Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis
•Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand cau...
Uložené v:
| Vydané v: | Computational and structural biotechnology journal Ročník 19; s. 949 - 960 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.01.2021
Research Network of Computational and Structural Biotechnology Elsevier |
| Predmet: | |
| ISSN: | 2001-0370, 2001-0370 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization.•We review some of the most frequently used frameworks for multi-omics data integration.•We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways.•We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities.•Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications.
While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation.
We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations.
Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings. |
|---|---|
| AbstractList | While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings.While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings. • Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions. • Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization. • We review some of the most frequently used frameworks for multi-omics data integration. • We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways. • We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities. • Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings. •Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across different platforms, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, provides opportunities to understand causal relationships across multiple levels of cellular organization.•We review some of the most frequently used frameworks for multi-omics data integration.•We consider the significance of multi-omics in the functional identification of driver genomic alterations and discuss methods developed to exploit associations between mutations and downstream signaling pathways.•We provide an overview of the utility of multi-omics in tumor classifications, prognostications, diagnostics, and the role of data integration in the quest for novel biomarkers and therapeutic opportunities.•Translation of multi-omics technologies into tools accessible in daily medical routine is slow. One major obstacle is the uneven maturity of different omics approaches for routine clinical applications. While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations. Multi-omics data integration strategies across different cellular function levels, including genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes offer unparalleled opportunities to understand the underlying biology of complex diseases, such as cancer. We review some of the most frequently used data integration methods and outline research areas where multi-omics significantly benefit our understanding of the process and outcome of the malignant transformation. We discuss algorithmic frameworks developed to reveal cancer subtypes, disease mechanisms, and methods for identifying driver genomic alterations and consider the significance of multi-omics in tumor classifications, diagnostics, and prognostications. We provide a comprehensive summary of each omics strategy's most recent advances within the clinical context and discuss the main challenges facing their clinical implementations. Despite its unparalleled advantages, multi-omics data integration is slow to enter everyday clinics. One major obstacle is the uneven maturity of different omics approaches and the growing gap between generating large volumes of data compared to data processing capacity. Progressive initiatives to enforce the standardization of sample processing and analytical pipelines, multidisciplinary training of experts for data analysis and interpretation are vital to facilitate the translatability of theoretical findings. |
| Author | Győrffy, Balázs Menyhárt, Otília |
| Author_xml | – sequence: 1 givenname: Otília surname: Menyhárt fullname: Menyhárt, Otília organization: Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, H-1094 Budapest, Hungary – sequence: 2 givenname: Balázs orcidid: 0000-0002-5772-3766 surname: Győrffy fullname: Győrffy, Balázs email: gyorffy.balazs@med.semmelweis-univ.hu organization: Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, H-1094 Budapest, Hungary |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33613862$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUl1vFCEUJabG1rV_wAczjz50VgaGgUmMiWn8aFLjiz4TYC67bGZhBaam_15mpzWtDxVuwtc5Jyfc8xKd-OABodcNXje46d7t1ibp3Zpg0qxxKdw_Q2cE46bGlOOTB_tTdJ7SDpchmq6n-AU6pbRrqOjIGdp-m8bs6rB3JlXqcIhBmS2kyvnKKG8gVhESqGi21W-XtzNkdEZlF_wRlKd9iFWadL49OL-5qIrCxofk0kWl_FANTi3HV-i5VWOC87t1hX5-_vTj8mt9_f3L1eXH69ow1ubacG5xZzHrFAVtGadAiOa6tZxTAZpaZgfVG6M17q3Qneg5w1RbagUbBkZX6GrRHYLayUN0exVvZVBOHi9C3EgVszMjSCxYz1reaWto2wGItoFGDAIT2poWcNH6sGgdJr2HwYDPUY2PRB-_eLeVm3AjuejKnM28vROI4dcEKcu9SwbGUXkIU5KE8ZYSyij9P7TtCeG8L_AVevPQ1l8_910tALEATAwpRbDSuHzsWXHpRtlgOWdI7uScITlnSOJSuC9U8g_1Xv1J0vuFBKWxNw6iTMZBSc_gIphcft49Rf8DPebhTw |
| CitedBy_id | crossref_primary_10_1186_s40364_025_00758_2 crossref_primary_10_3389_fimmu_2024_1421576 crossref_primary_10_1038_s41587_023_01934_1 crossref_primary_10_1016_j_isci_2025_113128 crossref_primary_10_1007_s12032_022_01815_8 crossref_primary_10_1007_s00210_024_03320_3 crossref_primary_10_1038_s41598_025_13337_0 crossref_primary_10_3390_cancers13184544 crossref_primary_10_1080_14728222_2023_2259096 crossref_primary_10_2174_1574893618666230519145545 crossref_primary_10_3233_JAD_240098 crossref_primary_10_1016_j_compbiomed_2023_106875 crossref_primary_10_3390_genes14030558 crossref_primary_10_1093_bib_bbad304 crossref_primary_10_12688_f1000research_148778_1 crossref_primary_10_3389_fmolb_2022_793403 crossref_primary_10_1016_j_cca_2024_119686 crossref_primary_10_1093_bioadv_vbae015 crossref_primary_10_1186_s40364_023_00497_2 crossref_primary_10_4132_jptm_2022_08_30 crossref_primary_10_1038_s42003_021_02710_0 crossref_primary_10_3389_fonc_2025_1515898 crossref_primary_10_1186_s12943_022_01699_2 crossref_primary_10_1177_03915603211022960 crossref_primary_10_3390_ijms23031237 crossref_primary_10_3724_abbs_2024123 crossref_primary_10_2174_1573412919666230406100948 crossref_primary_10_1002_qub2_70002 crossref_primary_10_1007_s12094_025_03990_2 crossref_primary_10_1016_j_artmed_2023_102522 crossref_primary_10_3390_metabo12111154 crossref_primary_10_1016_j_freeradbiomed_2021_10_015 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1016_j_ymeth_2024_11_013 crossref_primary_10_1088_1361_6560_ad6951 crossref_primary_10_3390_ijms251910579 crossref_primary_10_3389_fonc_2023_1183766 crossref_primary_10_3389_fbioe_2024_1347138 crossref_primary_10_3390_biomedicines12081753 crossref_primary_10_3389_fimmu_2025_1646141 crossref_primary_10_1007_s00432_023_04831_x crossref_primary_10_3389_fmolb_2022_962743 crossref_primary_10_1007_s12672_025_03535_7 crossref_primary_10_3390_ph17101307 crossref_primary_10_1002_mco2_693 crossref_primary_10_1002_msp2_16 crossref_primary_10_18632_oncotarget_28739 crossref_primary_10_1093_bib_bbaf355 crossref_primary_10_1016_j_annonc_2023_09_3117 crossref_primary_10_1016_j_bcp_2021_114818 crossref_primary_10_1186_s12964_023_01344_5 crossref_primary_10_3390_ijms24021354 crossref_primary_10_2196_71906 crossref_primary_10_3390_ijms26072923 crossref_primary_10_59717_j_xinn_med_2023_100023 crossref_primary_10_1002_cai2_9 crossref_primary_10_3390_cancers14030596 crossref_primary_10_1089_cmb_2024_0927 crossref_primary_10_1136_jitc_2023_008306 crossref_primary_10_3390_ijms23137176 crossref_primary_10_1016_j_compbiolchem_2024_108150 crossref_primary_10_1111_ajco_14095 crossref_primary_10_1016_j_jbi_2023_104373 crossref_primary_10_1016_j_clbc_2025_05_005 crossref_primary_10_3389_fonc_2025_1602489 crossref_primary_10_1016_j_biotechadv_2023_108149 crossref_primary_10_3389_fnut_2022_970019 crossref_primary_10_1016_j_bbcan_2024_189088 crossref_primary_10_52692_1857_0011_2021_3_71_05 crossref_primary_10_3389_fbioe_2021_756314 crossref_primary_10_1016_j_jlb_2025_100324 crossref_primary_10_1093_bib_bbaf108 crossref_primary_10_3389_fmars_2022_914028 crossref_primary_10_3389_fonc_2021_641487 crossref_primary_10_1016_j_csbj_2023_04_015 crossref_primary_10_3892_ol_2024_14453 crossref_primary_10_1039_D5AN00117J crossref_primary_10_3389_fmolb_2025_1557843 crossref_primary_10_1016_j_clbc_2021_09_002 crossref_primary_10_1002_biof_2128 crossref_primary_10_1007_s41870_023_01310_x crossref_primary_10_3390_genes14040801 crossref_primary_10_20935_AcadBiol7325 crossref_primary_10_3389_fimmu_2025_1528405 crossref_primary_10_1016_j_cancergen_2024_12_006 crossref_primary_10_1007_s12672_025_03140_8 crossref_primary_10_1016_j_csbj_2024_12_023 crossref_primary_10_1016_j_ctarc_2024_100845 crossref_primary_10_1007_s40200_024_01539_8 crossref_primary_10_1016_j_compbiomed_2022_105832 crossref_primary_10_1016_j_compbiomed_2023_106545 crossref_primary_10_1186_s12967_025_06662_5 crossref_primary_10_1007_s00500_024_10302_3 crossref_primary_10_1038_s41598_025_06459_y crossref_primary_10_1007_s00262_024_03657_x crossref_primary_10_3389_froh_2025_1592428 crossref_primary_10_1038_s41596_023_00841_8 crossref_primary_10_3390_metabo12090837 crossref_primary_10_1016_j_bbcan_2025_189396 crossref_primary_10_3389_fimmu_2022_951137 crossref_primary_10_1007_s12032_025_02789_z crossref_primary_10_1016_j_prp_2025_155956 crossref_primary_10_3389_fphys_2024_1473125 crossref_primary_10_1038_s41416_024_02706_7 crossref_primary_10_1186_s12967_022_03468_7 crossref_primary_10_1093_bfgp_elae013 crossref_primary_10_1186_s13040_025_00426_z crossref_primary_10_1016_j_bbagen_2024_130596 crossref_primary_10_1002_anse_202200082 crossref_primary_10_3390_biomedicines9101481 crossref_primary_10_1016_j_fbio_2025_107060 crossref_primary_10_3390_ijms22136932 crossref_primary_10_3724_zdxbyxb_2025_0090 crossref_primary_10_3389_fgene_2022_824451 crossref_primary_10_1007_s12094_023_03275_6 crossref_primary_10_1002_2056_4538_70003 crossref_primary_10_1049_cit2_12395 crossref_primary_10_1016_j_biotechadv_2024_108447 crossref_primary_10_3389_fmolb_2024_1393240 crossref_primary_10_1186_s12864_023_09825_0 crossref_primary_10_3390_biomedicines13010167 crossref_primary_10_1016_j_csbj_2021_06_030 crossref_primary_10_1038_s41598_025_92436_4 crossref_primary_10_1186_s12859_024_05989_y crossref_primary_10_3389_fphar_2023_1203097 crossref_primary_10_1007_s00438_022_01966_3 crossref_primary_10_3390_ijms23179521 crossref_primary_10_3389_fgene_2022_1090394 crossref_primary_10_1109_ACCESS_2025_3540769 crossref_primary_10_3389_fonc_2022_892207 crossref_primary_10_1016_j_imu_2024_101507 crossref_primary_10_1016_j_taap_2024_116865 crossref_primary_10_1186_s12885_025_13952_0 crossref_primary_10_1093_bioadv_vbac042 crossref_primary_10_3390_jcm11154398 crossref_primary_10_1038_s41598_024_78965_4 crossref_primary_10_1089_omi_2023_0120 crossref_primary_10_3390_molecules26206112 crossref_primary_10_1007_s12010_024_04926_2 crossref_primary_10_1186_s12859_025_06230_0 crossref_primary_10_3389_fonc_2021_685065 crossref_primary_10_1007_s12032_025_02641_4 crossref_primary_10_1007_s12094_025_04051_4 crossref_primary_10_1093_bib_bbaf150 crossref_primary_10_1007_s10142_024_01445_5 crossref_primary_10_1093_bib_bbae185 crossref_primary_10_1371_journal_pcbi_1011842 crossref_primary_10_3390_biology11020260 crossref_primary_10_52601_bpr_2024_240053 crossref_primary_10_3389_fonc_2025_1584178 crossref_primary_10_1016_j_jprot_2022_104603 crossref_primary_10_3389_fonc_2022_993781 crossref_primary_10_1002_imt2_73 crossref_primary_10_3389_fimmu_2024_1520860 crossref_primary_10_1093_nar_gkae915 crossref_primary_10_3168_jds_2024_26210 crossref_primary_10_1111_pbi_13896 crossref_primary_10_1093_nar_gkaf844 crossref_primary_10_3389_fgene_2025_1679501 crossref_primary_10_1007_s13167_021_00269_8 crossref_primary_10_3389_fgene_2021_695662 crossref_primary_10_7759_cureus_75142 crossref_primary_10_1093_bfgp_elad031 crossref_primary_10_3389_fimmu_2025_1574783 crossref_primary_10_1002_cam4_6330 crossref_primary_10_1016_j_breast_2025_103892 crossref_primary_10_38124_ijsrmt_v1i8_497 crossref_primary_10_1259_bjr_20230211 crossref_primary_10_3390_ph18081140 crossref_primary_10_1109_ACCESS_2024_3476235 crossref_primary_10_3389_fphar_2025_1591696 crossref_primary_10_1002_jmv_28693 crossref_primary_10_1016_j_ijbiomac_2023_127055 crossref_primary_10_1093_bib_bbae606 crossref_primary_10_1016_j_molmed_2024_11_004 crossref_primary_10_1016_j_ebiom_2024_105495 |
| Cites_doi | 10.3390/ht8010004 10.1093/bioinformatics/btv244 10.1074/mcp.M116.060301 10.1146/annurev-statistics-041715-033506 10.1158/0008-5472.CAN-11-0180 10.1038/nm.3967 10.1038/s41586-019-0987-8 10.1093/bioinformatics/btq182 10.1016/j.jprot.2018.02.021 10.1056/NEJMoa1510764 10.1126/science.aan3706 10.1016/j.tig.2006.01.006 10.1038/nature13319 10.1016/j.clbc.2017.05.004 10.1038/s41540-019-0099-y 10.1158/0008-5472.CAN-17-0833 10.1016/j.clinre.2016.10.003 10.1172/JCI67228 10.1038/s41571-018-0002-6 10.1109/CIBCB.2018.8404968 10.2174/1568026617666170707120034 10.1093/bioinformatics/bts595 10.1186/s12885-020-6534-z 10.1038/35021093 10.1038/nrg3185 10.1016/j.cell.2019.03.030 10.1126/science.aan4236 10.1038/ng.2764 10.1186/s13073-018-0525-6 10.1177/1177932219899051 10.1038/nature10983 10.1038/s41467-020-14381-2 10.1155/2015/458052 10.3389/fgene.2017.00084 10.1038/nature12625 10.1126/scitranslmed.aay1984 10.1093/nar/gks725 10.1172/JCI71180 10.1214/12-AOAS597 10.3390/ijms17091555 10.1016/j.cell.2016.03.014 10.2217/pme-2018-0085 10.1186/s13058-015-0514-2 10.1093/bioinformatics/btp543 10.15252/msb.20167144 10.1186/s12864-015-1994-2 10.1158/2159-8290.CD-15-0443 10.1093/annonc/mdx765 10.1038/nature10166 10.1038/srep18517 10.1371/journal.pone.0116095 10.3389/fphar.2018.01522 10.1002/ijc.33283 10.1016/j.therap.2016.09.015 10.1126/science.aaa1348 10.1093/annonc/mdv177 10.1093/nar/gky889 10.1126/science.aar3247 10.1016/j.cell.2016.05.069 10.1073/pnas.0608638104 10.1093/bioinformatics/bts655 10.1093/nar/gku489 10.1093/bioinformatics/btx176 10.1016/j.neo.2016.01.003 10.1186/1471-2105-14-245 10.1586/erm.13.36 10.1126/science.1235122 10.1002/cam4.1390 10.1126/science.1090887 10.15252/msb.20178124 10.1038/nchembio.462 10.1002/ijc.30509 10.1016/j.csbj.2020.02.011 10.1038/nature18003 10.7717/peerj.270 10.1038/nmeth.2810 10.1186/s13059-017-1215-1 10.1186/bcr767 10.1016/j.celrep.2018.06.032 10.1038/s41575-019-0245-4 10.1073/pnas.1208949110 10.3390/jpm6010012 10.1073/pnas.1704961114 10.1186/s12920-015-0108-y 10.1021/acs.jproteome.5b00824 10.1093/bioinformatics/btt425 10.1038/nrm3545 10.1126/science.aao3290 10.1038/srep29662 10.1186/gb-2012-13-12-r124 10.1038/nature10098 10.1200/JCO.2008.18.1370 10.1038/nature11412 10.1126/scitranslmed.3007094 10.1038/ncomms6469 10.1155/2018/9836256 10.1093/biostatistics/kxx017 10.1093/bioinformatics/btz058 10.1016/j.jpba.2013.08.041 10.1093/bioinformatics/bty148 10.1093/bib/bbz121 10.18632/oncotarget.15681 10.1007/978-1-4939-7717-8_7 10.1158/2159-8290.CD-13-0219 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.csbj.2021.01.009 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2001-0370 |
| EndPage | 960 |
| ExternalDocumentID | oai_doaj_org_article_08595476bfc346ee841e18d80234c4e0 PMC7868685 33613862 10_1016_j_csbj_2021_01_009 S2001037021000131 |
| Genre | Journal Article Review |
| GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c554t-c77f06f056a3ebf573e22b7b4f7738eb3f5fda9ccbb09f8b6897503bf3f85dd53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 211 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684867500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2001-0370 |
| IngestDate | Fri Oct 03 12:45:30 EDT 2025 Tue Nov 04 01:55:36 EST 2025 Wed Oct 01 13:48:48 EDT 2025 Wed Oct 01 14:58:31 EDT 2025 Thu Jan 02 22:58:21 EST 2025 Tue Nov 18 22:35:42 EST 2025 Sat Nov 29 05:55:07 EST 2025 Sat Aug 31 16:01:00 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Driver mutation Metabolomics Biomarker Transcriptomics Data integration Genomics Lung cancer Proteomics Breast cancer |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-c77f06f056a3ebf573e22b7b4f7738eb3f5fda9ccbb09f8b6897503bf3f85dd53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5772-3766 |
| OpenAccessLink | https://doaj.org/article/08595476bfc346ee841e18d80234c4e0 |
| PMID | 33613862 |
| PQID | 2492277932 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_08595476bfc346ee841e18d80234c4e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7868685 proquest_miscellaneous_2574323533 proquest_miscellaneous_2492277932 pubmed_primary_33613862 crossref_citationtrail_10_1016_j_csbj_2021_01_009 crossref_primary_10_1016_j_csbj_2021_01_009 elsevier_sciencedirect_doi_10_1016_j_csbj_2021_01_009 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Computational and structural biotechnology journal |
| PublicationTitleAlternate | Comput Struct Biotechnol J |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
| References | Heyn, Méndez-González, Esteller (b0280) 2013; 13 Wolf-Yadlin, Hautaniemi, Lauffenburger, White (b0360) 2007; 104 Parker, Mullins, Cheang, Leung, Voduc, Vickery (b0380) 2009; 27 Shi Q, Zhang C, Peng M, Yu X, Zeng T, et al. (2017) Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 33: 2706-2714. Bell, Berchuck, Birrer, Chien, Cramer (b0115) 2011; 474 Sonu, Jonas, Dwyre, Gregg, Rashidi (b0265) 2015; 2015 Lock, Hoadley, Marron, Nobel (b0075) 2013; 7 Meng, Helm, Frejno, Kuster (b0080) 2016; 15 Edfors, Danielsson, Hallström, Käll, Lundberg (b0425) 2016; 12 Berger, Mardis (b0245) 2018; 15 Weinstein, Collisson, Mills, Shaw, Ozenberger, Ellrott (b0350) 2013; 45 Tiffen, Wilson, Gallagher, Hersey, Filipp (b0290) 2016; 18 Richardson, Tseng, Sun (b0045) 2016; 3 Wang, Ma, Carr, Mertins, Zhang, Zhang (b0445) 2017; 16 Wang, Zhang, Zhang, Guo, Jiang, Zhao (b0540) 2018; 7 Terunuma, Putluri, Mishra, Mathé, Dorsey, Yi (b0475) 2014; 124 Wilhelm, Schlegl, Hahne, Gholami, Lieberenz, Savitski (b0430) 2014; 509 Chakraborty, Hosen, Ahmed, Shekhar (b0020) 2018; 2018 Doebele, Davis, Vaishnavi, Le, Estrada-Bernal, Keysar (b0270) 2015; 5 Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28: 3290-3297. Savage R, Ghahramani Z, Griffin J, Kirk P, Wild D (2013) Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data. Burrell, McGranahan, Bartek, Swanton (b0180) 2013; 501 Nagy, Pongor, Szabó, Santarpia, Győrffy (b0200) 2017; 140 Zhang S, Liu CC, Li W, Shen H, Laird PW, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40: 9379-9391. Michaut, Chin, Majewski, Severson, Bismeijer, de Koning (b0495) 2016; 6 Satpathy, Jaehnig, Krug, Kim, Saltzman, Chan (b0365) 2020; 11 Ren, Shao, Zhao, Hong, Wang, Lu (b0465) 2016; 15 Ricketts, De Cubas, Fan, Smith, Lang, Reznik (b0500) 2018; 23 Guinney, Dienstmann, Wang, de Reyniès, Schlicker, Soneson (b0480) 2015; 21 Jiang, Sun, Zhao, Ying, Sun, Yang (b0305) 2019; 567 Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics Data Integration, Interpretation, and Its Application. 14: 1177932219899051. Cohen, Javed, Thoburn, Wong, Tie, Gibbs (b0520) 2017; 114 Cancer Genome Atlas (b0395) 2012; 490 Zhang, Liu, Zhang, Payne, Zhang, McDermott (b0485) 2016; 166 Győrffy, Hatzis, Sanft, Hofstatter, Aktas, Pusztai (b0390) 2015; 17 Wilson, Fan, Sahgal, Qi, Filipp (b0285) 2017; 8 Mattox AK, Bettegowda C, Zhou S (2019) Applications of liquid biopsies for cancer. 11. Armitage, Barbas (b0310) 2014; 87 Menyhart O, Pongor LS, Gyorffy B (2018) Mutations Defining Patient Cohorts With Elevated PD-L1 Expression in Gastric Cancer. Front Pharmacol 9: 1522. Tie, Kinde, Wang, Wong, Roebert, Christie (b0515) 2015; 26 Zhou Y, Liu Y, Li K, Zhang R, Qiu F, et al. (2015) ICan: an integrated co-alteration network to identify ovarian cancer-related genes. PLoS One 10: e0116095. Yang, Xia, Wang, Cheng, Yin, Xie (b0470) 2017; 7 Liu, Beyer, Aebersold (b0410) 2016; 165 Kelley, Flam, Izumchenko, Danilova, Wulf, Guo (b0450) 2017; 77 Wu, Zhou, Ren, Li, Jiang, Ma (b0040) 2019; 8 Masica, Karchin (b0205) 2011; 71 Mo, Wang, Seshan, Olshen, Schultz, Sander (b0100) 2013; 110 Schwanhäusser, Busse, Li, Dittmar, Schuchhardt, Wolf (b0420) 2011; 473 Li, Wei, To, Zhu, Tong, Pham (b0375) 2014; 5 Arpino, Bardou, Clark, Elledge (b0490) 2004; 6 Lock EF, Dunson DB (2013) Bayesian consensus clustering. Bioinformatics 29: 2610-2616. Mo Q, Shen R, Guo C, Vannucci M, Chan KS, et al. (2018) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19: 71-86. Tsai, Shakbatyan, Evans, Rossetti, Graham, Sharma (b0250) 2016; 6 Lehmann-Che, Poirot, Boyer, Evrard (b0235) 2017; 72 Misra, Langefeld, Olivier, Cox (b0050) 2018 Tian, Fan, Zhao, Gao, Zhao, Chen (b0535) 2017; 41 Sathyanarayanan A, Gupta R, Thompson EW, Nyholt DR, Bauer DC, et al. (2020) A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform 21: 1920-1936. Wang, Mezlini, Demir, Fiume, Tu, Brudno (b0150) 2014; 11 Vogelstein, Papadopoulos, Velculescu, Zhou, Diaz, Kinzler (b0185) 2013; 339 Badeaux, Shi (b0275) 2013; 14 Menyhárt, Harami-Papp, Sukumar, Schäfer, Magnani, de Barrios (b0230) 2016; 1866 Tebani, Afonso, Marret, Bekri (b0550) 2016; 17 Dimitrakopoulos C, Hindupur SK, Häfliger L, Behr J, Montazeri H, et al. (2018) Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics 34: 2441-2448. Mertins, Mani, Ruggles, Gillette, Clauser, Wang (b0400) 2016; 534 Auslander, Yizhak, Weinstock, Budhu, Tang, Wang (b0460) 2016; 6 Petrosino (b0325) 2018; 10 Koh, Fermin, Vogel, Choi, Ewing, Choi (b0140) 2019; 5 Sparano, Gray, Makower, Pritchard, Albain, Hayes (b0255) 2015; 373 Wang, Peng, Wang, Ye (b0345) 2019; 16 Wang W, Baladandayuthapani V, Morris JS, Broom BM, Manyam G, et al. (2013) iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics (Oxford, England) 29: 149-159. Yanai, Korbel, Boue, McWeeney, Bork, Lercher (b0440) 2006; 22 Curtis, Shah, Chin, Turashvili, Rueda, Dunning (b0090) 2012; 486 Yan, Risacher, Shen, Saykin (b0010) 2018; 19 Matson V, Fessler J, Bao R (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. 359: 104-108. Puchades-Carrasco, Pineda-Lucena (b0320) 2017; 17 Shen R, Olshen AB, Ladanyi M (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25: 2906-2912. Rappoport N, Shamir R (2019) NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35: 3348-3356. Nagy, Győrffy (b0199) 2021; 148 Perou, Sørlie, Eisen, van de Rijn, Jeffrey, Rees (b0385) 2000; 406 Quackenbush (b0435) 2003; 302 Bettegowda, Sausen, Leary, Kinde, Wang (b0510) 2014; 6 Cohen, Li, Wang, Thoburn, Afsari, Danilova (b0525) 2018; 359 Uzozie, Aebersold (b0295) 2018; 189 Bashashati, Haffari, Ding, Ha, Lui, Rosner (b0210) 2012; 13 Yang, Soga, Pollard (b0315) 2013; 123 Soliman, Shah, Srkalovic, Mahtani, Levine, Mavromatis (b0260) 2020; 20 Lin, Zhang, Li, Calhoun, Deng, Wang (b0165) 2013; 14 Yu, Zeng (b0030) 2018; 1754 (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171: 950-965.e928. Argelaguet, Velten, Arnol, Dietrich, Zenz, Marioni (b0225) 2018; 14 Lourenco, Benson, Henderson, Silver, Letsios (b0300) 2017; 17 Ellis, Gillette, Carr, Paulovich, Smith, Rodland (b0355) 2013; 3 Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, et al. (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42: e107. Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26: i237-245. Gopalakrishnan, Spencer, Nezi, Reuben, Andrews, Karpinets (b0335) 2018; 359 Vogel, Marcotte (b0415) 2012; 13 Buscail, Bournet, Cordelier (b0530) 2020; 17 Huang, Chaudhary, Garmire (b0065) 2017; 8 Rizvi, Hellmann, Snyder, Kvistborg, Makarov, Havel (b0240) 2015; 348 Krug, Enderle, Karlovich, Priewasser, Bentink, Spiel (b0545) 2018; 29 Moarii, Boeva, Vert, Reyal (b0455) 2015; 16 Rappoport N, Shamir R (2018) Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic acids research 46: 10546-10562. Routy B, Le Chatelier E (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. 359: 91-97. Vasaikar, Huang, Wang, Petyuk, Savage, Wen (b0370) 2019; 177 El-Manzalawy Y. CCA based multi-view feature selection for multi-omics data integration; 2018 30 May-2 June 2018. pp. 1-8. Li, Bickel, Biggin (b0405) 2014; 2 Speicher, Pfeifer (b0155) 2015; 31 Baldwin, Han, Luo, Zhou, An, Liu (b0035) 2020; 18 Alyass, Turcotte, Meyre (b0005) 2015; 8 Hasin, Seldin, Lusis (b0015) 2017; 18 Palsson, Zengler (b0025) 2010; 6 Badeaux (10.1016/j.csbj.2021.01.009_b0275) 2013; 14 Richardson (10.1016/j.csbj.2021.01.009_b0045) 2016; 3 Schwanhäusser (10.1016/j.csbj.2021.01.009_b0420) 2011; 473 10.1016/j.csbj.2021.01.009_b0160 Heyn (10.1016/j.csbj.2021.01.009_b0280) 2013; 13 Puchades-Carrasco (10.1016/j.csbj.2021.01.009_b0320) 2017; 17 Baldwin (10.1016/j.csbj.2021.01.009_b0035) 2020; 18 Michaut (10.1016/j.csbj.2021.01.009_b0495) 2016; 6 Arpino (10.1016/j.csbj.2021.01.009_b0490) 2004; 6 Lock (10.1016/j.csbj.2021.01.009_b0075) 2013; 7 Ricketts (10.1016/j.csbj.2021.01.009_b0500) 2018; 23 Győrffy (10.1016/j.csbj.2021.01.009_b0390) 2015; 17 Liu (10.1016/j.csbj.2021.01.009_b0410) 2016; 165 Masica (10.1016/j.csbj.2021.01.009_b0205) 2011; 71 Sparano (10.1016/j.csbj.2021.01.009_b0255) 2015; 373 Sonu (10.1016/j.csbj.2021.01.009_b0265) 2015; 2015 Auslander (10.1016/j.csbj.2021.01.009_b0460) 2016; 6 Menyhárt (10.1016/j.csbj.2021.01.009_b0230) 2016; 1866 Tebani (10.1016/j.csbj.2021.01.009_b0550) 2016; 17 Yu (10.1016/j.csbj.2021.01.009_b0030) 2018; 1754 Yan (10.1016/j.csbj.2021.01.009_b0010) 2018; 19 Li (10.1016/j.csbj.2021.01.009_b0375) 2014; 5 Guinney (10.1016/j.csbj.2021.01.009_b0480) 2015; 21 Alyass (10.1016/j.csbj.2021.01.009_b0005) 2015; 8 Buscail (10.1016/j.csbj.2021.01.009_b0530) 2020; 17 Vasaikar (10.1016/j.csbj.2021.01.009_b0370) 2019; 177 Yang (10.1016/j.csbj.2021.01.009_b0315) 2013; 123 Wilson (10.1016/j.csbj.2021.01.009_b0285) 2017; 8 Ren (10.1016/j.csbj.2021.01.009_b0465) 2016; 15 Li (10.1016/j.csbj.2021.01.009_b0405) 2014; 2 Palsson (10.1016/j.csbj.2021.01.009_b0025) 2010; 6 Soliman (10.1016/j.csbj.2021.01.009_b0260) 2020; 20 Parker (10.1016/j.csbj.2021.01.009_b0380) 2009; 27 10.1016/j.csbj.2021.01.009_b0145 Wilhelm (10.1016/j.csbj.2021.01.009_b0430) 2014; 509 Wang (10.1016/j.csbj.2021.01.009_b0150) 2014; 11 Lourenco (10.1016/j.csbj.2021.01.009_b0300) 2017; 17 Cohen (10.1016/j.csbj.2021.01.009_b0525) 2018; 359 Wolf-Yadlin (10.1016/j.csbj.2021.01.009_b0360) 2007; 104 10.1016/j.csbj.2021.01.009_b0095 10.1016/j.csbj.2021.01.009_b0130 Nagy (10.1016/j.csbj.2021.01.009_b0199) 2021; 148 Wang (10.1016/j.csbj.2021.01.009_b0345) 2019; 16 10.1016/j.csbj.2021.01.009_b0135 Bettegowda (10.1016/j.csbj.2021.01.009_b0510) 2014; 6 Misra (10.1016/j.csbj.2021.01.009_b0050) 2018 Vogelstein (10.1016/j.csbj.2021.01.009_b0185) 2013; 339 Ellis (10.1016/j.csbj.2021.01.009_b0355) 2013; 3 Speicher (10.1016/j.csbj.2021.01.009_b0155) 2015; 31 Bashashati (10.1016/j.csbj.2021.01.009_b0210) 2012; 13 Zhang (10.1016/j.csbj.2021.01.009_b0485) 2016; 166 10.1016/j.csbj.2021.01.009_b0085 Cohen (10.1016/j.csbj.2021.01.009_b0520) 2017; 114 Moarii (10.1016/j.csbj.2021.01.009_b0455) 2015; 16 Weinstein (10.1016/j.csbj.2021.01.009_b0350) 2013; 45 10.1016/j.csbj.2021.01.009_b0120 Lehmann-Che (10.1016/j.csbj.2021.01.009_b0235) 2017; 72 Bell (10.1016/j.csbj.2021.01.009_b0115) 2011; 474 10.1016/j.csbj.2021.01.009_b0125 Curtis (10.1016/j.csbj.2021.01.009_b0090) 2012; 486 Berger (10.1016/j.csbj.2021.01.009_b0245) 2018; 15 Mo (10.1016/j.csbj.2021.01.009_b0100) 2013; 110 Doebele (10.1016/j.csbj.2021.01.009_b0270) 2015; 5 Satpathy (10.1016/j.csbj.2021.01.009_b0365) 2020; 11 Jiang (10.1016/j.csbj.2021.01.009_b0305) 2019; 567 Mertins (10.1016/j.csbj.2021.01.009_b0400) 2016; 534 Krug (10.1016/j.csbj.2021.01.009_b0545) 2018; 29 10.1016/j.csbj.2021.01.009_b0190 10.1016/j.csbj.2021.01.009_b0070 Argelaguet (10.1016/j.csbj.2021.01.009_b0225) 2018; 14 Lin (10.1016/j.csbj.2021.01.009_b0165) 2013; 14 Tiffen (10.1016/j.csbj.2021.01.009_b0290) 2016; 18 Perou (10.1016/j.csbj.2021.01.009_b0385) 2000; 406 10.1016/j.csbj.2021.01.009_b0195 Hasin (10.1016/j.csbj.2021.01.009_b0015) 2017; 18 10.1016/j.csbj.2021.01.009_b0110 Uzozie (10.1016/j.csbj.2021.01.009_b0295) 2018; 189 Armitage (10.1016/j.csbj.2021.01.009_b0310) 2014; 87 Petrosino (10.1016/j.csbj.2021.01.009_b0325) 2018; 10 Wang (10.1016/j.csbj.2021.01.009_b0445) 2017; 16 Tie (10.1016/j.csbj.2021.01.009_b0515) 2015; 26 Yanai (10.1016/j.csbj.2021.01.009_b0440) 2006; 22 Tian (10.1016/j.csbj.2021.01.009_b0535) 2017; 41 Burrell (10.1016/j.csbj.2021.01.009_b0180) 2013; 501 Terunuma (10.1016/j.csbj.2021.01.009_b0475) 2014; 124 10.1016/j.csbj.2021.01.009_b0060 10.1016/j.csbj.2021.01.009_b0220 10.1016/j.csbj.2021.01.009_b0340 Rizvi (10.1016/j.csbj.2021.01.009_b0240) 2015; 348 10.1016/j.csbj.2021.01.009_b0105 Huang (10.1016/j.csbj.2021.01.009_b0065) 2017; 8 Tsai (10.1016/j.csbj.2021.01.009_b0250) 2016; 6 10.1016/j.csbj.2021.01.009_b0505 Yang (10.1016/j.csbj.2021.01.009_b0470) 2017; 7 Gopalakrishnan (10.1016/j.csbj.2021.01.009_b0335) 2018; 359 Cancer Genome Atlas (10.1016/j.csbj.2021.01.009_b0395) 2012; 490 Kelley (10.1016/j.csbj.2021.01.009_b0450) 2017; 77 Koh (10.1016/j.csbj.2021.01.009_b0140) 2019; 5 Wu (10.1016/j.csbj.2021.01.009_b0040) 2019; 8 Wang (10.1016/j.csbj.2021.01.009_b0540) 2018; 7 10.1016/j.csbj.2021.01.009_b0170 10.1016/j.csbj.2021.01.009_b0055 10.1016/j.csbj.2021.01.009_b0330 10.1016/j.csbj.2021.01.009_b0175 Edfors (10.1016/j.csbj.2021.01.009_b0425) 2016; 12 Vogel (10.1016/j.csbj.2021.01.009_b0415) 2012; 13 10.1016/j.csbj.2021.01.009_b0215 Chakraborty (10.1016/j.csbj.2021.01.009_b0020) 2018; 2018 Meng (10.1016/j.csbj.2021.01.009_b0080) 2016; 15 Nagy (10.1016/j.csbj.2021.01.009_b0200) 2017; 140 Quackenbush (10.1016/j.csbj.2021.01.009_b0435) 2003; 302 |
| References_xml | – reference: Zhang S, Liu CC, Li W, Shen H, Laird PW, et al. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40: 9379-9391. – volume: 18 year: 2017 ident: b0015 article-title: Multi-omics approaches to disease publication-title: Genome Biol – volume: 3 start-page: 1108 year: 2013 end-page: 1112 ident: b0355 article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium publication-title: Cancer Discovery – volume: 501 start-page: 338 year: 2013 end-page: 345 ident: b0180 article-title: The causes and consequences of genetic heterogeneity in cancer evolution publication-title: Nature – volume: 8 start-page: 33 year: 2015 ident: b0005 article-title: From big data analysis to personalized medicine for all: challenges and opportunities publication-title: BMC Med Genomics – volume: 8 start-page: 4 year: 2019 ident: b0040 article-title: A selective review of multi-level omics data integration using variable selection publication-title: High-throughput – volume: 13 start-page: 473 year: 2013 end-page: 479 ident: b0280 article-title: Epigenetic profiling joins personalized cancer medicine publication-title: Expert Rev Mol Diagn – volume: 165 start-page: 535 year: 2016 end-page: 550 ident: b0410 article-title: On the dependency of cellular protein levels on mRNA abundance publication-title: Cell – volume: 14 start-page: 245 year: 2013 ident: b0165 article-title: Group sparse canonical correlation analysis for genomic data integration publication-title: BMC Bioinf – volume: 6 start-page: R149 year: 2004 end-page: R156 ident: b0490 article-title: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome publication-title: Breast Cancer Res: BCR – volume: 7 start-page: 1670 year: 2018 end-page: 1679 ident: b0540 article-title: Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma publication-title: Cancer Med – reference: Zhou Y, Liu Y, Li K, Zhang R, Qiu F, et al. (2015) ICan: an integrated co-alteration network to identify ovarian cancer-related genes. PLoS One 10: e0116095. – volume: 45 start-page: 1113 year: 2013 end-page: 1120 ident: b0350 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat Genet – volume: 17 start-page: 2740 year: 2017 end-page: 2751 ident: b0320 article-title: Metabolomics applications in precision medicine: an oncological perspective publication-title: Curr Top Med Chem – volume: 2 year: 2014 ident: b0405 article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals publication-title: PeerJ – volume: 41 start-page: 171 year: 2017 end-page: 180 ident: b0535 article-title: Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B publication-title: Clin Res Hepatol Gastroenterol – volume: 15 start-page: 353 year: 2018 end-page: 365 ident: b0245 article-title: The emerging clinical relevance of genomics in cancer medicine publication-title: Nat Rev Clin Oncol – volume: 302 start-page: 240 year: 2003 end-page: 241 ident: b0435 article-title: Genomics. Microarrays–guilt by association publication-title: Science – reference: Rappoport N, Shamir R (2018) Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic acids research 46: 10546-10562. – volume: 19 start-page: 1370 year: 2018 end-page: 1381 ident: b0010 article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data publication-title: Brief Bioinform – volume: 13 start-page: 227 year: 2012 end-page: 232 ident: b0415 article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses publication-title: Nat Rev Genet – volume: 71 start-page: 4550 year: 2011 end-page: 4561 ident: b0205 article-title: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival publication-title: Cancer Res – reference: Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26: i237-245. – volume: 2015 year: 2015 ident: b0265 article-title: Optimal molecular methods in detecting p190<sup>BCR-ABL</sup> fusion variants in hematologic malignancies: a case report and review of the literature publication-title: Case Reports Hematol – reference: (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171: 950-965.e928. – volume: 72 start-page: 439 year: 2017 end-page: 451 ident: b0235 article-title: Cancer genomics guide clinical practice in personalized medicine publication-title: Therapies – volume: 27 start-page: 1160 year: 2009 end-page: 1167 ident: b0380 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol – volume: 10 start-page: 12 year: 2018 ident: b0325 article-title: The microbiome in precision medicine: the way forward publication-title: Genome Med – volume: 5 year: 2019 ident: b0140 article-title: iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery publication-title: npj Syst Biol Appl – volume: 87 start-page: 1 year: 2014 end-page: 11 ident: b0310 article-title: Metabolomics in cancer biomarker discovery: current trends and future perspectives publication-title: J Pharm Biomed Anal – reference: Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL (2012) Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28: 3290-3297. – volume: 509 start-page: 582 year: 2014 end-page: 587 ident: b0430 article-title: Mass-spectrometry-based draft of the human proteome publication-title: Nature – volume: 15 start-page: 154 year: 2016 end-page: 163 ident: b0465 article-title: Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer publication-title: Molecular amp;amp; Cellular Proteomics – volume: 124 start-page: 398 year: 2014 end-page: 412 ident: b0475 article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis publication-title: J Clin Invest – reference: Rappoport N, Shamir R (2019) NEMO: cancer subtyping by integration of partial multi-omic data. Bioinformatics 35: 3348-3356. – volume: 17 start-page: 516 year: 2017 end-page: 525.e516 ident: b0300 article-title: A non-invasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years publication-title: Clin Breast Cancer – volume: 3 start-page: 181 year: 2016 end-page: 209 ident: b0045 article-title: Statistical methods in integrative genomics publication-title: Annu Rev Stat Appl – volume: 21 start-page: 1350 year: 2015 end-page: 1356 ident: b0480 article-title: The consensus molecular subtypes of colorectal cancer publication-title: Nat Med – volume: 13 start-page: R124 year: 2012 ident: b0210 article-title: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer publication-title: Genome Biol – volume: 11 start-page: 333 year: 2014 end-page: 337 ident: b0150 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods – volume: 1866 start-page: 300 year: 2016 end-page: 319 ident: b0230 article-title: Guidelines for the selection of functional assays to evaluate the hallmarks of cancer publication-title: Biochim Biophys Acta – reference: Shi Q, Zhang C, Peng M, Yu X, Zeng T, et al. (2017) Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 33: 2706-2714. – volume: 140 start-page: 930 year: 2017 end-page: 937 ident: b0200 article-title: KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer publication-title: Int J Cancer – volume: 16 start-page: 873 year: 2015 ident: b0455 article-title: Changes in correlation between promoter methylation and gene expression in cancer publication-title: BMC Genomics – reference: Mattox AK, Bettegowda C, Zhou S (2019) Applications of liquid biopsies for cancer. 11. – reference: Menyhart O, Pongor LS, Gyorffy B (2018) Mutations Defining Patient Cohorts With Elevated PD-L1 Expression in Gastric Cancer. Front Pharmacol 9: 1522. – volume: 123 start-page: 3652 year: 2013 end-page: 3658 ident: b0315 article-title: Oncometabolites: linking altered metabolism with cancer publication-title: J Clin Invest – volume: 5 year: 2014 ident: b0375 article-title: Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact publication-title: Nat Commun – volume: 17 year: 2015 ident: b0390 article-title: Multigene prognostic tests in breast cancer: past, present, future publication-title: Breast Cancer Res – volume: 22 start-page: 132 year: 2006 end-page: 138 ident: b0440 article-title: Similar gene expression profiles do not imply similar tissue functions publication-title: Trends Genet – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: b0395 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 6 start-page: 224ra224 year: 2014 ident: b0510 article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies publication-title: Sci Transl Med – reference: Matson V, Fessler J, Bao R (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. 359: 104-108. – volume: 6 year: 2016 ident: b0460 article-title: A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer publication-title: Sci Rep – volume: 23 start-page: 3698 year: 2018 ident: b0500 article-title: The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma publication-title: Cell Rep – volume: 17 start-page: 153 year: 2020 end-page: 168 ident: b0530 article-title: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer publication-title: Nature Rev Gastroenterol Hepatol – volume: 486 start-page: 346 year: 2012 end-page: 352 ident: b0090 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature – volume: 6 start-page: 12 year: 2016 ident: b0250 article-title: Bioinformatics workflow for clinical whole genome sequencing at partners healthcare personalized medicine publication-title: J Pers Med – volume: 18 start-page: 121 year: 2016 end-page: 132 ident: b0290 article-title: Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma publication-title: Neoplasia – reference: Routy B, Le Chatelier E (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. 359: 91-97. – volume: 189 start-page: 1 year: 2018 end-page: 10 ident: b0295 article-title: Advancing translational research and precision medicine with targeted proteomics publication-title: J Proteomics – volume: 11 year: 2020 ident: b0365 article-title: Microscaled proteogenomic methods for precision oncology publication-title: Nat Commun – volume: 114 start-page: 10202 year: 2017 end-page: 10207 ident: b0520 article-title: Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers publication-title: Proc Natl Acad Sci U S A – volume: 359 start-page: 97 year: 2018 end-page: 103 ident: b0335 article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients publication-title: Science – reference: Wang W, Baladandayuthapani V, Morris JS, Broom BM, Manyam G, et al. (2013) iBAG: integrative Bayesian analysis of high-dimensional multiplatform genomics data. Bioinformatics (Oxford, England) 29: 149-159. – volume: 534 start-page: 55 year: 2016 end-page: 62 ident: b0400 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature – year: 2018 ident: b0050 article-title: Integrated omics: tools, advances, and future approaches publication-title: J Mol Endocrinol – volume: 29 start-page: 700 year: 2018 end-page: 706 ident: b0545 article-title: Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma publication-title: Ann Oncol – volume: 7 start-page: 523 year: 2013 end-page: 542 ident: b0075 article-title: Joint and individual variation explained (Jive) for integrated analysis of multiple data types publication-title: Ann Appl Statistics – volume: 20 year: 2020 ident: b0260 article-title: MammaPrint guides treatment decisions in breast Cancer: results of the IMPACt trial publication-title: BMC Cancer – volume: 16 start-page: 121 year: 2017 end-page: 134 ident: b0445 article-title: Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction publication-title: Mol Cell Proteomics – volume: 359 start-page: 926 year: 2018 end-page: 930 ident: b0525 article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test publication-title: Science – volume: 474 start-page: 609 year: 2011 end-page: 615 ident: b0115 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature – volume: 26 start-page: 1715 year: 2015 end-page: 1722 ident: b0515 article-title: Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer publication-title: Ann Oncol – volume: 7 year: 2017 ident: b0470 article-title: A comprehensive analysis of metabolomics and transcriptomics in cervical cancer publication-title: Sci Rep – volume: 166 start-page: 755 year: 2016 end-page: 765 ident: b0485 article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer publication-title: Cell – volume: 16 start-page: 157 year: 2019 end-page: 170 ident: b0345 article-title: Toward multiomics-based next-generation diagnostics for precision medicine publication-title: Per Med – reference: Shen R, Olshen AB, Ladanyi M (2009) Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25: 2906-2912. – volume: 5 start-page: 1049 year: 2015 end-page: 1057 ident: b0270 article-title: An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101 publication-title: Cancer Discov – volume: 31 start-page: i268 year: 2015 end-page: 275 ident: b0155 article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery publication-title: Bioinformatics – reference: El-Manzalawy Y. CCA based multi-view feature selection for multi-omics data integration; 2018 30 May-2 June 2018. pp. 1-8. – volume: 177 start-page: 1035 year: 2019 end-page: 1049.e19 ident: b0370 article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities publication-title: Cell – volume: 406 start-page: 747 year: 2000 end-page: 752 ident: b0385 article-title: Molecular portraits of human breast tumours publication-title: Nature – volume: 17 start-page: 1555 year: 2016 ident: b0550 article-title: Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations publication-title: Int J Mol Sci – volume: 12 year: 2016 ident: b0425 article-title: Gene-specific correlation of RNA and protein levels in human cells and tissues publication-title: Mol Syst Biol – reference: Lock EF, Dunson DB (2013) Bayesian consensus clustering. Bioinformatics 29: 2610-2616. – volume: 373 start-page: 2005 year: 2015 end-page: 2014 ident: b0255 article-title: Prospective validation of a 21-gene expression assay in breast cancer publication-title: N Engl J Med – volume: 15 start-page: 755 year: 2016 end-page: 765 ident: b0080 article-title: moCluster: identifying joint patterns across multiple omics data sets publication-title: J Proteome Res – volume: 567 start-page: 257 year: 2019 end-page: 261 ident: b0305 article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma publication-title: Nature – reference: Wilkerson MD, Cabanski CR, Sun W, Hoadley KA, Walter V, et al. (2014) Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res 42: e107. – reference: Sathyanarayanan A, Gupta R, Thompson EW, Nyholt DR, Bauer DC, et al. (2020) A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform 21: 1920-1936. – volume: 104 start-page: 5860 year: 2007 end-page: 5865 ident: b0360 article-title: Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks publication-title: Proc Natl Acad Sci U S A – reference: Savage R, Ghahramani Z, Griffin J, Kirk P, Wild D (2013) Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data. – volume: 8 start-page: 30328 year: 2017 end-page: 30343 ident: b0285 article-title: The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells publication-title: Oncotarget – volume: 6 start-page: 787 year: 2010 end-page: 789 ident: b0025 article-title: The challenges of integrating multi-omic data sets publication-title: Nat Chem Biol – volume: 1754 start-page: 109 year: 2018 end-page: 135 ident: b0030 article-title: Integrative analysis of omics big data publication-title: Methods Mol Biol – volume: 148 start-page: 502 year: 2021 end-page: 511 ident: b0199 article-title: muTarget: A platform linking gene expression changes and mutation status in solid tumors publication-title: International journal of cancer – volume: 2018 start-page: 1 year: 2018 end-page: 14 ident: b0020 article-title: Onco-multi-OMICS approach: a new frontier in cancer research publication-title: Biomed Res Int – volume: 14 year: 2018 ident: b0225 article-title: Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets publication-title: Mol Syst Biol – reference: Dimitrakopoulos C, Hindupur SK, Häfliger L, Behr J, Montazeri H, et al. (2018) Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics 34: 2441-2448. – reference: Mo Q, Shen R, Guo C, Vannucci M, Chan KS, et al. (2018) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19: 71-86. – volume: 339 start-page: 1546 year: 2013 end-page: 1558 ident: b0185 article-title: Cancer genome landscapes publication-title: Science – volume: 6 year: 2016 ident: b0495 article-title: Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer publication-title: Sci Rep – volume: 14 start-page: 211 year: 2013 end-page: 224 ident: b0275 article-title: Emerging roles for chromatin as a signal integration and storage platform publication-title: Nat Rev Mol Cell Biol – volume: 18 start-page: 509 year: 2020 end-page: 517 ident: b0035 article-title: On fusion methods for knowledge discovery from multi-omics datasets publication-title: Comput Struct Biotechnol J – volume: 8 year: 2017 ident: b0065 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet – volume: 348 start-page: 124 year: 2015 end-page: 128 ident: b0240 article-title: Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer publication-title: Science – volume: 473 start-page: 337 year: 2011 end-page: 342 ident: b0420 article-title: Global quantification of mammalian gene expression control publication-title: Nature – reference: Subramanian I, Verma S, Kumar S, Jere A, Anamika K (2020) Multi-omics Data Integration, Interpretation, and Its Application. 14: 1177932219899051. – volume: 77 start-page: 6538 year: 2017 end-page: 6550 ident: b0450 article-title: Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks publication-title: Cancer Res – volume: 110 start-page: 4245 year: 2013 end-page: 4250 ident: b0100 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.csbj.2021.01.009_b0040 article-title: A selective review of multi-level omics data integration using variable selection publication-title: High-throughput doi: 10.3390/ht8010004 – volume: 31 start-page: i268 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0155 article-title: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv244 – volume: 16 start-page: 121 issue: 1 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0445 article-title: Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M116.060301 – volume: 3 start-page: 181 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0045 article-title: Statistical methods in integrative genomics publication-title: Annu Rev Stat Appl doi: 10.1146/annurev-statistics-041715-033506 – volume: 71 start-page: 4550 issue: 13 year: 2011 ident: 10.1016/j.csbj.2021.01.009_b0205 article-title: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0180 – volume: 21 start-page: 1350 issue: 11 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0480 article-title: The consensus molecular subtypes of colorectal cancer publication-title: Nat Med doi: 10.1038/nm.3967 – volume: 567 start-page: 257 issue: 7747 year: 2019 ident: 10.1016/j.csbj.2021.01.009_b0305 article-title: Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma publication-title: Nature doi: 10.1038/s41586-019-0987-8 – ident: 10.1016/j.csbj.2021.01.009_b0110 doi: 10.1093/bioinformatics/btq182 – volume: 189 start-page: 1 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0295 article-title: Advancing translational research and precision medicine with targeted proteomics publication-title: J Proteomics doi: 10.1016/j.jprot.2018.02.021 – volume: 373 start-page: 2005 issue: 21 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0255 article-title: Prospective validation of a 21-gene expression assay in breast cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1510764 – ident: 10.1016/j.csbj.2021.01.009_b0330 doi: 10.1126/science.aan3706 – volume: 22 start-page: 132 issue: 3 year: 2006 ident: 10.1016/j.csbj.2021.01.009_b0440 article-title: Similar gene expression profiles do not imply similar tissue functions publication-title: Trends Genet doi: 10.1016/j.tig.2006.01.006 – volume: 509 start-page: 582 issue: 7502 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0430 article-title: Mass-spectrometry-based draft of the human proteome publication-title: Nature doi: 10.1038/nature13319 – volume: 17 start-page: 516 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0300 article-title: A non-invasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years publication-title: Clin Breast Cancer doi: 10.1016/j.clbc.2017.05.004 – volume: 5 issue: 1 year: 2019 ident: 10.1016/j.csbj.2021.01.009_b0140 article-title: iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery publication-title: npj Syst Biol Appl doi: 10.1038/s41540-019-0099-y – volume: 77 start-page: 6538 issue: 23 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0450 article-title: Integrated analysis of whole-genome ChIP-Seq and RNA-Seq data of primary head and neck tumor samples associates HPV integration sites with open chromatin marks publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0833 – volume: 41 start-page: 171 issue: 2 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0535 article-title: Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B publication-title: Clin Res Hepatol Gastroenterol doi: 10.1016/j.clinre.2016.10.003 – volume: 123 start-page: 3652 issue: 9 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0315 article-title: Oncometabolites: linking altered metabolism with cancer publication-title: J Clin Invest doi: 10.1172/JCI67228 – volume: 15 start-page: 353 issue: 6 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0245 article-title: The emerging clinical relevance of genomics in cancer medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0002-6 – ident: 10.1016/j.csbj.2021.01.009_b0175 doi: 10.1109/CIBCB.2018.8404968 – volume: 17 start-page: 2740 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0320 article-title: Metabolomics applications in precision medicine: an oncological perspective publication-title: Curr Top Med Chem doi: 10.2174/1568026617666170707120034 – ident: 10.1016/j.csbj.2021.01.009_b0125 doi: 10.1093/bioinformatics/bts595 – volume: 20 issue: 1 year: 2020 ident: 10.1016/j.csbj.2021.01.009_b0260 article-title: MammaPrint guides treatment decisions in breast Cancer: results of the IMPACt trial publication-title: BMC Cancer doi: 10.1186/s12885-020-6534-z – volume: 19 start-page: 1370 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0010 article-title: Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data publication-title: Brief Bioinform – volume: 406 start-page: 747 issue: 6797 year: 2000 ident: 10.1016/j.csbj.2021.01.009_b0385 article-title: Molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/35021093 – volume: 13 start-page: 227 issue: 4 year: 2012 ident: 10.1016/j.csbj.2021.01.009_b0415 article-title: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses publication-title: Nat Rev Genet doi: 10.1038/nrg3185 – volume: 177 start-page: 1035 issue: 4 year: 2019 ident: 10.1016/j.csbj.2021.01.009_b0370 article-title: Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities publication-title: Cell doi: 10.1016/j.cell.2019.03.030 – volume: 359 start-page: 97 issue: 6371 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0335 article-title: Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients publication-title: Science doi: 10.1126/science.aan4236 – volume: 45 start-page: 1113 issue: 10 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0350 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat Genet doi: 10.1038/ng.2764 – volume: 10 start-page: 12 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0325 article-title: The microbiome in precision medicine: the way forward publication-title: Genome Med doi: 10.1186/s13073-018-0525-6 – ident: 10.1016/j.csbj.2021.01.009_b0070 doi: 10.1177/1177932219899051 – volume: 486 start-page: 346 issue: 7403 year: 2012 ident: 10.1016/j.csbj.2021.01.009_b0090 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.csbj.2021.01.009_b0365 article-title: Microscaled proteogenomic methods for precision oncology publication-title: Nat Commun doi: 10.1038/s41467-020-14381-2 – volume: 2015 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0265 article-title: Optimal molecular methods in detecting p190BCR-ABL fusion variants in hematologic malignancies: a case report and review of the literature publication-title: Case Reports Hematol doi: 10.1155/2015/458052 – volume: 8 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0065 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet doi: 10.3389/fgene.2017.00084 – volume: 501 start-page: 338 issue: 7467 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0180 article-title: The causes and consequences of genetic heterogeneity in cancer evolution publication-title: Nature doi: 10.1038/nature12625 – ident: 10.1016/j.csbj.2021.01.009_b0505 doi: 10.1126/scitranslmed.aay1984 – ident: 10.1016/j.csbj.2021.01.009_b0060 doi: 10.1093/nar/gks725 – volume: 124 start-page: 398 issue: 1 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0475 article-title: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis publication-title: J Clin Invest doi: 10.1172/JCI71180 – volume: 7 start-page: 523 issue: 1 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0075 article-title: Joint and individual variation explained (Jive) for integrated analysis of multiple data types publication-title: Ann Appl Statistics doi: 10.1214/12-AOAS597 – volume: 17 start-page: 1555 issue: 9 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0550 article-title: Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations publication-title: Int J Mol Sci doi: 10.3390/ijms17091555 – volume: 165 start-page: 535 issue: 3 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0410 article-title: On the dependency of cellular protein levels on mRNA abundance publication-title: Cell doi: 10.1016/j.cell.2016.03.014 – volume: 16 start-page: 157 issue: 2 year: 2019 ident: 10.1016/j.csbj.2021.01.009_b0345 article-title: Toward multiomics-based next-generation diagnostics for precision medicine publication-title: Per Med doi: 10.2217/pme-2018-0085 – volume: 17 issue: 1 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0390 article-title: Multigene prognostic tests in breast cancer: past, present, future publication-title: Breast Cancer Res doi: 10.1186/s13058-015-0514-2 – ident: 10.1016/j.csbj.2021.01.009_b0085 doi: 10.1093/bioinformatics/btp543 – volume: 12 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0425 article-title: Gene-specific correlation of RNA and protein levels in human cells and tissues publication-title: Mol Syst Biol doi: 10.15252/msb.20167144 – volume: 16 start-page: 873 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0455 article-title: Changes in correlation between promoter methylation and gene expression in cancer publication-title: BMC Genomics doi: 10.1186/s12864-015-1994-2 – volume: 5 start-page: 1049 issue: 10 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0270 article-title: An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-0443 – volume: 29 start-page: 700 issue: 3 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0545 article-title: Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma publication-title: Ann Oncol doi: 10.1093/annonc/mdx765 – volume: 474 start-page: 609 year: 2011 ident: 10.1016/j.csbj.2021.01.009_b0115 article-title: Integrated genomic analyses of ovarian carcinoma publication-title: Nature doi: 10.1038/nature10166 – year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0050 article-title: Integrated omics: tools, advances, and future approaches publication-title: J Mol Endocrinol – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0495 article-title: Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer publication-title: Sci Rep doi: 10.1038/srep18517 – ident: 10.1016/j.csbj.2021.01.009_b0170 doi: 10.1371/journal.pone.0116095 – ident: 10.1016/j.csbj.2021.01.009_b0190 doi: 10.3389/fphar.2018.01522 – volume: 148 start-page: 502 issue: 2 year: 2021 ident: 10.1016/j.csbj.2021.01.009_b0199 article-title: muTarget: A platform linking gene expression changes and mutation status in solid tumors publication-title: International journal of cancer doi: 10.1002/ijc.33283 – volume: 72 start-page: 439 issue: 4 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0235 article-title: Cancer genomics guide clinical practice in personalized medicine publication-title: Therapies doi: 10.1016/j.therap.2016.09.015 – volume: 348 start-page: 124 issue: 6230 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0240 article-title: Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer publication-title: Science doi: 10.1126/science.aaa1348 – volume: 26 start-page: 1715 issue: 8 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0515 article-title: Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer publication-title: Ann Oncol doi: 10.1093/annonc/mdv177 – ident: 10.1016/j.csbj.2021.01.009_b0055 doi: 10.1093/nar/gky889 – volume: 359 start-page: 926 issue: 6378 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0525 article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test publication-title: Science doi: 10.1126/science.aar3247 – volume: 166 start-page: 755 issue: 3 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0485 article-title: Integrated proteogenomic characterization of human high-grade serous ovarian cancer publication-title: Cell doi: 10.1016/j.cell.2016.05.069 – volume: 104 start-page: 5860 issue: 14 year: 2007 ident: 10.1016/j.csbj.2021.01.009_b0360 article-title: Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0608638104 – ident: 10.1016/j.csbj.2021.01.009_b0135 doi: 10.1093/bioinformatics/bts655 – ident: 10.1016/j.csbj.2021.01.009_b0195 doi: 10.1093/nar/gku489 – ident: 10.1016/j.csbj.2021.01.009_b0145 doi: 10.1093/bioinformatics/btx176 – volume: 18 start-page: 121 issue: 2 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0290 article-title: Somatic copy number amplification and hyperactivating somatic mutations of EZH2 correlate with DNA methylation and drive epigenetic silencing of genes involved in tumor suppression and immune responses in melanoma publication-title: Neoplasia doi: 10.1016/j.neo.2016.01.003 – volume: 14 start-page: 245 issue: 1 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0165 article-title: Group sparse canonical correlation analysis for genomic data integration publication-title: BMC Bioinf doi: 10.1186/1471-2105-14-245 – volume: 13 start-page: 473 issue: 5 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0280 article-title: Epigenetic profiling joins personalized cancer medicine publication-title: Expert Rev Mol Diagn doi: 10.1586/erm.13.36 – volume: 339 start-page: 1546 issue: 6127 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0185 article-title: Cancer genome landscapes publication-title: Science doi: 10.1126/science.1235122 – volume: 7 start-page: 1670 issue: 5 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0540 article-title: Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma publication-title: Cancer Med doi: 10.1002/cam4.1390 – volume: 302 start-page: 240 issue: 5643 year: 2003 ident: 10.1016/j.csbj.2021.01.009_b0435 article-title: Genomics. Microarrays–guilt by association publication-title: Science doi: 10.1126/science.1090887 – volume: 14 issue: 6 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0225 article-title: Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets publication-title: Mol Syst Biol doi: 10.15252/msb.20178124 – volume: 6 start-page: 787 issue: 11 year: 2010 ident: 10.1016/j.csbj.2021.01.009_b0025 article-title: The challenges of integrating multi-omic data sets publication-title: Nat Chem Biol doi: 10.1038/nchembio.462 – volume: 140 start-page: 930 issue: 4 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0200 article-title: KRAS driven expression signature has prognostic power superior to mutation status in non-small cell lung cancer publication-title: Int J Cancer doi: 10.1002/ijc.30509 – volume: 18 start-page: 509 year: 2020 ident: 10.1016/j.csbj.2021.01.009_b0035 article-title: On fusion methods for knowledge discovery from multi-omics datasets publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.02.011 – volume: 534 start-page: 55 issue: 7605 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0400 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature doi: 10.1038/nature18003 – volume: 2 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0405 article-title: System wide analyses have underestimated protein abundances and the importance of transcription in mammals publication-title: PeerJ doi: 10.7717/peerj.270 – volume: 11 start-page: 333 issue: 3 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0150 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 18 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0015 article-title: Multi-omics approaches to disease publication-title: Genome Biol doi: 10.1186/s13059-017-1215-1 – volume: 1866 start-page: 300 issue: 2 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0230 article-title: Guidelines for the selection of functional assays to evaluate the hallmarks of cancer publication-title: Biochim Biophys Acta – volume: 6 start-page: R149 year: 2004 ident: 10.1016/j.csbj.2021.01.009_b0490 article-title: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome publication-title: Breast Cancer Res: BCR doi: 10.1186/bcr767 – volume: 23 start-page: 3698 issue: 12 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0500 article-title: The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma publication-title: Cell Rep doi: 10.1016/j.celrep.2018.06.032 – volume: 17 start-page: 153 issue: 3 year: 2020 ident: 10.1016/j.csbj.2021.01.009_b0530 article-title: Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer publication-title: Nature Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0245-4 – volume: 110 start-page: 4245 issue: 11 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0100 article-title: Pattern discovery and cancer gene identification in integrated cancer genomic data publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1208949110 – ident: 10.1016/j.csbj.2021.01.009_b0130 – volume: 6 start-page: 12 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0250 article-title: Bioinformatics workflow for clinical whole genome sequencing at partners healthcare personalized medicine publication-title: J Pers Med doi: 10.3390/jpm6010012 – volume: 114 start-page: 10202 issue: 38 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0520 article-title: Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1704961114 – volume: 8 start-page: 33 year: 2015 ident: 10.1016/j.csbj.2021.01.009_b0005 article-title: From big data analysis to personalized medicine for all: challenges and opportunities publication-title: BMC Med Genomics doi: 10.1186/s12920-015-0108-y – volume: 15 start-page: 755 issue: 3 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0080 article-title: moCluster: identifying joint patterns across multiple omics data sets publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00824 – ident: 10.1016/j.csbj.2021.01.009_b0220 – ident: 10.1016/j.csbj.2021.01.009_b0120 doi: 10.1093/bioinformatics/btt425 – volume: 14 start-page: 211 issue: 4 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0275 article-title: Emerging roles for chromatin as a signal integration and storage platform publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3545 – ident: 10.1016/j.csbj.2021.01.009_b0340 doi: 10.1126/science.aao3290 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0460 article-title: A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer publication-title: Sci Rep doi: 10.1038/srep29662 – volume: 13 start-page: R124 issue: 12 year: 2012 ident: 10.1016/j.csbj.2021.01.009_b0210 article-title: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer publication-title: Genome Biol doi: 10.1186/gb-2012-13-12-r124 – volume: 15 start-page: 154 issue: 1 year: 2016 ident: 10.1016/j.csbj.2021.01.009_b0465 article-title: Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer publication-title: Molecular amp;amp; Cellular Proteomics – volume: 473 start-page: 337 issue: 7347 year: 2011 ident: 10.1016/j.csbj.2021.01.009_b0420 article-title: Global quantification of mammalian gene expression control publication-title: Nature doi: 10.1038/nature10098 – volume: 27 start-page: 1160 issue: 8 year: 2009 ident: 10.1016/j.csbj.2021.01.009_b0380 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol doi: 10.1200/JCO.2008.18.1370 – volume: 490 start-page: 61 year: 2012 ident: 10.1016/j.csbj.2021.01.009_b0395 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 6 start-page: 224ra224 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0510 article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3007094 – volume: 5 issue: 1 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0375 article-title: Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact publication-title: Nat Commun doi: 10.1038/ncomms6469 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0020 article-title: Onco-multi-OMICS approach: a new frontier in cancer research publication-title: Biomed Res Int doi: 10.1155/2018/9836256 – ident: 10.1016/j.csbj.2021.01.009_b0105 doi: 10.1093/biostatistics/kxx017 – ident: 10.1016/j.csbj.2021.01.009_b0160 doi: 10.1093/bioinformatics/btz058 – volume: 87 start-page: 1 year: 2014 ident: 10.1016/j.csbj.2021.01.009_b0310 article-title: Metabolomics in cancer biomarker discovery: current trends and future perspectives publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2013.08.041 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0470 article-title: A comprehensive analysis of metabolomics and transcriptomics in cervical cancer publication-title: Sci Rep – ident: 10.1016/j.csbj.2021.01.009_b0215 doi: 10.1093/bioinformatics/bty148 – ident: 10.1016/j.csbj.2021.01.009_b0095 doi: 10.1093/bib/bbz121 – volume: 8 start-page: 30328 issue: 18 year: 2017 ident: 10.1016/j.csbj.2021.01.009_b0285 article-title: The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.15681 – volume: 1754 start-page: 109 year: 2018 ident: 10.1016/j.csbj.2021.01.009_b0030 article-title: Integrative analysis of omics big data publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-7717-8_7 – volume: 3 start-page: 1108 issue: 10 year: 2013 ident: 10.1016/j.csbj.2021.01.009_b0355 article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium publication-title: Cancer Discovery doi: 10.1158/2159-8290.CD-13-0219 |
| SSID | ssj0000816930 |
| Score | 2.608577 |
| SecondaryResourceType | review_article |
| Snippet | •Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions.•Data integration across... While cost-effective high-throughput technologies provide an increasing amount of data, the analyses of single layers of data seldom provide causal relations.... • Single-level data analysis produced by high-throughput technologies is limited by showing only a narrow window of cellular functions. • Data integration... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 949 |
| SubjectTerms | Biomarker biotechnology Breast cancer cost effectiveness Data integration diagnostic techniques Driver mutation genome Genomics Lung cancer metabolome Metabolomics microbiome multiomics neoplasms prognosis proteome Proteomics Review transcriptome Transcriptomics |
| Title | Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis |
| URI | https://dx.doi.org/10.1016/j.csbj.2021.01.009 https://www.ncbi.nlm.nih.gov/pubmed/33613862 https://www.proquest.com/docview/2492277932 https://www.proquest.com/docview/2574323533 https://pubmed.ncbi.nlm.nih.gov/PMC7868685 https://doaj.org/article/08595476bfc346ee841e18d80234c4e0 |
| Volume | 19 |
| WOSCitedRecordID | wos000684867500013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4gCHim9SoDISNxqRxHbsHAG14gAVB0B7s2LH1qYq2WqdrdRLfzszTrLKgrRcUKIcEieRPWP7jT3zhpC3NbK-GSYwa4BMuc1Validp8KX0nhXlyxmnvv5RZ6fq8Wi-jZL9YU-YQM98NBw7yMBF5el8Zbx0jnFc5erBnnLuOUuWuuAembGVByDFZKM4ALL6DMkszFiZnDussFcgHFY5JGzE70RZ7NSJO_fmZz-Bp9_-lDOJqWzh-RwRJP0w1CLR-SO6x6TBzOOwSdkGUNsUww-DnRiEHeBth21KPE1Hfl-lhTXZOl8RxsL9ZtfqzUNG9PfYGjVCUWPrm4V2nBC666hzeCr14an5MfZ6fdPn9MxvUJqAUP0qZXSZ6UHBFQzZ7yQzBWFkYZ7KZkCI9sL39SVtcZklVemVBVuehrPvBJNI9gzctCtOveCUKWqjHuQSeULDoCyNmDfipLVvJC5sS4h-dS82o7c45gC41JPTmYXGkWiUSQ6gzOrEvJu-87VwLyxt_RHlNq2JLJmxxugS3rUJf0vXUqImGSuRwAyAAv4VLv3528mBdHQO3HLpe7cahM08jEWEsbAYk8ZASgOmouxhDwflGpbDcYAboHRmRC5o2479dx90rXLyBIuVQmHOPofDfOS3MfqDktPr8hBv9641-Seve7bsD4md-VCHccOCNevt6e_AWXqM-o |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+approaches+in+cancer+research+with+applications+in+tumor+subtyping%2C+prognosis%2C+and+diagnosis&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Menyh%C3%A1rt%2C+Ot%C3%ADlia&rft.au=Gy%C5%91rffy%2C+Bal%C3%A1zs&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19+p.949-960&rft.spage=949&rft.epage=960&rft_id=info:doi/10.1016%2Fj.csbj.2021.01.009&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |