Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis

•Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand cau...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational and structural biotechnology journal Ročník 19; s. 949 - 960
Hlavní autori: Menyhárt, Otília, Győrffy, Balázs
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.01.2021
Research Network of Computational and Structural Biotechnology
Elsevier
Predmet:
ISSN:2001-0370, 2001-0370
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization.•We review some of the most frequently used frameworks for multi-omics data integration.•We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways.•We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities.•Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
AbstractList While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
• Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions. • Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization. • We review some of the most frequently used frameworks for multi-omics data integration. • We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways. • We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities. • Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
•Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization.•We review some of the most frequently used frameworks for multi-omics data integration.•We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways.•We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities.•Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.
Author Győrffy, Balázs
Menyhárt, Otília
Author_xml – sequence: 1
  givenname: Otília
  surname: Menyhárt
  fullname: Menyhárt, Otília
  organization: Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, H-1094 Budapest, Hungary
– sequence: 2
  givenname: Balázs
  orcidid: 0000-0002-5772-3766
  surname: Győrffy
  fullname: Győrffy, Balázs
  email: gyorffy.balazs@med.semmelweis-univ.hu
  organization: Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, H-1094 Budapest, Hungary
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33613862$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1vFCEUJabG1rV_wAczjz50VgaGgUmMiWn8aFLjiz4TYC67bGZhBaam_15mpzWtDxVuwtc5Jyfc8xKd-OABodcNXje46d7t1ibp3Zpg0qxxKdw_Q2cE46bGlOOTB_tTdJ7SDpchmq6n-AU6pbRrqOjIGdp-m8bs6rB3JlXqcIhBmS2kyvnKKG8gVhESqGi21W-XtzNkdEZlF_wRlKd9iFWadL49OL-5qIrCxofk0kWl_FANTi3HV-i5VWOC87t1hX5-_vTj8mt9_f3L1eXH69ow1ubacG5xZzHrFAVtGadAiOa6tZxTAZpaZgfVG6M17q3Qneg5w1RbagUbBkZX6GrRHYLayUN0exVvZVBOHi9C3EgVszMjSCxYz1reaWto2wGItoFGDAIT2poWcNH6sGgdJr2HwYDPUY2PRB-_eLeVm3AjuejKnM28vROI4dcEKcu9SwbGUXkIU5KE8ZYSyij9P7TtCeG8L_AVevPQ1l8_910tALEATAwpRbDSuHzsWXHpRtlgOWdI7uScITlnSOJSuC9U8g_1Xv1J0vuFBKWxNw6iTMZBSc_gIphcft49Rf8DPebhTw
CitedBy_id crossref_primary_10_1186_s40364_025_00758_2
crossref_primary_10_3389_fimmu_2024_1421576
crossref_primary_10_1038_s41587_023_01934_1
crossref_primary_10_1016_j_isci_2025_113128
crossref_primary_10_1007_s12032_022_01815_8
crossref_primary_10_1007_s00210_024_03320_3
crossref_primary_10_1038_s41598_025_13337_0
crossref_primary_10_3390_cancers13184544
crossref_primary_10_1080_14728222_2023_2259096
crossref_primary_10_2174_1574893618666230519145545
crossref_primary_10_3233_JAD_240098
crossref_primary_10_1016_j_compbiomed_2023_106875
crossref_primary_10_3390_genes14030558
crossref_primary_10_1093_bib_bbad304
crossref_primary_10_12688_f1000research_148778_1
crossref_primary_10_3389_fmolb_2022_793403
crossref_primary_10_1016_j_cca_2024_119686
crossref_primary_10_1093_bioadv_vbae015
crossref_primary_10_1186_s40364_023_00497_2
crossref_primary_10_4132_jptm_2022_08_30
crossref_primary_10_1038_s42003_021_02710_0
crossref_primary_10_3389_fonc_2025_1515898
crossref_primary_10_1186_s12943_022_01699_2
crossref_primary_10_1177_03915603211022960
crossref_primary_10_3390_ijms23031237
crossref_primary_10_3724_abbs_2024123
crossref_primary_10_2174_1573412919666230406100948
crossref_primary_10_1002_qub2_70002
crossref_primary_10_1007_s12094_025_03990_2
crossref_primary_10_1016_j_artmed_2023_102522
crossref_primary_10_3390_metabo12111154
crossref_primary_10_1016_j_freeradbiomed_2021_10_015
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1016_j_ymeth_2024_11_013
crossref_primary_10_1088_1361_6560_ad6951
crossref_primary_10_3390_ijms251910579
crossref_primary_10_3389_fonc_2023_1183766
crossref_primary_10_3389_fbioe_2024_1347138
crossref_primary_10_3390_biomedicines12081753
crossref_primary_10_3389_fimmu_2025_1646141
crossref_primary_10_1007_s00432_023_04831_x
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_1007_s12672_025_03535_7
crossref_primary_10_3390_ph17101307
crossref_primary_10_1002_mco2_693
crossref_primary_10_1002_msp2_16
crossref_primary_10_18632_oncotarget_28739
crossref_primary_10_1093_bib_bbaf355
crossref_primary_10_1016_j_annonc_2023_09_3117
crossref_primary_10_1016_j_bcp_2021_114818
crossref_primary_10_1186_s12964_023_01344_5
crossref_primary_10_3390_ijms24021354
crossref_primary_10_2196_71906
crossref_primary_10_3390_ijms26072923
crossref_primary_10_59717_j_xinn_med_2023_100023
crossref_primary_10_1002_cai2_9
crossref_primary_10_3390_cancers14030596
crossref_primary_10_1089_cmb_2024_0927
crossref_primary_10_1136_jitc_2023_008306
crossref_primary_10_3390_ijms23137176
crossref_primary_10_1016_j_compbiolchem_2024_108150
crossref_primary_10_1111_ajco_14095
crossref_primary_10_1016_j_jbi_2023_104373
crossref_primary_10_1016_j_clbc_2025_05_005
crossref_primary_10_3389_fonc_2025_1602489
crossref_primary_10_1016_j_biotechadv_2023_108149
crossref_primary_10_3389_fnut_2022_970019
crossref_primary_10_1016_j_bbcan_2024_189088
crossref_primary_10_52692_1857_0011_2021_3_71_05
crossref_primary_10_3389_fbioe_2021_756314
crossref_primary_10_1016_j_jlb_2025_100324
crossref_primary_10_1093_bib_bbaf108
crossref_primary_10_3389_fmars_2022_914028
crossref_primary_10_3389_fonc_2021_641487
crossref_primary_10_1016_j_csbj_2023_04_015
crossref_primary_10_3892_ol_2024_14453
crossref_primary_10_1039_D5AN00117J
crossref_primary_10_3389_fmolb_2025_1557843
crossref_primary_10_1016_j_clbc_2021_09_002
crossref_primary_10_1002_biof_2128
crossref_primary_10_1007_s41870_023_01310_x
crossref_primary_10_3390_genes14040801
crossref_primary_10_20935_AcadBiol7325
crossref_primary_10_3389_fimmu_2025_1528405
crossref_primary_10_1016_j_cancergen_2024_12_006
crossref_primary_10_1007_s12672_025_03140_8
crossref_primary_10_1016_j_csbj_2024_12_023
crossref_primary_10_1016_j_ctarc_2024_100845
crossref_primary_10_1007_s40200_024_01539_8
crossref_primary_10_1016_j_compbiomed_2022_105832
crossref_primary_10_1016_j_compbiomed_2023_106545
crossref_primary_10_1186_s12967_025_06662_5
crossref_primary_10_1007_s00500_024_10302_3
crossref_primary_10_1038_s41598_025_06459_y
crossref_primary_10_1007_s00262_024_03657_x
crossref_primary_10_3389_froh_2025_1592428
crossref_primary_10_1038_s41596_023_00841_8
crossref_primary_10_3390_metabo12090837
crossref_primary_10_1016_j_bbcan_2025_189396
crossref_primary_10_3389_fimmu_2022_951137
crossref_primary_10_1007_s12032_025_02789_z
crossref_primary_10_1016_j_prp_2025_155956
crossref_primary_10_3389_fphys_2024_1473125
crossref_primary_10_1038_s41416_024_02706_7
crossref_primary_10_1186_s12967_022_03468_7
crossref_primary_10_1093_bfgp_elae013
crossref_primary_10_1186_s13040_025_00426_z
crossref_primary_10_1016_j_bbagen_2024_130596
crossref_primary_10_1002_anse_202200082
crossref_primary_10_3390_biomedicines9101481
crossref_primary_10_1016_j_fbio_2025_107060
crossref_primary_10_3390_ijms22136932
crossref_primary_10_3724_zdxbyxb_2025_0090
crossref_primary_10_3389_fgene_2022_824451
crossref_primary_10_1007_s12094_023_03275_6
crossref_primary_10_1002_2056_4538_70003
crossref_primary_10_1049_cit2_12395
crossref_primary_10_1016_j_biotechadv_2024_108447
crossref_primary_10_3389_fmolb_2024_1393240
crossref_primary_10_1186_s12864_023_09825_0
crossref_primary_10_3390_biomedicines13010167
crossref_primary_10_1016_j_csbj_2021_06_030
crossref_primary_10_1038_s41598_025_92436_4
crossref_primary_10_1186_s12859_024_05989_y
crossref_primary_10_3389_fphar_2023_1203097
crossref_primary_10_1007_s00438_022_01966_3
crossref_primary_10_3390_ijms23179521
crossref_primary_10_3389_fgene_2022_1090394
crossref_primary_10_1109_ACCESS_2025_3540769
crossref_primary_10_3389_fonc_2022_892207
crossref_primary_10_1016_j_imu_2024_101507
crossref_primary_10_1016_j_taap_2024_116865
crossref_primary_10_1186_s12885_025_13952_0
crossref_primary_10_1093_bioadv_vbac042
crossref_primary_10_3390_jcm11154398
crossref_primary_10_1038_s41598_024_78965_4
crossref_primary_10_1089_omi_2023_0120
crossref_primary_10_3390_molecules26206112
crossref_primary_10_1007_s12010_024_04926_2
crossref_primary_10_1186_s12859_025_06230_0
crossref_primary_10_3389_fonc_2021_685065
crossref_primary_10_1007_s12032_025_02641_4
crossref_primary_10_1007_s12094_025_04051_4
crossref_primary_10_1093_bib_bbaf150
crossref_primary_10_1007_s10142_024_01445_5
crossref_primary_10_1093_bib_bbae185
crossref_primary_10_1371_journal_pcbi_1011842
crossref_primary_10_3390_biology11020260
crossref_primary_10_52601_bpr_2024_240053
crossref_primary_10_3389_fonc_2025_1584178
crossref_primary_10_1016_j_jprot_2022_104603
crossref_primary_10_3389_fonc_2022_993781
crossref_primary_10_1002_imt2_73
crossref_primary_10_3389_fimmu_2024_1520860
crossref_primary_10_1093_nar_gkae915
crossref_primary_10_3168_jds_2024_26210
crossref_primary_10_1111_pbi_13896
crossref_primary_10_1093_nar_gkaf844
crossref_primary_10_3389_fgene_2025_1679501
crossref_primary_10_1007_s13167_021_00269_8
crossref_primary_10_3389_fgene_2021_695662
crossref_primary_10_7759_cureus_75142
crossref_primary_10_1093_bfgp_elad031
crossref_primary_10_3389_fimmu_2025_1574783
crossref_primary_10_1002_cam4_6330
crossref_primary_10_1016_j_breast_2025_103892
crossref_primary_10_38124_ijsrmt_v1i8_497
crossref_primary_10_1259_bjr_20230211
crossref_primary_10_3390_ph18081140
crossref_primary_10_1109_ACCESS_2024_3476235
crossref_primary_10_3389_fphar_2025_1591696
crossref_primary_10_1002_jmv_28693
crossref_primary_10_1016_j_ijbiomac_2023_127055
crossref_primary_10_1093_bib_bbae606
crossref_primary_10_1016_j_molmed_2024_11_004
crossref_primary_10_1016_j_ebiom_2024_105495
Cites_doi 10.3390/ht8010004
10.1093/bioinformatics/btv244
10.1074/mcp.M116.060301
10.1146/annurev-statistics-041715-033506
10.1158/0008-5472.CAN-11-0180
10.1038/nm.3967
10.1038/s41586-019-0987-8
10.1093/bioinformatics/btq182
10.1016/j.jprot.2018.02.021
10.1056/NEJMoa1510764
10.1126/science.aan3706
10.1016/j.tig.2006.01.006
10.1038/nature13319
10.1016/j.clbc.2017.05.004
10.1038/s41540-019-0099-y
10.1158/0008-5472.CAN-17-0833
10.1016/j.clinre.2016.10.003
10.1172/JCI67228
10.1038/s41571-018-0002-6
10.1109/CIBCB.2018.8404968
10.2174/1568026617666170707120034
10.1093/bioinformatics/bts595
10.1186/s12885-020-6534-z
10.1038/35021093
10.1038/nrg3185
10.1016/j.cell.2019.03.030
10.1126/science.aan4236
10.1038/ng.2764
10.1186/s13073-018-0525-6
10.1177/1177932219899051
10.1038/nature10983
10.1038/s41467-020-14381-2
10.1155/2015/458052
10.3389/fgene.2017.00084
10.1038/nature12625
10.1126/scitranslmed.aay1984
10.1093/nar/gks725
10.1172/JCI71180
10.1214/12-AOAS597
10.3390/ijms17091555
10.1016/j.cell.2016.03.014
10.2217/pme-2018-0085
10.1186/s13058-015-0514-2
10.1093/bioinformatics/btp543
10.15252/msb.20167144
10.1186/s12864-015-1994-2
10.1158/2159-8290.CD-15-0443
10.1093/annonc/mdx765
10.1038/nature10166
10.1038/srep18517
10.1371/journal.pone.0116095
10.3389/fphar.2018.01522
10.1002/ijc.33283
10.1016/j.therap.2016.09.015
10.1126/science.aaa1348
10.1093/annonc/mdv177
10.1093/nar/gky889
10.1126/science.aar3247
10.1016/j.cell.2016.05.069
10.1073/pnas.0608638104
10.1093/bioinformatics/bts655
10.1093/nar/gku489
10.1093/bioinformatics/btx176
10.1016/j.neo.2016.01.003
10.1186/1471-2105-14-245
10.1586/erm.13.36
10.1126/science.1235122
10.1002/cam4.1390
10.1126/science.1090887
10.15252/msb.20178124
10.1038/nchembio.462
10.1002/ijc.30509
10.1016/j.csbj.2020.02.011
10.1038/nature18003
10.7717/peerj.270
10.1038/nmeth.2810
10.1186/s13059-017-1215-1
10.1186/bcr767
10.1016/j.celrep.2018.06.032
10.1038/s41575-019-0245-4
10.1073/pnas.1208949110
10.3390/jpm6010012
10.1073/pnas.1704961114
10.1186/s12920-015-0108-y
10.1021/acs.jproteome.5b00824
10.1093/bioinformatics/btt425
10.1038/nrm3545
10.1126/science.aao3290
10.1038/srep29662
10.1186/gb-2012-13-12-r124
10.1038/nature10098
10.1200/JCO.2008.18.1370
10.1038/nature11412
10.1126/scitranslmed.3007094
10.1038/ncomms6469
10.1155/2018/9836256
10.1093/biostatistics/kxx017
10.1093/bioinformatics/btz058
10.1016/j.jpba.2013.08.041
10.1093/bioinformatics/bty148
10.1093/bib/bbz121
10.18632/oncotarget.15681
10.1007/978-1-4939-7717-8_7
10.1158/2159-8290.CD-13-0219
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2021.01.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 960
ExternalDocumentID oai_doaj_org_article_08595476bfc346ee841e18d80234c4e0
PMC7868685
33613862
10_1016_j_csbj_2021_01_009
S2001037021000131
Genre Journal Article
Review
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-c77f06f056a3ebf573e22b7b4f7738eb3f5fda9ccbb09f8b6897503bf3f85dd53
IEDL.DBID DOA
ISICitedReferencesCount 211
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684867500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2001-0370
IngestDate Fri Oct 03 12:45:30 EDT 2025
Tue Nov 04 01:55:36 EST 2025
Wed Oct 01 13:48:48 EDT 2025
Wed Oct 01 14:58:31 EDT 2025
Thu Jan 02 22:58:21 EST 2025
Tue Nov 18 22:35:42 EST 2025
Sat Nov 29 05:55:07 EST 2025
Sat Aug 31 16:01:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Driver mutation
Metabolomics
Biomarker
Transcriptomics
Data integration
Genomics
Lung cancer
Proteomics
Breast cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-c77f06f056a3ebf573e22b7b4f7738eb3f5fda9ccbb09f8b6897503bf3f85dd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5772-3766
OpenAccessLink https://doaj.org/article/08595476bfc346ee841e18d80234c4e0
PMID 33613862
PQID 2492277932
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_08595476bfc346ee841e18d80234c4e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868685
proquest_miscellaneous_2574323533
proquest_miscellaneous_2492277932
pubmed_primary_33613862
crossref_citationtrail_10_1016_j_csbj_2021_01_009
crossref_primary_10_1016_j_csbj_2021_01_009
elsevier_sciencedirect_doi_10_1016_j_csbj_2021_01_009
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Computational and structural biotechnology journal
PublicationTitleAlternate Comput Struct Biotechnol J
PublicationYear 2021
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Heyn, Méndez-González, Esteller (b0280) 2013; 13
Wolf-Yadlin, Hautaniemi, Lauffenburger, White (b0360) 2007; 104
Parker, Mullins, Cheang, Leung, Voduc, Vickery (b0380) 2009; 27
Shi Q, Zhang C, Peng M, Yu X, Zeng T, et al. (2017) Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 33: 2706-2714.
Bell, Berchuck, Birrer, Chien, Cramer (b0115) 2011; 474
Sonu, Jonas, Dwyre, Gregg, Rashidi (b0265) 2015; 2015
Lock, Hoadley, Marron, Nobel (b0075) 2013; 7
Meng, Helm, Frejno, Kuster (b0080) 2016; 15
Edfors, Danielsson, Hallström, Käll, Lundberg (b0425) 2016; 12
Berger, Mardis (b0245) 2018; 15
Weinstein, Collisson, Mills, Shaw, Ozenberger, Ellrott (b0350) 2013; 45
Tiffen, Wilson, Gallagher, Hersey, Filipp (b0290) 2016; 18
Richardson, Tseng, Sun (b0045) 2016; 3
Wang, Ma, Carr, Mertins, Zhang, Zhang (b0445) 2017; 16
Wang, Zhang, Zhang, Guo, Jiang, Zhao (b0540) 2018; 7
Terunuma, Putluri, Mishra, Mathé, Dorsey, Yi (b0475) 2014; 124
Wilhelm, Schlegl, Hahne, Gholami, Lieberenz, Savitski (b0430) 2014; 509
Chakraborty, Hosen, Ahmed, Shekhar (b0020) 2018; 2018
Doebele, Davis, Vaishnavi, Le, Estrada-Bernal, Keysar (b0270) 2015; 5
Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28: 3290-3297.
Savage R, Ghahramani Z, Griffin J, Kirk P, Wild D (2013) Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data.
Burrell, McGranahan, Bartek, Swanton (b0180) 2013; 501
Nagy, Pongor, Szabó, Santarpia, Győrffy (b0200) 2017; 140
Zhang S, Liu CC, Li W, Shen H, Laird PW, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40: 9379-9391.
Michaut, Chin, Majewski, Severson, Bismeijer, de Koning (b0495) 2016; 6
Satpathy, Jaehnig, Krug, Kim, Saltzman, Chan (b0365) 2020; 11
Ren, Shao, Zhao, Hong, Wang, Lu (b0465) 2016; 15
Ricketts, De Cubas, Fan, Smith, Lang, Reznik (b0500) 2018; 23
Guinney, Dienstmann, Wang, de Reyniès, Schlicker, Soneson (b0480) 2015; 21
Jiang, Sun, Zhao, Ying, Sun, Yang (b0305) 2019; 567
Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics Data Integration, Interpretation, and Its Application. 14: 1177932219899051.
Cohen, Javed, Thoburn, Wong, Tie, Gibbs (b0520) 2017; 114
Cancer Genome Atlas (b0395) 2012; 490
Zhang, Liu, Zhang, Payne, Zhang, McDermott (b0485) 2016; 166
Győrffy, Hatzis, Sanft, Hofstatter, Aktas, Pusztai (b0390) 2015; 17
Wilson, Fan, Sahgal, Qi, Filipp (b0285) 2017; 8
Mattox AK, Bettegowda C, Zhou S (2019) Applications of liquid biopsies for cancer. 11.
Armitage, Barbas (b0310) 2014; 87
Menyhart O, Pongor LS, Gyorffy B (2018) Mutations Defining Patient Cohorts With Elevated PD-L1 Expression in Gastric Cancer. Front Pharmacol 9: 1522.
Tie, Kinde, Wang, Wong, Roebert, Christie (b0515) 2015; 26
Zhou Y, Liu Y, Li K, Zhang R, Qiu F, et al. (2015) ICan: an integrated co-alteration network to identify ovarian cancer-related genes. PLoS One 10: e0116095.
Yang, Xia, Wang, Cheng, Yin, Xie (b0470) 2017; 7
Liu, Beyer, Aebersold (b0410) 2016; 165
Kelley, Flam, Izumchenko, Danilova, Wulf, Guo (b0450) 2017; 77
Wu, Zhou, Ren, Li, Jiang, Ma (b0040) 2019; 8
Masica, Karchin (b0205) 2011; 71
Mo, Wang, Seshan, Olshen, Schultz, Sander (b0100) 2013; 110
Schwanhäusser, Busse, Li, Dittmar, Schuchhardt, Wolf (b0420) 2011; 473
Li, Wei, To, Zhu, Tong, Pham (b0375) 2014; 5
Arpino, Bardou, Clark, Elledge (b0490) 2004; 6
Lock EF, Dunson DB (2013) Bayesian consensus clustering. Bioinformatics 29: 2610-2616.
Mo Q, Shen R, Guo C, Vannucci M, Chan KS, et al. (2018) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19: 71-86.
Tsai, Shakbatyan, Evans, Rossetti, Graham, Sharma (b0250) 2016; 6
Lehmann-Che, Poirot, Boyer, Evrard (b0235) 2017; 72
Misra, Langefeld, Olivier, Cox (b0050) 2018
Tian, Fan, Zhao, Gao, Zhao, Chen (b0535) 2017; 41
Sathyanarayanan A, Gupta R, Thompson EW, Nyholt DR, Bauer DC, et al. (2020) A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform 21: 1920-1936.
Wang, Mezlini, Demir, Fiume, Tu, Brudno (b0150) 2014; 11
Vogelstein, Papadopoulos, Velculescu, Zhou, Diaz, Kinzler (b0185) 2013; 339
Badeaux, Shi (b0275) 2013; 14
Menyhárt, Harami-Papp, Sukumar, Schäfer, Magnani, de Barrios (b0230) 2016; 1866
Tebani, Afonso, Marret, Bekri (b0550) 2016; 17
Dimitrakopoulos C, Hindupur SK, Häfliger L, Behr J, Montazeri H, et al. (2018) Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics 34: 2441-2448.
Mertins, Mani, Ruggles, Gillette, Clauser, Wang (b0400) 2016; 534
Auslander, Yizhak, Weinstock, Budhu, Tang, Wang (b0460) 2016; 6
Petrosino (b0325) 2018; 10
Koh, Fermin, Vogel, Choi, Ewing, Choi (b0140) 2019; 5
Sparano, Gray, Makower, Pritchard, Albain, Hayes (b0255) 2015; 373
Wang, Peng, Wang, Ye (b0345) 2019; 16
Wang W, Baladandayuthapani V, Morris JS, Broom BM, Manyam G, et al. (2013) iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics (Oxford, England) 29: 149-159.
Yanai, Korbel, Boue, McWeeney, Bork, Lercher (b0440) 2006; 22
Curtis, Shah, Chin, Turashvili, Rueda, Dunning (b0090) 2012; 486
Yan, Risacher, Shen, Saykin (b0010) 2018; 19
Matson V, Fessler J, Bao R (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. 359: 104-108.
Puchades-Carrasco, Pineda-Lucena (b0320) 2017; 17
Shen R, Olshen AB, Ladanyi M (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25: 2906-2912.
Rappoport N, Shamir R (2019) NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35: 3348-3356.
Nagy, Győrffy (b0199) 2021; 148
Perou, Sørlie, Eisen, van de Rijn, Jeffrey, Rees (b0385) 2000; 406
Quackenbush (b0435) 2003; 302
Bettegowda, Sausen, Leary, Kinde, Wang (b0510) 2014; 6
Cohen, Li, Wang, Thoburn, Afsari, Danilova (b0525) 2018; 359
Uzozie, Aebersold (b0295) 2018; 189
Bashashati, Haffari, Ding, Ha, Lui, Rosner (b0210) 2012; 13
Yang, Soga, Pollard (b0315) 2013; 123
Soliman, Shah, Srkalovic, Mahtani, Levine, Mavromatis (b0260) 2020; 20
Lin, Zhang, Li, Calhoun, Deng, Wang (b0165) 2013; 14
Yu, Zeng (b0030) 2018; 1754
(2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171: 950-965.e928.
Argelaguet, Velten, Arnol, Dietrich, Zenz, Marioni (b0225) 2018; 14
Lourenco, Benson, Henderson, Silver, Letsios (b0300) 2017; 17
Ellis, Gillette, Carr, Paulovich, Smith, Rodland (b0355) 2013; 3
Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, et al. (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42: e107.
Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26: i237-245.
Gopalakrishnan, Spencer, Nezi, Reuben, Andrews, Karpinets (b0335) 2018; 359
Vogel, Marcotte (b0415) 2012; 13
Buscail, Bournet, Cordelier (b0530) 2020; 17
Huang, Chaudhary, Garmire (b0065) 2017; 8
Rizvi, Hellmann, Snyder, Kvistborg, Makarov, Havel (b0240) 2015; 348
Krug, Enderle, Karlovich, Priewasser, Bentink, Spiel (b0545) 2018; 29
Moarii, Boeva, Vert, Reyal (b0455) 2015; 16
Rappoport N, Shamir R (2018) Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic acids research 46: 10546-10562.
Routy B, Le Chatelier E (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. 359: 91-97.
Vasaikar, Huang, Wang, Petyuk, Savage, Wen (b0370) 2019; 177
El-Manzalawy Y. CCA based multi-view feature selection for multi-omics data integration; 2018 30 May-2 June 2018. pp. 1-8.
Li, Bickel, Biggin (b0405) 2014; 2
Speicher, Pfeifer (b0155) 2015; 31
Baldwin, Han, Luo, Zhou, An, Liu (b0035) 2020; 18
Alyass, Turcotte, Meyre (b0005) 2015; 8
Hasin, Seldin, Lusis (b0015) 2017; 18
Palsson, Zengler (b0025) 2010; 6
Badeaux (10.1016/j.csbj.2021.01.009_b0275) 2013; 14
Richardson (10.1016/j.csbj.2021.01.009_b0045) 2016; 3
Schwanhäusser (10.1016/j.csbj.2021.01.009_b0420) 2011; 473
10.1016/j.csbj.2021.01.009_b0160
Heyn (10.1016/j.csbj.2021.01.009_b0280) 2013; 13
Puchades-Carrasco (10.1016/j.csbj.2021.01.009_b0320) 2017; 17
Baldwin (10.1016/j.csbj.2021.01.009_b0035) 2020; 18
Michaut (10.1016/j.csbj.2021.01.009_b0495) 2016; 6
Arpino (10.1016/j.csbj.2021.01.009_b0490) 2004; 6
Lock (10.1016/j.csbj.2021.01.009_b0075) 2013; 7
Ricketts (10.1016/j.csbj.2021.01.009_b0500) 2018; 23
Győrffy (10.1016/j.csbj.2021.01.009_b0390) 2015; 17
Liu (10.1016/j.csbj.2021.01.009_b0410) 2016; 165
Masica (10.1016/j.csbj.2021.01.009_b0205) 2011; 71
Sparano (10.1016/j.csbj.2021.01.009_b0255) 2015; 373
Sonu (10.1016/j.csbj.2021.01.009_b0265) 2015; 2015
Auslander (10.1016/j.csbj.2021.01.009_b0460) 2016; 6
Menyhárt (10.1016/j.csbj.2021.01.009_b0230) 2016; 1866
Tebani (10.1016/j.csbj.2021.01.009_b0550) 2016; 17
Yu (10.1016/j.csbj.2021.01.009_b0030) 2018; 1754
Yan (10.1016/j.csbj.2021.01.009_b0010) 2018; 19
Li (10.1016/j.csbj.2021.01.009_b0375) 2014; 5
Guinney (10.1016/j.csbj.2021.01.009_b0480) 2015; 21
Alyass (10.1016/j.csbj.2021.01.009_b0005) 2015; 8
Buscail (10.1016/j.csbj.2021.01.009_b0530) 2020; 17
Vasaikar (10.1016/j.csbj.2021.01.009_b0370) 2019; 177
Yang (10.1016/j.csbj.2021.01.009_b0315) 2013; 123
Wilson (10.1016/j.csbj.2021.01.009_b0285) 2017; 8
Ren (10.1016/j.csbj.2021.01.009_b0465) 2016; 15
Li (10.1016/j.csbj.2021.01.009_b0405) 2014; 2
Palsson (10.1016/j.csbj.2021.01.009_b0025) 2010; 6
Soliman (10.1016/j.csbj.2021.01.009_b0260) 2020; 20
Parker (10.1016/j.csbj.2021.01.009_b0380) 2009; 27
10.1016/j.csbj.2021.01.009_b0145
Wilhelm (10.1016/j.csbj.2021.01.009_b0430) 2014; 509
Wang (10.1016/j.csbj.2021.01.009_b0150) 2014; 11
Lourenco (10.1016/j.csbj.2021.01.009_b0300) 2017; 17
Cohen (10.1016/j.csbj.2021.01.009_b0525) 2018; 359
Wolf-Yadlin (10.1016/j.csbj.2021.01.009_b0360) 2007; 104
10.1016/j.csbj.2021.01.009_b0095
10.1016/j.csbj.2021.01.009_b0130
Nagy (10.1016/j.csbj.2021.01.009_b0199) 2021; 148
Wang (10.1016/j.csbj.2021.01.009_b0345) 2019; 16
10.1016/j.csbj.2021.01.009_b0135
Bettegowda (10.1016/j.csbj.2021.01.009_b0510) 2014; 6
Misra (10.1016/j.csbj.2021.01.009_b0050) 2018
Vogelstein (10.1016/j.csbj.2021.01.009_b0185) 2013; 339
Ellis (10.1016/j.csbj.2021.01.009_b0355) 2013; 3
Speicher (10.1016/j.csbj.2021.01.009_b0155) 2015; 31
Bashashati (10.1016/j.csbj.2021.01.009_b0210) 2012; 13
Zhang (10.1016/j.csbj.2021.01.009_b0485) 2016; 166
10.1016/j.csbj.2021.01.009_b0085
Cohen (10.1016/j.csbj.2021.01.009_b0520) 2017; 114
Moarii (10.1016/j.csbj.2021.01.009_b0455) 2015; 16
Weinstein (10.1016/j.csbj.2021.01.009_b0350) 2013; 45
10.1016/j.csbj.2021.01.009_b0120
Lehmann-Che (10.1016/j.csbj.2021.01.009_b0235) 2017; 72
Bell (10.1016/j.csbj.2021.01.009_b0115) 2011; 474
10.1016/j.csbj.2021.01.009_b0125
Curtis (10.1016/j.csbj.2021.01.009_b0090) 2012; 486
Berger (10.1016/j.csbj.2021.01.009_b0245) 2018; 15
Mo (10.1016/j.csbj.2021.01.009_b0100) 2013; 110
Doebele (10.1016/j.csbj.2021.01.009_b0270) 2015; 5
Satpathy (10.1016/j.csbj.2021.01.009_b0365) 2020; 11
Jiang (10.1016/j.csbj.2021.01.009_b0305) 2019; 567
Mertins (10.1016/j.csbj.2021.01.009_b0400) 2016; 534
Krug (10.1016/j.csbj.2021.01.009_b0545) 2018; 29
10.1016/j.csbj.2021.01.009_b0190
10.1016/j.csbj.2021.01.009_b0070
Argelaguet (10.1016/j.csbj.2021.01.009_b0225) 2018; 14
Lin (10.1016/j.csbj.2021.01.009_b0165) 2013; 14
Tiffen (10.1016/j.csbj.2021.01.009_b0290) 2016; 18
Perou (10.1016/j.csbj.2021.01.009_b0385) 2000; 406
10.1016/j.csbj.2021.01.009_b0195
Hasin (10.1016/j.csbj.2021.01.009_b0015) 2017; 18
10.1016/j.csbj.2021.01.009_b0110
Uzozie (10.1016/j.csbj.2021.01.009_b0295) 2018; 189
Armitage (10.1016/j.csbj.2021.01.009_b0310) 2014; 87
Petrosino (10.1016/j.csbj.2021.01.009_b0325) 2018; 10
Wang (10.1016/j.csbj.2021.01.009_b0445) 2017; 16
Tie (10.1016/j.csbj.2021.01.009_b0515) 2015; 26
Yanai (10.1016/j.csbj.2021.01.009_b0440) 2006; 22
Tian (10.1016/j.csbj.2021.01.009_b0535) 2017; 41
Burrell (10.1016/j.csbj.2021.01.009_b0180) 2013; 501
Terunuma (10.1016/j.csbj.2021.01.009_b0475) 2014; 124
10.1016/j.csbj.2021.01.009_b0060
10.1016/j.csbj.2021.01.009_b0220
10.1016/j.csbj.2021.01.009_b0340
Rizvi (10.1016/j.csbj.2021.01.009_b0240) 2015; 348
10.1016/j.csbj.2021.01.009_b0105
Huang (10.1016/j.csbj.2021.01.009_b0065) 2017; 8
Tsai (10.1016/j.csbj.2021.01.009_b0250) 2016; 6
10.1016/j.csbj.2021.01.009_b0505
Yang (10.1016/j.csbj.2021.01.009_b0470) 2017; 7
Gopalakrishnan (10.1016/j.csbj.2021.01.009_b0335) 2018; 359
Cancer Genome Atlas (10.1016/j.csbj.2021.01.009_b0395) 2012; 490
Kelley (10.1016/j.csbj.2021.01.009_b0450) 2017; 77
Koh (10.1016/j.csbj.2021.01.009_b0140) 2019; 5
Wu (10.1016/j.csbj.2021.01.009_b0040) 2019; 8
Wang (10.1016/j.csbj.2021.01.009_b0540) 2018; 7
10.1016/j.csbj.2021.01.009_b0170
10.1016/j.csbj.2021.01.009_b0055
10.1016/j.csbj.2021.01.009_b0330
10.1016/j.csbj.2021.01.009_b0175
Edfors (10.1016/j.csbj.2021.01.009_b0425) 2016; 12
Vogel (10.1016/j.csbj.2021.01.009_b0415) 2012; 13
10.1016/j.csbj.2021.01.009_b0215
Chakraborty (10.1016/j.csbj.2021.01.009_b0020) 2018; 2018
Meng (10.1016/j.csbj.2021.01.009_b0080) 2016; 15
Nagy (10.1016/j.csbj.2021.01.009_b0200) 2017; 140
Quackenbush (10.1016/j.csbj.2021.01.009_b0435) 2003; 302
References_xml – reference: Zhang S, Liu CC, Li W, Shen H, Laird PW, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40: 9379-9391.
– volume: 18
  year: 2017
  ident: b0015
  article-title: Multi-omics approaches to disease
  publication-title: Genome Biol
– volume: 3
  start-page: 1108
  year: 2013
  end-page: 1112
  ident: b0355
  article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium
  publication-title: Cancer Discovery
– volume: 501
  start-page: 338
  year: 2013
  end-page: 345
  ident: b0180
  article-title: The causes and consequences of genetic heterogeneity in cancer evolution
  publication-title: Nature
– volume: 8
  start-page: 33
  year: 2015
  ident: b0005
  article-title: From big data analysis to personalized medicine for all: challenges and opportunities
  publication-title: BMC Med Genomics
– volume: 8
  start-page: 4
  year: 2019
  ident: b0040
  article-title: A selective review of multi-level omics data integration using variable selection
  publication-title: High-throughput
– volume: 13
  start-page: 473
  year: 2013
  end-page: 479
  ident: b0280
  article-title: Epigenetic profiling joins personalized cancer medicine
  publication-title: Expert Rev Mol Diagn
– volume: 165
  start-page: 535
  year: 2016
  end-page: 550
  ident: b0410
  article-title: On the dependency of cellular protein levels on mRNA abundance
  publication-title: Cell
– volume: 14
  start-page: 245
  year: 2013
  ident: b0165
  article-title: Group sparse canonical correlation analysis for genomic data integration
  publication-title: BMC Bioinf
– volume: 6
  start-page: R149
  year: 2004
  end-page: R156
  ident: b0490
  article-title: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome
  publication-title: Breast Cancer Res: BCR
– volume: 7
  start-page: 1670
  year: 2018
  end-page: 1679
  ident: b0540
  article-title: Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma
  publication-title: Cancer Med
– reference: Zhou Y, Liu Y, Li K, Zhang R, Qiu F, et al. (2015) ICan: an integrated co-alteration network to identify ovarian cancer-related genes. PLoS One 10: e0116095.
– volume: 45
  start-page: 1113
  year: 2013
  end-page: 1120
  ident: b0350
  article-title: The Cancer Genome Atlas Pan-Cancer analysis project
  publication-title: Nat Genet
– volume: 17
  start-page: 2740
  year: 2017
  end-page: 2751
  ident: b0320
  article-title: Metabolomics applications in precision medicine: an oncological perspective
  publication-title: Curr Top Med Chem
– volume: 2
  year: 2014
  ident: b0405
  article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals
  publication-title: PeerJ
– volume: 41
  start-page: 171
  year: 2017
  end-page: 180
  ident: b0535
  article-title: Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B
  publication-title: Clin Res Hepatol Gastroenterol
– volume: 15
  start-page: 353
  year: 2018
  end-page: 365
  ident: b0245
  article-title: The emerging clinical relevance of genomics in cancer medicine
  publication-title: Nat Rev Clin Oncol
– volume: 302
  start-page: 240
  year: 2003
  end-page: 241
  ident: b0435
  article-title: Genomics. Microarrays–guilt by association
  publication-title: Science
– reference: Rappoport N, Shamir R (2018) Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic acids research 46: 10546-10562.
– volume: 19
  start-page: 1370
  year: 2018
  end-page: 1381
  ident: b0010
  article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data
  publication-title: Brief Bioinform
– volume: 13
  start-page: 227
  year: 2012
  end-page: 232
  ident: b0415
  article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
  publication-title: Nat Rev Genet
– volume: 71
  start-page: 4550
  year: 2011
  end-page: 4561
  ident: b0205
  article-title: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival
  publication-title: Cancer Res
– reference: Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26: i237-245.
– volume: 2015
  year: 2015
  ident: b0265
  article-title: Optimal molecular methods in detecting p190<sup>BCR-ABL</sup> fusion variants in hematologic malignancies: a case report and review of the literature
  publication-title: Case Reports Hematol
– reference: (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171: 950-965.e928.
– volume: 72
  start-page: 439
  year: 2017
  end-page: 451
  ident: b0235
  article-title: Cancer genomics guide clinical practice in personalized medicine
  publication-title: Therapies
– volume: 27
  start-page: 1160
  year: 2009
  end-page: 1167
  ident: b0380
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J Clin Oncol
– volume: 10
  start-page: 12
  year: 2018
  ident: b0325
  article-title: The microbiome in precision medicine: the way forward
  publication-title: Genome Med
– volume: 5
  year: 2019
  ident: b0140
  article-title: iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery
  publication-title: npj Syst Biol Appl
– volume: 87
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0310
  article-title: Metabolomics in cancer biomarker discovery: current trends and future perspectives
  publication-title: J Pharm Biomed Anal
– reference: Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28: 3290-3297.
– volume: 509
  start-page: 582
  year: 2014
  end-page: 587
  ident: b0430
  article-title: Mass-spectrometry-based draft of the human proteome
  publication-title: Nature
– volume: 15
  start-page: 154
  year: 2016
  end-page: 163
  ident: b0465
  article-title: Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer
  publication-title: Molecular amp;amp; Cellular Proteomics
– volume: 124
  start-page: 398
  year: 2014
  end-page: 412
  ident: b0475
  article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis
  publication-title: J Clin Invest
– reference: Rappoport N, Shamir R (2019) NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35: 3348-3356.
– volume: 17
  start-page: 516
  year: 2017
  end-page: 525.e516
  ident: b0300
  article-title: A non-invasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years
  publication-title: Clin Breast Cancer
– volume: 3
  start-page: 181
  year: 2016
  end-page: 209
  ident: b0045
  article-title: Statistical methods in integrative genomics
  publication-title: Annu Rev Stat Appl
– volume: 21
  start-page: 1350
  year: 2015
  end-page: 1356
  ident: b0480
  article-title: The consensus molecular subtypes of colorectal cancer
  publication-title: Nat Med
– volume: 13
  start-page: R124
  year: 2012
  ident: b0210
  article-title: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
  publication-title: Genome Biol
– volume: 11
  start-page: 333
  year: 2014
  end-page: 337
  ident: b0150
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
– volume: 1866
  start-page: 300
  year: 2016
  end-page: 319
  ident: b0230
  article-title: Guidelines for the selection of functional assays to evaluate the hallmarks of cancer
  publication-title: Biochim Biophys Acta
– reference: Shi Q, Zhang C, Peng M, Yu X, Zeng T, et al. (2017) Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 33: 2706-2714.
– volume: 140
  start-page: 930
  year: 2017
  end-page: 937
  ident: b0200
  article-title: KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer
  publication-title: Int J Cancer
– volume: 16
  start-page: 873
  year: 2015
  ident: b0455
  article-title: Changes in correlation between promoter methylation and gene expression in cancer
  publication-title: BMC Genomics
– reference: Mattox AK, Bettegowda C, Zhou S (2019) Applications of liquid biopsies for cancer. 11.
– reference: Menyhart O, Pongor LS, Gyorffy B (2018) Mutations Defining Patient Cohorts With Elevated PD-L1 Expression in Gastric Cancer. Front Pharmacol 9: 1522.
– volume: 123
  start-page: 3652
  year: 2013
  end-page: 3658
  ident: b0315
  article-title: Oncometabolites: linking altered metabolism with cancer
  publication-title: J Clin Invest
– volume: 5
  year: 2014
  ident: b0375
  article-title: Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact
  publication-title: Nat Commun
– volume: 17
  year: 2015
  ident: b0390
  article-title: Multigene prognostic tests in breast cancer: past, present, future
  publication-title: Breast Cancer Res
– volume: 22
  start-page: 132
  year: 2006
  end-page: 138
  ident: b0440
  article-title: Similar gene expression profiles do not imply similar tissue functions
  publication-title: Trends Genet
– volume: 490
  start-page: 61
  year: 2012
  end-page: 70
  ident: b0395
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
– volume: 6
  start-page: 224ra224
  year: 2014
  ident: b0510
  article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies
  publication-title: Sci Transl Med
– reference: Matson V, Fessler J, Bao R (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. 359: 104-108.
– volume: 6
  year: 2016
  ident: b0460
  article-title: A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer
  publication-title: Sci Rep
– volume: 23
  start-page: 3698
  year: 2018
  ident: b0500
  article-title: The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma
  publication-title: Cell Rep
– volume: 17
  start-page: 153
  year: 2020
  end-page: 168
  ident: b0530
  article-title: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer
  publication-title: Nature Rev Gastroenterol Hepatol
– volume: 486
  start-page: 346
  year: 2012
  end-page: 352
  ident: b0090
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
– volume: 6
  start-page: 12
  year: 2016
  ident: b0250
  article-title: Bioinformatics workflow for clinical whole genome sequencing at partners healthcare personalized medicine
  publication-title: J Pers Med
– volume: 18
  start-page: 121
  year: 2016
  end-page: 132
  ident: b0290
  article-title: Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma
  publication-title: Neoplasia
– reference: Routy B, Le Chatelier E (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. 359: 91-97.
– volume: 189
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0295
  article-title: Advancing translational research and precision medicine with targeted proteomics
  publication-title: J Proteomics
– volume: 11
  year: 2020
  ident: b0365
  article-title: Microscaled proteogenomic methods for precision oncology
  publication-title: Nat Commun
– volume: 114
  start-page: 10202
  year: 2017
  end-page: 10207
  ident: b0520
  article-title: Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers
  publication-title: Proc Natl Acad Sci U S A
– volume: 359
  start-page: 97
  year: 2018
  end-page: 103
  ident: b0335
  article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients
  publication-title: Science
– reference: Wang W, Baladandayuthapani V, Morris JS, Broom BM, Manyam G, et al. (2013) iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics (Oxford, England) 29: 149-159.
– volume: 534
  start-page: 55
  year: 2016
  end-page: 62
  ident: b0400
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
– year: 2018
  ident: b0050
  article-title: Integrated omics: tools, advances, and future approaches
  publication-title: J Mol Endocrinol
– volume: 29
  start-page: 700
  year: 2018
  end-page: 706
  ident: b0545
  article-title: Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma
  publication-title: Ann Oncol
– volume: 7
  start-page: 523
  year: 2013
  end-page: 542
  ident: b0075
  article-title: Joint and individual variation explained (Jive) for integrated analysis of multiple data types
  publication-title: Ann Appl Statistics
– volume: 20
  year: 2020
  ident: b0260
  article-title: MammaPrint guides treatment decisions in breast Cancer: results of the IMPACt trial
  publication-title: BMC Cancer
– volume: 16
  start-page: 121
  year: 2017
  end-page: 134
  ident: b0445
  article-title: Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction
  publication-title: Mol Cell Proteomics
– volume: 359
  start-page: 926
  year: 2018
  end-page: 930
  ident: b0525
  article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test
  publication-title: Science
– volume: 474
  start-page: 609
  year: 2011
  end-page: 615
  ident: b0115
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
– volume: 26
  start-page: 1715
  year: 2015
  end-page: 1722
  ident: b0515
  article-title: Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer
  publication-title: Ann Oncol
– volume: 7
  year: 2017
  ident: b0470
  article-title: A comprehensive analysis of metabolomics and transcriptomics in cervical cancer
  publication-title: Sci Rep
– volume: 166
  start-page: 755
  year: 2016
  end-page: 765
  ident: b0485
  article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer
  publication-title: Cell
– volume: 16
  start-page: 157
  year: 2019
  end-page: 170
  ident: b0345
  article-title: Toward multiomics-based next-generation diagnostics for precision medicine
  publication-title: Per Med
– reference: Shen R, Olshen AB, Ladanyi M (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25: 2906-2912.
– volume: 5
  start-page: 1049
  year: 2015
  end-page: 1057
  ident: b0270
  article-title: An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101
  publication-title: Cancer Discov
– volume: 31
  start-page: i268
  year: 2015
  end-page: 275
  ident: b0155
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
– reference: El-Manzalawy Y. CCA based multi-view feature selection for multi-omics data integration; 2018 30 May-2 June 2018. pp. 1-8.
– volume: 177
  start-page: 1035
  year: 2019
  end-page: 1049.e19
  ident: b0370
  article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities
  publication-title: Cell
– volume: 406
  start-page: 747
  year: 2000
  end-page: 752
  ident: b0385
  article-title: Molecular portraits of human breast tumours
  publication-title: Nature
– volume: 17
  start-page: 1555
  year: 2016
  ident: b0550
  article-title: Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations
  publication-title: Int J Mol Sci
– volume: 12
  year: 2016
  ident: b0425
  article-title: Gene-specific correlation of RNA and protein levels in human cells and tissues
  publication-title: Mol Syst Biol
– reference: Lock EF, Dunson DB (2013) Bayesian consensus clustering. Bioinformatics 29: 2610-2616.
– volume: 373
  start-page: 2005
  year: 2015
  end-page: 2014
  ident: b0255
  article-title: Prospective validation of a 21-gene expression assay in breast cancer
  publication-title: N Engl J Med
– volume: 15
  start-page: 755
  year: 2016
  end-page: 765
  ident: b0080
  article-title: moCluster: identifying joint patterns across multiple omics data sets
  publication-title: J Proteome Res
– volume: 567
  start-page: 257
  year: 2019
  end-page: 261
  ident: b0305
  article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma
  publication-title: Nature
– reference: Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, et al. (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42: e107.
– reference: Sathyanarayanan A, Gupta R, Thompson EW, Nyholt DR, Bauer DC, et al. (2020) A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform 21: 1920-1936.
– volume: 104
  start-page: 5860
  year: 2007
  end-page: 5865
  ident: b0360
  article-title: Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks
  publication-title: Proc Natl Acad Sci U S A
– reference: Savage R, Ghahramani Z, Griffin J, Kirk P, Wild D (2013) Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data.
– volume: 8
  start-page: 30328
  year: 2017
  end-page: 30343
  ident: b0285
  article-title: The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells
  publication-title: Oncotarget
– volume: 6
  start-page: 787
  year: 2010
  end-page: 789
  ident: b0025
  article-title: The challenges of integrating multi-omic data sets
  publication-title: Nat Chem Biol
– volume: 1754
  start-page: 109
  year: 2018
  end-page: 135
  ident: b0030
  article-title: Integrative analysis of omics big data
  publication-title: Methods Mol Biol
– volume: 148
  start-page: 502
  year: 2021
  end-page: 511
  ident: b0199
  article-title: muTarget: A platform linking gene expression changes and mutation status in solid tumors
  publication-title: International journal of cancer
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0020
  article-title: Onco-multi-OMICS approach: a new frontier in cancer research
  publication-title: Biomed Res Int
– volume: 14
  year: 2018
  ident: b0225
  article-title: Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
– reference: Dimitrakopoulos C, Hindupur SK, Häfliger L, Behr J, Montazeri H, et al. (2018) Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics 34: 2441-2448.
– reference: Mo Q, Shen R, Guo C, Vannucci M, Chan KS, et al. (2018) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19: 71-86.
– volume: 339
  start-page: 1546
  year: 2013
  end-page: 1558
  ident: b0185
  article-title: Cancer genome landscapes
  publication-title: Science
– volume: 6
  year: 2016
  ident: b0495
  article-title: Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer
  publication-title: Sci Rep
– volume: 14
  start-page: 211
  year: 2013
  end-page: 224
  ident: b0275
  article-title: Emerging roles for chromatin as a signal integration and storage platform
  publication-title: Nat Rev Mol Cell Biol
– volume: 18
  start-page: 509
  year: 2020
  end-page: 517
  ident: b0035
  article-title: On fusion methods for knowledge discovery from multi-omics datasets
  publication-title: Comput Struct Biotechnol J
– volume: 8
  year: 2017
  ident: b0065
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
– volume: 348
  start-page: 124
  year: 2015
  end-page: 128
  ident: b0240
  article-title: Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer
  publication-title: Science
– volume: 473
  start-page: 337
  year: 2011
  end-page: 342
  ident: b0420
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
– reference: Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics Data Integration, Interpretation, and Its Application. 14: 1177932219899051.
– volume: 77
  start-page: 6538
  year: 2017
  end-page: 6550
  ident: b0450
  article-title: Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks
  publication-title: Cancer Res
– volume: 110
  start-page: 4245
  year: 2013
  end-page: 4250
  ident: b0100
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.csbj.2021.01.009_b0040
  article-title: A selective review of multi-level omics data integration using variable selection
  publication-title: High-throughput
  doi: 10.3390/ht8010004
– volume: 31
  start-page: i268
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0155
  article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv244
– volume: 16
  start-page: 121
  issue: 1
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0445
  article-title: Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M116.060301
– volume: 3
  start-page: 181
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0045
  article-title: Statistical methods in integrative genomics
  publication-title: Annu Rev Stat Appl
  doi: 10.1146/annurev-statistics-041715-033506
– volume: 71
  start-page: 4550
  issue: 13
  year: 2011
  ident: 10.1016/j.csbj.2021.01.009_b0205
  article-title: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0180
– volume: 21
  start-page: 1350
  issue: 11
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0480
  article-title: The consensus molecular subtypes of colorectal cancer
  publication-title: Nat Med
  doi: 10.1038/nm.3967
– volume: 567
  start-page: 257
  issue: 7747
  year: 2019
  ident: 10.1016/j.csbj.2021.01.009_b0305
  article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma
  publication-title: Nature
  doi: 10.1038/s41586-019-0987-8
– ident: 10.1016/j.csbj.2021.01.009_b0110
  doi: 10.1093/bioinformatics/btq182
– volume: 189
  start-page: 1
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0295
  article-title: Advancing translational research and precision medicine with targeted proteomics
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2018.02.021
– volume: 373
  start-page: 2005
  issue: 21
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0255
  article-title: Prospective validation of a 21-gene expression assay in breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1510764
– ident: 10.1016/j.csbj.2021.01.009_b0330
  doi: 10.1126/science.aan3706
– volume: 22
  start-page: 132
  issue: 3
  year: 2006
  ident: 10.1016/j.csbj.2021.01.009_b0440
  article-title: Similar gene expression profiles do not imply similar tissue functions
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2006.01.006
– volume: 509
  start-page: 582
  issue: 7502
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0430
  article-title: Mass-spectrometry-based draft of the human proteome
  publication-title: Nature
  doi: 10.1038/nature13319
– volume: 17
  start-page: 516
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0300
  article-title: A non-invasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years
  publication-title: Clin Breast Cancer
  doi: 10.1016/j.clbc.2017.05.004
– volume: 5
  issue: 1
  year: 2019
  ident: 10.1016/j.csbj.2021.01.009_b0140
  article-title: iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery
  publication-title: npj Syst Biol Appl
  doi: 10.1038/s41540-019-0099-y
– volume: 77
  start-page: 6538
  issue: 23
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0450
  article-title: Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0833
– volume: 41
  start-page: 171
  issue: 2
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0535
  article-title: Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B
  publication-title: Clin Res Hepatol Gastroenterol
  doi: 10.1016/j.clinre.2016.10.003
– volume: 123
  start-page: 3652
  issue: 9
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0315
  article-title: Oncometabolites: linking altered metabolism with cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI67228
– volume: 15
  start-page: 353
  issue: 6
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0245
  article-title: The emerging clinical relevance of genomics in cancer medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-018-0002-6
– ident: 10.1016/j.csbj.2021.01.009_b0175
  doi: 10.1109/CIBCB.2018.8404968
– volume: 17
  start-page: 2740
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0320
  article-title: Metabolomics applications in precision medicine: an oncological perspective
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026617666170707120034
– ident: 10.1016/j.csbj.2021.01.009_b0125
  doi: 10.1093/bioinformatics/bts595
– volume: 20
  issue: 1
  year: 2020
  ident: 10.1016/j.csbj.2021.01.009_b0260
  article-title: MammaPrint guides treatment decisions in breast Cancer: results of the IMPACt trial
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-6534-z
– volume: 19
  start-page: 1370
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0010
  article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data
  publication-title: Brief Bioinform
– volume: 406
  start-page: 747
  issue: 6797
  year: 2000
  ident: 10.1016/j.csbj.2021.01.009_b0385
  article-title: Molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/35021093
– volume: 13
  start-page: 227
  issue: 4
  year: 2012
  ident: 10.1016/j.csbj.2021.01.009_b0415
  article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3185
– volume: 177
  start-page: 1035
  issue: 4
  year: 2019
  ident: 10.1016/j.csbj.2021.01.009_b0370
  article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.030
– volume: 359
  start-page: 97
  issue: 6371
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0335
  article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients
  publication-title: Science
  doi: 10.1126/science.aan4236
– volume: 45
  start-page: 1113
  issue: 10
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0350
  article-title: The Cancer Genome Atlas Pan-Cancer analysis project
  publication-title: Nat Genet
  doi: 10.1038/ng.2764
– volume: 10
  start-page: 12
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0325
  article-title: The microbiome in precision medicine: the way forward
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0525-6
– ident: 10.1016/j.csbj.2021.01.009_b0070
  doi: 10.1177/1177932219899051
– volume: 486
  start-page: 346
  issue: 7403
  year: 2012
  ident: 10.1016/j.csbj.2021.01.009_b0090
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.csbj.2021.01.009_b0365
  article-title: Microscaled proteogenomic methods for precision oncology
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14381-2
– volume: 2015
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0265
  article-title: Optimal molecular methods in detecting p190BCR-ABL fusion variants in hematologic malignancies: a case report and review of the literature
  publication-title: Case Reports Hematol
  doi: 10.1155/2015/458052
– volume: 8
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0065
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00084
– volume: 501
  start-page: 338
  issue: 7467
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0180
  article-title: The causes and consequences of genetic heterogeneity in cancer evolution
  publication-title: Nature
  doi: 10.1038/nature12625
– ident: 10.1016/j.csbj.2021.01.009_b0505
  doi: 10.1126/scitranslmed.aay1984
– ident: 10.1016/j.csbj.2021.01.009_b0060
  doi: 10.1093/nar/gks725
– volume: 124
  start-page: 398
  issue: 1
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0475
  article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis
  publication-title: J Clin Invest
  doi: 10.1172/JCI71180
– volume: 7
  start-page: 523
  issue: 1
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0075
  article-title: Joint and individual variation explained (Jive) for integrated analysis of multiple data types
  publication-title: Ann Appl Statistics
  doi: 10.1214/12-AOAS597
– volume: 17
  start-page: 1555
  issue: 9
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0550
  article-title: Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17091555
– volume: 165
  start-page: 535
  issue: 3
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0410
  article-title: On the dependency of cellular protein levels on mRNA abundance
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 16
  start-page: 157
  issue: 2
  year: 2019
  ident: 10.1016/j.csbj.2021.01.009_b0345
  article-title: Toward multiomics-based next-generation diagnostics for precision medicine
  publication-title: Per Med
  doi: 10.2217/pme-2018-0085
– volume: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0390
  article-title: Multigene prognostic tests in breast cancer: past, present, future
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-015-0514-2
– ident: 10.1016/j.csbj.2021.01.009_b0085
  doi: 10.1093/bioinformatics/btp543
– volume: 12
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0425
  article-title: Gene-specific correlation of RNA and protein levels in human cells and tissues
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20167144
– volume: 16
  start-page: 873
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0455
  article-title: Changes in correlation between promoter methylation and gene expression in cancer
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1994-2
– volume: 5
  start-page: 1049
  issue: 10
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0270
  article-title: An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0443
– volume: 29
  start-page: 700
  issue: 3
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0545
  article-title: Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx765
– volume: 474
  start-page: 609
  year: 2011
  ident: 10.1016/j.csbj.2021.01.009_b0115
  article-title: Integrated genomic analyses of ovarian carcinoma
  publication-title: Nature
  doi: 10.1038/nature10166
– year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0050
  article-title: Integrated omics: tools, advances, and future approaches
  publication-title: J Mol Endocrinol
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0495
  article-title: Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer
  publication-title: Sci Rep
  doi: 10.1038/srep18517
– ident: 10.1016/j.csbj.2021.01.009_b0170
  doi: 10.1371/journal.pone.0116095
– ident: 10.1016/j.csbj.2021.01.009_b0190
  doi: 10.3389/fphar.2018.01522
– volume: 148
  start-page: 502
  issue: 2
  year: 2021
  ident: 10.1016/j.csbj.2021.01.009_b0199
  article-title: muTarget: A platform linking gene expression changes and mutation status in solid tumors
  publication-title: International journal of cancer
  doi: 10.1002/ijc.33283
– volume: 72
  start-page: 439
  issue: 4
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0235
  article-title: Cancer genomics guide clinical practice in personalized medicine
  publication-title: Therapies
  doi: 10.1016/j.therap.2016.09.015
– volume: 348
  start-page: 124
  issue: 6230
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0240
  article-title: Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer
  publication-title: Science
  doi: 10.1126/science.aaa1348
– volume: 26
  start-page: 1715
  issue: 8
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0515
  article-title: Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdv177
– ident: 10.1016/j.csbj.2021.01.009_b0055
  doi: 10.1093/nar/gky889
– volume: 359
  start-page: 926
  issue: 6378
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0525
  article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test
  publication-title: Science
  doi: 10.1126/science.aar3247
– volume: 166
  start-page: 755
  issue: 3
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0485
  article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.069
– volume: 104
  start-page: 5860
  issue: 14
  year: 2007
  ident: 10.1016/j.csbj.2021.01.009_b0360
  article-title: Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0608638104
– ident: 10.1016/j.csbj.2021.01.009_b0135
  doi: 10.1093/bioinformatics/bts655
– ident: 10.1016/j.csbj.2021.01.009_b0195
  doi: 10.1093/nar/gku489
– ident: 10.1016/j.csbj.2021.01.009_b0145
  doi: 10.1093/bioinformatics/btx176
– volume: 18
  start-page: 121
  issue: 2
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0290
  article-title: Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2016.01.003
– volume: 14
  start-page: 245
  issue: 1
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0165
  article-title: Group sparse canonical correlation analysis for genomic data integration
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-14-245
– volume: 13
  start-page: 473
  issue: 5
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0280
  article-title: Epigenetic profiling joins personalized cancer medicine
  publication-title: Expert Rev Mol Diagn
  doi: 10.1586/erm.13.36
– volume: 339
  start-page: 1546
  issue: 6127
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0185
  article-title: Cancer genome landscapes
  publication-title: Science
  doi: 10.1126/science.1235122
– volume: 7
  start-page: 1670
  issue: 5
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0540
  article-title: Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma
  publication-title: Cancer Med
  doi: 10.1002/cam4.1390
– volume: 302
  start-page: 240
  issue: 5643
  year: 2003
  ident: 10.1016/j.csbj.2021.01.009_b0435
  article-title: Genomics. Microarrays–guilt by association
  publication-title: Science
  doi: 10.1126/science.1090887
– volume: 14
  issue: 6
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0225
  article-title: Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 6
  start-page: 787
  issue: 11
  year: 2010
  ident: 10.1016/j.csbj.2021.01.009_b0025
  article-title: The challenges of integrating multi-omic data sets
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.462
– volume: 140
  start-page: 930
  issue: 4
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0200
  article-title: KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30509
– volume: 18
  start-page: 509
  year: 2020
  ident: 10.1016/j.csbj.2021.01.009_b0035
  article-title: On fusion methods for knowledge discovery from multi-omics datasets
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.02.011
– volume: 534
  start-page: 55
  issue: 7605
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0400
  article-title: Proteogenomics connects somatic mutations to signalling in breast cancer
  publication-title: Nature
  doi: 10.1038/nature18003
– volume: 2
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0405
  article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals
  publication-title: PeerJ
  doi: 10.7717/peerj.270
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0150
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 18
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0015
  article-title: Multi-omics approaches to disease
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1215-1
– volume: 1866
  start-page: 300
  issue: 2
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0230
  article-title: Guidelines for the selection of functional assays to evaluate the hallmarks of cancer
  publication-title: Biochim Biophys Acta
– volume: 6
  start-page: R149
  year: 2004
  ident: 10.1016/j.csbj.2021.01.009_b0490
  article-title: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome
  publication-title: Breast Cancer Res: BCR
  doi: 10.1186/bcr767
– volume: 23
  start-page: 3698
  issue: 12
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0500
  article-title: The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.06.032
– volume: 17
  start-page: 153
  issue: 3
  year: 2020
  ident: 10.1016/j.csbj.2021.01.009_b0530
  article-title: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer
  publication-title: Nature Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-019-0245-4
– volume: 110
  start-page: 4245
  issue: 11
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0100
  article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1208949110
– ident: 10.1016/j.csbj.2021.01.009_b0130
– volume: 6
  start-page: 12
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0250
  article-title: Bioinformatics workflow for clinical whole genome sequencing at partners healthcare personalized medicine
  publication-title: J Pers Med
  doi: 10.3390/jpm6010012
– volume: 114
  start-page: 10202
  issue: 38
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0520
  article-title: Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1704961114
– volume: 8
  start-page: 33
  year: 2015
  ident: 10.1016/j.csbj.2021.01.009_b0005
  article-title: From big data analysis to personalized medicine for all: challenges and opportunities
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-015-0108-y
– volume: 15
  start-page: 755
  issue: 3
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0080
  article-title: moCluster: identifying joint patterns across multiple omics data sets
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00824
– ident: 10.1016/j.csbj.2021.01.009_b0220
– ident: 10.1016/j.csbj.2021.01.009_b0120
  doi: 10.1093/bioinformatics/btt425
– volume: 14
  start-page: 211
  issue: 4
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0275
  article-title: Emerging roles for chromatin as a signal integration and storage platform
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3545
– ident: 10.1016/j.csbj.2021.01.009_b0340
  doi: 10.1126/science.aao3290
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0460
  article-title: A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer
  publication-title: Sci Rep
  doi: 10.1038/srep29662
– volume: 13
  start-page: R124
  issue: 12
  year: 2012
  ident: 10.1016/j.csbj.2021.01.009_b0210
  article-title: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r124
– volume: 15
  start-page: 154
  issue: 1
  year: 2016
  ident: 10.1016/j.csbj.2021.01.009_b0465
  article-title: Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer
  publication-title: Molecular amp;amp; Cellular Proteomics
– volume: 473
  start-page: 337
  issue: 7347
  year: 2011
  ident: 10.1016/j.csbj.2021.01.009_b0420
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 27
  start-page: 1160
  issue: 8
  year: 2009
  ident: 10.1016/j.csbj.2021.01.009_b0380
  article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2008.18.1370
– volume: 490
  start-page: 61
  year: 2012
  ident: 10.1016/j.csbj.2021.01.009_b0395
  article-title: Comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 6
  start-page: 224ra224
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0510
  article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3007094
– volume: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0375
  article-title: Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact
  publication-title: Nat Commun
  doi: 10.1038/ncomms6469
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0020
  article-title: Onco-multi-OMICS approach: a new frontier in cancer research
  publication-title: Biomed Res Int
  doi: 10.1155/2018/9836256
– ident: 10.1016/j.csbj.2021.01.009_b0105
  doi: 10.1093/biostatistics/kxx017
– ident: 10.1016/j.csbj.2021.01.009_b0160
  doi: 10.1093/bioinformatics/btz058
– volume: 87
  start-page: 1
  year: 2014
  ident: 10.1016/j.csbj.2021.01.009_b0310
  article-title: Metabolomics in cancer biomarker discovery: current trends and future perspectives
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2013.08.041
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0470
  article-title: A comprehensive analysis of metabolomics and transcriptomics in cervical cancer
  publication-title: Sci Rep
– ident: 10.1016/j.csbj.2021.01.009_b0215
  doi: 10.1093/bioinformatics/bty148
– ident: 10.1016/j.csbj.2021.01.009_b0095
  doi: 10.1093/bib/bbz121
– volume: 8
  start-page: 30328
  issue: 18
  year: 2017
  ident: 10.1016/j.csbj.2021.01.009_b0285
  article-title: The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15681
– volume: 1754
  start-page: 109
  year: 2018
  ident: 10.1016/j.csbj.2021.01.009_b0030
  article-title: Integrative analysis of omics big data
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-7717-8_7
– volume: 3
  start-page: 1108
  issue: 10
  year: 2013
  ident: 10.1016/j.csbj.2021.01.009_b0355
  article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium
  publication-title: Cancer Discovery
  doi: 10.1158/2159-8290.CD-13-0219
SSID ssj0000816930
Score 2.608577
SecondaryResourceType review_article
Snippet •Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across...
While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations....
• Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions. • Data integration...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 949
SubjectTerms Biomarker
biotechnology
Breast cancer
cost effectiveness
Data integration
diagnostic techniques
Driver mutation
genome
Genomics
Lung cancer
metabolome
Metabolomics
microbiome
multiomics
neoplasms
prognosis
proteome
Proteomics
Review
transcriptome
Transcriptomics
Title Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
URI https://dx.doi.org/10.1016/j.csbj.2021.01.009
https://www.ncbi.nlm.nih.gov/pubmed/33613862
https://www.proquest.com/docview/2492277932
https://www.proquest.com/docview/2574323533
https://pubmed.ncbi.nlm.nih.gov/PMC7868685
https://doaj.org/article/08595476bfc346ee841e18d80234c4e0
Volume 19
WOSCitedRecordID wos000684867500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4gCHim9SoDISNxqRxHbsHAG14gAVB0B7s2LH1qYq2WqdrdRLfzszTrLKgrRcUKIcEieRPWP7jT3zhpC3NbK-GSYwa4BMuc1Validp8KX0nhXlyxmnvv5RZ6fq8Wi-jZL9YU-YQM98NBw7yMBF5el8Zbx0jnFc5erBnnLuOUuWuuAembGVByDFZKM4ALL6DMkszFiZnDussFcgHFY5JGzE70RZ7NSJO_fmZz-Bp9_-lDOJqWzh-RwRJP0w1CLR-SO6x6TBzOOwSdkGUNsUww-DnRiEHeBth21KPE1Hfl-lhTXZOl8RxsL9ZtfqzUNG9PfYGjVCUWPrm4V2nBC666hzeCr14an5MfZ6fdPn9MxvUJqAUP0qZXSZ6UHBFQzZ7yQzBWFkYZ7KZkCI9sL39SVtcZklVemVBVuehrPvBJNI9gzctCtOveCUKWqjHuQSeULDoCyNmDfipLVvJC5sS4h-dS82o7c45gC41JPTmYXGkWiUSQ6gzOrEvJu-87VwLyxt_RHlNq2JLJmxxugS3rUJf0vXUqImGSuRwAyAAv4VLv3528mBdHQO3HLpe7cahM08jEWEsbAYk8ZASgOmouxhDwflGpbDcYAboHRmRC5o2479dx90rXLyBIuVQmHOPofDfOS3MfqDktPr8hBv9641-Seve7bsD4md-VCHccOCNevt6e_AWXqM-o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+approaches+in+cancer+research+with+applications+in+tumor+subtyping%2C+prognosis%2C+and+diagnosis&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Menyh%C3%A1rt%2C+Ot%C3%ADlia&rft.au=Gy%C5%91rffy%2C+Bal%C3%A1zs&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19+p.949-960&rft.spage=949&rft.epage=960&rft_id=info:doi/10.1016%2Fj.csbj.2021.01.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon