZ0ercEj99cO9Ps49gpdlrt4LWdedmH1YdbSJZWkwFCuloLA9gOXpNH5PRYWbPH7Kd6bU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB688HjwFtczgk9K3W2bbNpHUVdFXRY88K2kbQKCdmVbRf-9M91mPVBBfE3StMzRfMNMvgHYltoEASJjNF6eOjx1EydORNNRWmkeYoDQCFXZbEK228Htbdip-pzmttrdpiT7dxqIpSkr6o-pqX-4-OaVRVgeZY6FI4dhlFPPIArXL28GaQQRluTehGoc35fCpjW_2-LzwfSONr8kSMtzpzXz7y-ehekKcrL9vo3MwZDO5mGmgp-scu4ch2yHBzs2DxP23jJOT10MGF7zBdhD-2IHVLL-wo5190EXvVfWNQxjW_QdRvQdvVyzTr9fTb4I162jq4MTp-q94CQIMArHaC5MU7rGNDXFQIlxtdDENOOpJFZpLAM_pXu5KkRtBojLfBm7XAre5Jpw3RKMZN1MLwNLQ5MmnkHF-4p7MZERu8rFn3CcIjaTbg0aVvBRUhGTU3-M--idUpmEF6HwIhJeJGuwM3jksc_K8dviNavNqHLQnAKfEvtJUYOtwTS6FuVLVKa7T7jGQ_wTCs4bNdi1Gv6wxU8vXPnT6k0Y7xy2ovPT9tkqTHpkIWW1zBqMFL0nvQ5jyXNxl_c2StN-A4py8pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Convex+Geometry+of+Linear+Inverse+Problems&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Chandrasekaran%2C+Venkat&rft.au=Recht%2C+Benjamin&rft.au=Parrilo%2C+Pablo+A&rft.au=Willsky%2C+Alan+S&rft.date=2012-12-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=12&rft.issue=6&rft.spage=805&rft.epage=849&rft_id=info:doi/10.1007%2Fs10208-012-9135-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon