Spatial spillover analysis of a cluster-randomized trial against dengue vectors in Trujillo, Venezuela

The ability of cluster-randomized trials to capture mass or indirect effects is one reason for their increasing use to test interventions against vector-borne diseases such as malaria and dengue. For the same reason, however, the independence of clusters may be compromised if the distances between c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases Jg. 14; H. 9; S. e0008576
Hauptverfasser: Alexander, Neal, Lenhart, Audrey, Anaya-Izquierdo, Karim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.09.2020
Public Library of Science (PLoS)
Schlagworte:
ISSN:1935-2735, 1935-2727, 1935-2735
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of cluster-randomized trials to capture mass or indirect effects is one reason for their increasing use to test interventions against vector-borne diseases such as malaria and dengue. For the same reason, however, the independence of clusters may be compromised if the distances between clusters is too small to ensure independence. In other words they may be subject to spillover effects. We distinguish two types of spatial spillover effect: between-cluster dependence in outcomes, or spillover dependence; and modification of the intervention effect according to distance to the intervention arm, or spillover indirect effect. We estimate these effects in trial of insecticide-treated materials against the dengue mosquito vector, Aedes aegypti, in Venezuela, the endpoint being the Breteau index. We use a novel random effects Poisson spatial regression model. Spillover dependence is incorporated via an orthogonalized intrinsic conditional autoregression (ICAR) model. Spillover indirect effects are incorporated via the number of locations within a certain radius, set at 200m, that are in the intervention arm. From the model with ICAR spatial dependence, and the degree of surroundedness, the intervention effect is estimated as 0.74-favouring the intervention-with a 95% credible interval of 0.34 to 1.69. The point estimates are stronger with increasing surroundedness within intervention locations. In this trial there is some evidence of a spillover indirect effect of the intervention, with the Breteau index tending to be lower in locations which are more surrounded by locations in the intervention arm.
Bibliographie:new_version
ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Current address: Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
The authors have declared that no competing interests exist.
ISSN:1935-2735
1935-2727
1935-2735
DOI:10.1371/journal.pntd.0008576