Centering, scaling, and transformations: improving the biological information content of metabolomics data
Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics dat...
Saved in:
| Published in: | BMC genomics Vol. 7; no. 1; p. 142 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
BioMed Central
08.06.2006
BMC |
| Subjects: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability.
Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis.
Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important. |
|---|---|
| AbstractList | Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability.BACKGROUNDExtracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability.Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis.RESULTSDifferent data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis.Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.CONCLUSIONDifferent pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important. Abstract Background Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Results Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Conclusion Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis). In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important. Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important. Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis). In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important. |
| ArticleNumber | 142 |
| Author | Hoefsloot, Huub CJ Smilde, Age K van den Berg, Robert A Westerhuis, Johan A van der Werf, Mariët J |
| AuthorAffiliation | 1 TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist, The Netherlands 2 Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands |
| AuthorAffiliation_xml | – name: 2 Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands – name: 1 TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist, The Netherlands |
| Author_xml | – sequence: 1 givenname: Robert A surname: van den Berg fullname: van den Berg, Robert A – sequence: 2 givenname: Huub CJ surname: Hoefsloot fullname: Hoefsloot, Huub CJ – sequence: 3 givenname: Johan A surname: Westerhuis fullname: Westerhuis, Johan A – sequence: 4 givenname: Age K surname: Smilde fullname: Smilde, Age K – sequence: 5 givenname: Mariët J surname: van der Werf fullname: van der Werf, Mariët J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16762068$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFksuLFDEQxoOsuA89e5OcPNluXp2kPQgy-FhY8KLnkE6qZzN0J2OSXfC_NzOzjruCeMpH1a--VFF1jk5iioDQS0reUqrlJRWKdoxK0amOCvYEnR0jJw_0KTovZUMIVZr1z9AplUoyIvUZ2qwgVsghrt_g4uy8FzZ6XLONZUp5sTWkWN7hsGxzumt5XG8AjyHNaR1aBQ7xiGGXmlusOE14gWrHBi3BFexttc_R08nOBV7cvxfo-6eP31Zfuuuvn69WH6471_eiduPglffEKi78oMaBTUr3HpxwRMnWuB2JHKSXmk8gwCutOFFk4AQ012Apv0BXB1-f7MZsc1hs_mmSDWYfSHltbK7BzWCcGLTrOTBgSlDntdeaUyW9nxgFpZvX-4PX9nZcwLs2W7bzI9PHmRhuzDrdGdpzQThvBq_vDXL6cQulmiUUB_NsI6TbYqRWjHHK_gvSgfO-H2QDXz1s6djL75024PIAuJxKyTD9QYjZXY3Z3YXZ3YVRTe_-7v-qcKHuF9pmCvM_634BsITGyg |
| CitedBy_id | crossref_primary_10_1007_s12263_012_0288_4 crossref_primary_10_1007_s11306_010_0229_4 crossref_primary_10_1016_j_chroma_2014_11_050 crossref_primary_10_3390_nu13051567 crossref_primary_10_3389_fcvm_2022_994483 crossref_primary_10_3390_plants12163004 crossref_primary_10_1007_s11306_011_0350_z crossref_primary_10_1007_s11306_022_01893_9 crossref_primary_10_1104_pp_111_187229 crossref_primary_10_3390_metabo10090359 crossref_primary_10_3390_plants8050115 crossref_primary_10_1371_journal_pcbi_1002119 crossref_primary_10_1016_j_ctarc_2017_08_002 crossref_primary_10_3390_ani12040515 crossref_primary_10_1111_raq_12146 crossref_primary_10_3390_metabo9020032 crossref_primary_10_1007_s11306_017_1220_0 crossref_primary_10_1038_s41598_019_52667_8 crossref_primary_10_3390_nu15040965 crossref_primary_10_1016_j_chroma_2007_02_108 crossref_primary_10_1042_BJ20101405 crossref_primary_10_1016_j_gexplo_2020_106593 crossref_primary_10_1016_j_jpba_2010_01_002 crossref_primary_10_1093_molehr_gat062 crossref_primary_10_1093_pcp_pcx068 crossref_primary_10_3390_metabo9020034 crossref_primary_10_1016_j_clnu_2024_09_030 crossref_primary_10_3390_ijms26136260 crossref_primary_10_1016_j_chemosphere_2018_11_044 crossref_primary_10_1007_s00216_022_04134_z crossref_primary_10_1016_j_jbiosc_2010_07_008 crossref_primary_10_3168_jds_2025_26923 crossref_primary_10_1038_hortres_2017_38 crossref_primary_10_1080_01652176_2022_2145619 crossref_primary_10_3390_molecules27217275 crossref_primary_10_1016_j_chemosphere_2020_129362 crossref_primary_10_1038_s41598_022_06014_z crossref_primary_10_1186_s12859_021_04478_w crossref_primary_10_3390_metabo11050326 crossref_primary_10_3390_ijms25105098 crossref_primary_10_1016_j_stress_2024_100680 crossref_primary_10_1016_j_prostaglandins_2022_106651 crossref_primary_10_1080_15592294_2016_1168673 crossref_primary_10_1016_j_aquaculture_2016_05_041 crossref_primary_10_1038_s41467_024_44990_0 crossref_primary_10_1007_s10654_016_0166_2 crossref_primary_10_1016_j_jpba_2017_07_044 crossref_primary_10_1002_ibd_21426 crossref_primary_10_1016_j_jcs_2013_10_002 crossref_primary_10_1016_j_phytochem_2012_05_030 crossref_primary_10_1586_14737159_2015_974562 crossref_primary_10_3390_metabo13101031 crossref_primary_10_1016_j_foodchem_2014_12_043 crossref_primary_10_1016_j_foodchem_2022_135016 crossref_primary_10_1007_s10661_019_7205_x crossref_primary_10_1007_s11306_018_1321_4 crossref_primary_10_3390_cells11162605 crossref_primary_10_1007_s11306_013_0541_x crossref_primary_10_1038_s41598_018_30553_z crossref_primary_10_3390_metabo9030055 crossref_primary_10_1007_s11336_016_9522_0 crossref_primary_10_1093_bioinformatics_btn634 crossref_primary_10_3390_ijms20194928 crossref_primary_10_1093_hr_uhac095 crossref_primary_10_1039_c3np70086k crossref_primary_10_1007_s11306_015_0887_3 crossref_primary_10_1016_j_chroma_2024_465538 crossref_primary_10_1002_pmic_201800422 crossref_primary_10_1002_rcm_4525 crossref_primary_10_3390_metabo10030084 crossref_primary_10_1007_s11306_022_01949_w crossref_primary_10_1016_j_jchromb_2020_122028 crossref_primary_10_1007_s11306_014_0740_0 crossref_primary_10_3390_metabo13050605 crossref_primary_10_1093_nar_gkr969 crossref_primary_10_1002_jssc_200900152 crossref_primary_10_1007_s11306_013_0598_6 crossref_primary_10_1007_s43450_023_00454_y crossref_primary_10_3390_metabo9030043 crossref_primary_10_1007_s00216_015_8882_0 crossref_primary_10_1016_j_bpj_2016_12_018 crossref_primary_10_1016_j_phytochem_2019_112084 crossref_primary_10_1080_14737159_2016_1199277 crossref_primary_10_1007_s11306_009_0168_0 crossref_primary_10_1080_02699052_2017_1296192 crossref_primary_10_1111_cns_70324 crossref_primary_10_1016_j_pnpbp_2023_110849 crossref_primary_10_1038_nprot_2011_319 crossref_primary_10_1111_pce_14785 crossref_primary_10_1016_j_chemolab_2016_11_005 crossref_primary_10_1038_s41531_023_00558_1 crossref_primary_10_1016_j_chroma_2019_460739 crossref_primary_10_1080_14767058_2021_1970133 crossref_primary_10_1002_elps_201400544 crossref_primary_10_3389_fonc_2020_00973 crossref_primary_10_2217_nmt_13_43 crossref_primary_10_1016_j_aca_2022_340419 crossref_primary_10_1016_j_jchromb_2016_12_020 crossref_primary_10_1002_bit_27894 crossref_primary_10_1007_s42081_023_00205_2 crossref_primary_10_3390_biochem4020005 crossref_primary_10_1016_j_artmed_2023_102556 crossref_primary_10_3390_app12041932 crossref_primary_10_3390_nu15010042 crossref_primary_10_1007_s11306_014_0731_1 crossref_primary_10_1158_0008_5472_CAN_22_1744 crossref_primary_10_1371_journal_pone_0193883 crossref_primary_10_1093_nar_gkp356 crossref_primary_10_1007_s11306_021_01787_2 crossref_primary_10_1371_journal_pone_0178650 crossref_primary_10_1016_j_molmet_2021_101295 crossref_primary_10_1007_s11306_016_1058_x crossref_primary_10_3390_molecules25122919 crossref_primary_10_1016_j_csbj_2016_02_003 crossref_primary_10_1111_gcb_70390 crossref_primary_10_1007_s00216_025_05735_0 crossref_primary_10_1016_j_livsci_2020_104269 crossref_primary_10_1371_journal_pone_0205968 crossref_primary_10_1371_journal_pcbi_1009197 crossref_primary_10_1038_s41598_024_71439_7 crossref_primary_10_3389_fnut_2021_780228 crossref_primary_10_1016_j_heliyon_2023_e16774 crossref_primary_10_1371_journal_pntd_0008866 crossref_primary_10_1038_s41598_024_55032_6 crossref_primary_10_1016_j_chroma_2013_01_111 crossref_primary_10_1016_j_funbio_2022_05_005 crossref_primary_10_1080_09637486_2018_1499711 crossref_primary_10_1016_j_aca_2020_10_038 crossref_primary_10_1016_j_aca_2009_11_042 crossref_primary_10_1093_biostatistics_kxab006 crossref_primary_10_1371_journal_pone_0003259 crossref_primary_10_1016_j_fertnstert_2018_02_119 crossref_primary_10_1038_s41586_019_1658_5 crossref_primary_10_1155_2017_8091749 crossref_primary_10_15446_rev_colomb_quim_v51n1_99258 crossref_primary_10_3390_nu12113457 crossref_primary_10_1016_j_ijpharm_2022_121847 crossref_primary_10_1007_s11306_020_01739_2 crossref_primary_10_1007_s12161_015_0285_5 crossref_primary_10_3390_app7070708 crossref_primary_10_1186_s12864_020_07299_y crossref_primary_10_1093_bib_bbaa105 crossref_primary_10_3109_00365513_2014_1003593 crossref_primary_10_3389_fmicb_2014_00445 crossref_primary_10_1038_srep23963 crossref_primary_10_1038_s41596_021_00636_9 crossref_primary_10_3389_fpsyt_2020_00496 crossref_primary_10_3390_foods12173240 crossref_primary_10_1016_j_physbeh_2018_07_011 crossref_primary_10_1371_journal_pntd_0004483 crossref_primary_10_2174_0929867325666181008122749 crossref_primary_10_1016_j_scitotenv_2021_148005 crossref_primary_10_3168_jds_2020_19185 crossref_primary_10_3389_fphar_2021_621146 crossref_primary_10_3390_metabo14050248 crossref_primary_10_1016_j_foodres_2018_05_025 crossref_primary_10_1016_j_jpba_2012_06_004 crossref_primary_10_1007_s10661_020_08638_y crossref_primary_10_1016_j_jphotobiol_2017_09_002 crossref_primary_10_3390_metabo15080514 crossref_primary_10_3390_agronomy12081926 crossref_primary_10_3390_metabo4020433 crossref_primary_10_1007_s11306_017_1200_4 crossref_primary_10_1016_j_chroma_2011_04_080 crossref_primary_10_1016_j_asoc_2025_112911 crossref_primary_10_1016_j_aquatox_2023_106669 crossref_primary_10_1093_hmg_ddac151 crossref_primary_10_3945_ajcn_114_103804 crossref_primary_10_1073_pnas_1001149107 crossref_primary_10_1111_jvp_12884 crossref_primary_10_1016_j_postharvbio_2017_01_006 crossref_primary_10_1038_s41598_019_55339_9 crossref_primary_10_3233_JAD_170880 crossref_primary_10_1016_j_ijfoodmicro_2018_04_041 crossref_primary_10_1093_hmg_ddz309 crossref_primary_10_15252_emmm_202013591 crossref_primary_10_1002_jsfa_6689 crossref_primary_10_1016_j_jff_2024_106383 crossref_primary_10_1016_j_lwt_2022_113217 crossref_primary_10_1371_journal_ppat_1009642 crossref_primary_10_1002_sae2_70091 crossref_primary_10_1016_j_foodres_2018_05_010 crossref_primary_10_1111_eth_12938 crossref_primary_10_3390_su12125009 crossref_primary_10_3390_metabo15080522 crossref_primary_10_1007_s00216_011_4929_z crossref_primary_10_1007_s10967_023_09024_x crossref_primary_10_1016_j_chemolab_2010_07_006 crossref_primary_10_1007_s12519_023_00788_6 crossref_primary_10_1016_j_aca_2014_12_056 crossref_primary_10_3390_metabo12111045 crossref_primary_10_1007_s11306_007_0060_8 crossref_primary_10_1016_j_chemolab_2011_03_008 crossref_primary_10_3390_foods11244070 crossref_primary_10_1016_j_exger_2015_09_013 crossref_primary_10_1016_j_jnutbio_2018_11_003 crossref_primary_10_1139_cjfas_2020_0052 crossref_primary_10_3390_metabo8040060 crossref_primary_10_1109_ACCESS_2020_3039064 crossref_primary_10_1016_j_envexpbot_2017_08_008 crossref_primary_10_1016_j_jnutbio_2022_109051 crossref_primary_10_3168_jds_2022_22681 crossref_primary_10_1016_j_jnutbio_2013_05_003 crossref_primary_10_1194_jlr_RA120000652 crossref_primary_10_1016_j_cca_2012_01_026 crossref_primary_10_1016_j_foodres_2025_115920 crossref_primary_10_1080_03610470_2023_2213238 crossref_primary_10_3390_metabo3020204 crossref_primary_10_1007_s12630_020_01895_y crossref_primary_10_1016_j_aquatox_2024_107217 crossref_primary_10_1016_j_foodres_2023_113187 crossref_primary_10_1038_s41598_025_89600_1 crossref_primary_10_3390_metabo10010035 crossref_primary_10_1016_j_foodchem_2023_137308 crossref_primary_10_1016_j_scitotenv_2019_03_477 crossref_primary_10_1016_j_mimet_2019_105795 crossref_primary_10_1155_2015_627201 crossref_primary_10_1186_s40538_024_00553_5 crossref_primary_10_2196_63176 crossref_primary_10_1007_s11306_017_1273_0 crossref_primary_10_1007_s11306_019_1564_8 crossref_primary_10_1007_s12161_017_0848_8 crossref_primary_10_1371_journal_pcbi_1009148 crossref_primary_10_1055_a_2660_2042 crossref_primary_10_1016_j_phytochem_2023_113611 crossref_primary_10_1016_j_jpba_2009_12_026 crossref_primary_10_3390_metabo15080509 crossref_primary_10_1093_ismejo_wrae187 crossref_primary_10_1007_s10886_018_0953_1 crossref_primary_10_1016_j_asoc_2019_105524 crossref_primary_10_1016_j_chroma_2017_03_071 crossref_primary_10_3389_fendo_2021_786952 crossref_primary_10_3390_cancers12010241 crossref_primary_10_1016_j_jtcvs_2025_06_028 crossref_primary_10_3390_ijms241713343 crossref_primary_10_3390_metabo8040082 crossref_primary_10_1016_j_trac_2016_07_004 crossref_primary_10_3390_metabo9120291 crossref_primary_10_1007_s11306_018_1387_z crossref_primary_10_1093_plphys_kiad093 crossref_primary_10_4155_bio_09_158 crossref_primary_10_1038_s41598_019_50063_w crossref_primary_10_1177_11786388241297143 crossref_primary_10_3390_jcm8050720 crossref_primary_10_1016_j_foodres_2016_11_014 crossref_primary_10_3390_foods12234335 crossref_primary_10_7717_peerj_6276 crossref_primary_10_3390_metabo8030047 crossref_primary_10_3390_min10121046 crossref_primary_10_1007_s00217_023_04340_8 crossref_primary_10_1016_j_jchromb_2008_04_033 crossref_primary_10_1093_femsec_fiaa052 crossref_primary_10_1007_s11306_009_0177_z crossref_primary_10_1186_s40478_023_01642_6 crossref_primary_10_1002_jssc_201901064 crossref_primary_10_1093_aob_mcw282 crossref_primary_10_1007_s10337_016_3031_2 crossref_primary_10_1007_s11306_015_0823_6 crossref_primary_10_3390_metabo12111012 crossref_primary_10_1016_j_carbpol_2013_09_023 crossref_primary_10_1007_s00216_014_8169_x crossref_primary_10_3390_molecules28031175 crossref_primary_10_1242_bio_019273 crossref_primary_10_1038_s42003_024_06186_6 crossref_primary_10_1111_vco_13034 crossref_primary_10_1038_s41598_022_13031_5 crossref_primary_10_1016_j_foodres_2018_07_045 crossref_primary_10_3390_metabo10020053 crossref_primary_10_1007_s00338_021_02125_7 crossref_primary_10_1007_s11306_025_02309_0 crossref_primary_10_1039_c3np20111b crossref_primary_10_1002_pd_5893 crossref_primary_10_1016_j_fbp_2017_09_005 crossref_primary_10_1038_s41598_024_53323_6 crossref_primary_10_1371_journal_pone_0259973 crossref_primary_10_1016_j_rse_2022_113170 crossref_primary_10_1002_elps_201700420 crossref_primary_10_1016_j_jplph_2019_01_005 crossref_primary_10_1093_gigascience_giae005 crossref_primary_10_1177_11786388221148858 crossref_primary_10_3390_metabo13070833 crossref_primary_10_1002_adma_202008432 crossref_primary_10_1007_s11306_011_0354_8 crossref_primary_10_1053_j_gastro_2018_12_002 crossref_primary_10_1016_j_plaphy_2020_09_006 crossref_primary_10_1007_s11306_017_1179_x crossref_primary_10_1038_nprot_2016_156 crossref_primary_10_1007_s00216_017_0628_8 crossref_primary_10_1016_j_lwt_2023_114435 crossref_primary_10_1002_rco2_68 crossref_primary_10_3390_ijms24033039 crossref_primary_10_1016_j_aca_2019_05_068 crossref_primary_10_3389_fmicb_2025_1484183 crossref_primary_10_1016_j_ijgfs_2023_100680 crossref_primary_10_1177_1475921717717310 crossref_primary_10_1016_j_chemolab_2020_103959 crossref_primary_10_3382_ps_pex080 crossref_primary_10_1007_s11306_014_0690_6 crossref_primary_10_1007_s11306_016_1030_9 crossref_primary_10_1007_s00216_023_04516_x crossref_primary_10_3389_fpubh_2017_00355 crossref_primary_10_1371_journal_pone_0150476 crossref_primary_10_1038_s41398_024_03080_x crossref_primary_10_1038_nprot_2009_237 crossref_primary_10_1016_j_chroma_2014_11_005 crossref_primary_10_3390_plants11050700 crossref_primary_10_1016_j_trac_2013_04_015 crossref_primary_10_1002_bit_25880 crossref_primary_10_1016_j_jpba_2010_12_023 crossref_primary_10_1016_j_foodcont_2022_109336 crossref_primary_10_1093_bib_bby127 crossref_primary_10_1007_s11306_019_1520_7 crossref_primary_10_1016_j_foodchem_2024_139986 crossref_primary_10_1016_j_joca_2021_10_006 crossref_primary_10_3390_cancers13010147 crossref_primary_10_1016_j_watres_2022_119480 crossref_primary_10_3390_nu11030528 crossref_primary_10_1007_s00299_025_03600_z crossref_primary_10_1038_s41514_025_00249_6 crossref_primary_10_3847_1538_3881_ac6e64 crossref_primary_10_3390_metabo13070815 crossref_primary_10_1039_D2NJ02513B crossref_primary_10_1016_j_jchromb_2008_04_044 crossref_primary_10_1371_journal_pone_0089393 crossref_primary_10_3390_dairy2030028 crossref_primary_10_3390_jcm11030627 crossref_primary_10_1007_s13197_019_04143_4 crossref_primary_10_3390_s20175001 crossref_primary_10_1021_pr500462f crossref_primary_10_1038_s41598_022_23977_1 crossref_primary_10_1111_j_1399_3054_2007_01004_x crossref_primary_10_1016_j_aca_2019_04_038 crossref_primary_10_1007_s11306_022_01891_x crossref_primary_10_1007_s11306_018_1365_5 crossref_primary_10_1371_journal_pone_0103030 crossref_primary_10_1371_journal_pone_0306637 crossref_primary_10_3390_nu16060895 crossref_primary_10_1016_j_neuroscience_2016_06_049 crossref_primary_10_3389_fpls_2017_01108 crossref_primary_10_1093_bioinformatics_btm181 crossref_primary_10_1080_07420528_2022_2131562 crossref_primary_10_1128_msystems_00793_25 crossref_primary_10_1302_2046_3758_99_BJR_2019_0192_R1 crossref_primary_10_3390_ijms26062719 crossref_primary_10_1007_s11306_017_1242_7 crossref_primary_10_3390_ijerph14070697 crossref_primary_10_7554_eLife_44235 crossref_primary_10_1159_000357785 crossref_primary_10_3389_fnut_2024_1340735 crossref_primary_10_1016_j_chemolab_2015_09_008 crossref_primary_10_1016_j_foodchem_2013_07_037 crossref_primary_10_3389_fpls_2015_01014 crossref_primary_10_1016_j_tifs_2024_104430 crossref_primary_10_1016_j_chemolab_2013_05_002 crossref_primary_10_1089_omi_2019_0140 crossref_primary_10_1007_s00216_021_03294_8 crossref_primary_10_1016_j_foodchem_2019_125660 crossref_primary_10_3389_fpls_2021_807710 crossref_primary_10_1016_j_chroma_2010_08_040 crossref_primary_10_1074_jbc_M117_791558 crossref_primary_10_3390_biomedicines8040081 crossref_primary_10_1371_journal_pone_0207051 crossref_primary_10_3390_diagnostics11091602 crossref_primary_10_1007_s11306_021_01817_z crossref_primary_10_1016_j_rbmo_2020_09_002 crossref_primary_10_1371_journal_pone_0234404 crossref_primary_10_1186_s13054_021_03810_3 crossref_primary_10_1016_j_mimet_2008_07_029 crossref_primary_10_1016_j_exer_2025_110655 crossref_primary_10_1093_bib_bbv077 crossref_primary_10_1371_journal_pone_0058411 crossref_primary_10_1016_j_scitotenv_2020_138317 crossref_primary_10_1097_RHU_0b013e3181ba3926 crossref_primary_10_1007_s11306_017_1299_3 crossref_primary_10_3390_fishes3020021 crossref_primary_10_3390_metabo2041090 crossref_primary_10_1007_s00216_013_6934_x crossref_primary_10_1016_j_foodres_2021_110878 crossref_primary_10_1080_07388551_2017_1421899 crossref_primary_10_1016_j_foodres_2025_117272 crossref_primary_10_1016_j_marpolbul_2021_113242 crossref_primary_10_3390_molecules29204947 crossref_primary_10_1038_s41598_019_44726_x crossref_primary_10_3390_metabo3010119 crossref_primary_10_1016_j_scitotenv_2017_12_320 crossref_primary_10_1016_j_bbadis_2014_09_014 crossref_primary_10_1016_j_fgb_2010_03_005 crossref_primary_10_1016_j_ab_2021_114153 crossref_primary_10_1016_j_jfoodeng_2023_111795 crossref_primary_10_1093_treephys_tpad087 crossref_primary_10_1007_s00216_018_1283_4 crossref_primary_10_1016_j_talanta_2017_10_025 crossref_primary_10_3390_metabo11100692 crossref_primary_10_1289_ehp_11891 crossref_primary_10_1016_j_biotechadv_2024_108400 crossref_primary_10_1016_j_watres_2024_121130 crossref_primary_10_1093_nar_gkae335 crossref_primary_10_3389_fmicb_2018_00284 crossref_primary_10_1016_j_chemolab_2011_05_006 crossref_primary_10_1039_D2CC03598G crossref_primary_10_3390_nu13041191 crossref_primary_10_3390_metabo8010001 crossref_primary_10_1016_j_fuel_2024_132701 crossref_primary_10_1186_1471_2105_9_470 crossref_primary_10_1007_s10750_016_3057_3 crossref_primary_10_1038_s41564_023_01580_y crossref_primary_10_1007_s10142_017_0585_5 crossref_primary_10_1002_hep_28953 crossref_primary_10_1007_s00216_021_03813_7 crossref_primary_10_1016_j_ppees_2024_125844 crossref_primary_10_1007_s11481_009_9156_4 crossref_primary_10_1177_1757913918772598 crossref_primary_10_1093_bioadv_vbaf073 crossref_primary_10_1007_s11306_011_0335_y crossref_primary_10_1016_j_trac_2023_117248 crossref_primary_10_1007_s11306_014_0738_7 crossref_primary_10_1002_mas_21370 crossref_primary_10_1007_s11306_011_0311_6 crossref_primary_10_3109_09513590_2010_487615 crossref_primary_10_1016_j_chemolab_2011_05_010 crossref_primary_10_1016_j_foodres_2017_06_007 crossref_primary_10_3390_fermentation7010015 crossref_primary_10_3390_metabo12020093 crossref_primary_10_1016_j_aca_2020_07_029 crossref_primary_10_1371_journal_pone_0134099 crossref_primary_10_1007_s00216_016_9376_4 crossref_primary_10_1093_jxb_erx134 crossref_primary_10_1016_j_plefa_2018_05_001 crossref_primary_10_1039_D3NH00510K crossref_primary_10_1007_s11306_016_1116_4 crossref_primary_10_1016_j_atmosenv_2021_118297 crossref_primary_10_1038_s41598_019_53287_y crossref_primary_10_1038_s41598_018_26427_z crossref_primary_10_3390_metabo11100672 crossref_primary_10_1039_C4MB00747F crossref_primary_10_1038_s41598_020_67939_x crossref_primary_10_1186_s13104_020_4920_x crossref_primary_10_1111_nph_12795 crossref_primary_10_1038_srep42514 crossref_primary_10_1371_journal_pone_0170148 crossref_primary_10_1038_s41366_024_01576_6 crossref_primary_10_1007_s11306_010_0210_2 crossref_primary_10_1186_1471_2105_10_52 crossref_primary_10_3389_fpls_2022_921008 crossref_primary_10_1007_s11306_012_0449_x crossref_primary_10_1016_j_chroma_2016_03_023 crossref_primary_10_1111_ppl_14150 crossref_primary_10_1186_s13068_015_0212_4 crossref_primary_10_1002_ijc_32146 crossref_primary_10_2217_bmm_2018_0229 crossref_primary_10_1016_j_kint_2018_10_020 crossref_primary_10_3390_ijms24044202 crossref_primary_10_3390_metabo14020086 crossref_primary_10_1093_nar_gks374 crossref_primary_10_1007_s00216_020_02830_2 crossref_primary_10_3390_metabo11090578 crossref_primary_10_1177_11786388221111126 crossref_primary_10_3390_metabo11100664 crossref_primary_10_1007_s00521_019_04588_w crossref_primary_10_1016_j_plaphy_2013_07_016 crossref_primary_10_3390_biomedicines12112593 crossref_primary_10_1109_TCBB_2014_2377723 crossref_primary_10_1016_j_jff_2017_06_046 crossref_primary_10_3389_fpls_2023_1166813 crossref_primary_10_3390_ijms17071017 crossref_primary_10_1007_s00216_023_04715_6 crossref_primary_10_1007_s00216_020_03117_2 crossref_primary_10_3389_fped_2020_613749 crossref_primary_10_1002_gepi_22211 crossref_primary_10_1186_s12874_022_01812_5 crossref_primary_10_1016_j_envpol_2023_121741 crossref_primary_10_1038_s41467_023_37394_z crossref_primary_10_1007_s00415_020_09824_1 crossref_primary_10_1007_s10534_014_9774_z crossref_primary_10_1007_s11306_020_01720_z crossref_primary_10_3389_fpls_2017_01524 crossref_primary_10_1186_s13054_015_1026_2 crossref_primary_10_1002_ange_200905579 crossref_primary_10_1039_C7AN00700K crossref_primary_10_1039_D5MO00019J crossref_primary_10_1111_grs_12439 crossref_primary_10_3390_foods12122322 crossref_primary_10_1093_intbio_zyaa013 crossref_primary_10_1186_1471_2105_8_93 crossref_primary_10_3168_jds_2020_18628 crossref_primary_10_1038_s41570_023_00476_z crossref_primary_10_1242_jeb_203596 crossref_primary_10_1093_aobpla_plv045 crossref_primary_10_1016_j_cimid_2022_101907 crossref_primary_10_1016_j_aca_2016_12_009 crossref_primary_10_1016_j_jenvman_2023_119920 crossref_primary_10_3390_foods10050956 crossref_primary_10_1016_j_csbj_2020_10_011 crossref_primary_10_1128_spectrum_01795_23 crossref_primary_10_1007_s11356_022_19989_z crossref_primary_10_1038_s41598_023_45997_1 crossref_primary_10_1371_journal_pone_0218360 crossref_primary_10_1002_pros_24145 crossref_primary_10_3390_cancers13205157 crossref_primary_10_1371_journal_pone_0187545 crossref_primary_10_1155_2022_8932137 crossref_primary_10_1038_s41467_019_08406_8 crossref_primary_10_1556_AChrom_21_2009_4_1 crossref_primary_10_3390_ijms20010059 crossref_primary_10_1007_s00216_019_01639_y crossref_primary_10_1371_journal_pcbi_1006018 crossref_primary_10_1007_s10886_023_01443_0 crossref_primary_10_1111_ajgw_12365 crossref_primary_10_3390_metabo9050102 crossref_primary_10_1002_mnfr_201700363 crossref_primary_10_1016_j_foodchem_2025_145858 crossref_primary_10_1002_pld3_276 crossref_primary_10_3390_foods9121797 crossref_primary_10_1002_jrs_5357 crossref_primary_10_1007_s11306_011_0292_5 crossref_primary_10_5194_jsss_7_489_2018 crossref_primary_10_1002_jsfa_9266 crossref_primary_10_1016_j_chemolab_2024_105237 crossref_primary_10_1016_j_foodchem_2022_134632 crossref_primary_10_1080_10408347_2021_1905503 crossref_primary_10_1515_sagmb_2018_0056 crossref_primary_10_1016_j_eswa_2018_08_002 crossref_primary_10_1371_journal_pone_0050520 crossref_primary_10_1016_j_phytol_2018_04_013 crossref_primary_10_1016_j_watres_2022_118413 crossref_primary_10_1186_1743_7075_11_24 crossref_primary_10_3390_pharmaceutics15092324 crossref_primary_10_1007_s11306_016_0971_3 crossref_primary_10_1007_s13399_022_03537_3 crossref_primary_10_1016_j_foodchem_2016_11_156 crossref_primary_10_1186_s12933_023_02111_z crossref_primary_10_1002_art_41537 crossref_primary_10_1016_j_chroma_2008_02_024 crossref_primary_10_1007_s42835_024_01981_x crossref_primary_10_1016_j_ard_2025_01_012 crossref_primary_10_1186_1471_2164_9_541 crossref_primary_10_1002_cem_3004 crossref_primary_10_1016_j_foodchem_2019_02_072 crossref_primary_10_1038_s41598_023_49032_1 crossref_primary_10_1371_journal_pntd_0003829 crossref_primary_10_1016_j_fbio_2025_106563 crossref_primary_10_3390_metabo12010032 crossref_primary_10_1007_s11306_010_0247_2 crossref_primary_10_1016_j_microc_2024_110491 crossref_primary_10_3389_fnut_2022_1017090 crossref_primary_10_1007_s00248_025_02590_5 crossref_primary_10_1016_j_chemolab_2017_01_014 crossref_primary_10_1007_s40495_017_0107_0 crossref_primary_10_1016_j_biotechadv_2014_11_008 crossref_primary_10_1016_j_jbiosc_2015_12_008 crossref_primary_10_1126_sciadv_adp4532 crossref_primary_10_1016_j_scienta_2021_110262 crossref_primary_10_1016_j_toxicon_2019_05_007 crossref_primary_10_3389_fmolb_2015_00004 crossref_primary_10_3390_metabo10100405 crossref_primary_10_1016_j_trac_2010_11_003 crossref_primary_10_1111_aji_13673 crossref_primary_10_1080_14756366_2019_1611802 crossref_primary_10_1182_bloodadvances_2021004973 crossref_primary_10_3390_metabo9070126 crossref_primary_10_3390_molecules25245965 crossref_primary_10_1017_S1431927618000090 crossref_primary_10_1038_srep38881 crossref_primary_10_1016_j_chroma_2013_06_022 crossref_primary_10_1016_j_ymben_2014_06_001 crossref_primary_10_1016_j_jpba_2020_113200 crossref_primary_10_1109_ACCESS_2022_3178521 crossref_primary_10_1016_j_talanta_2017_12_032 crossref_primary_10_1016_j_nexres_2025_100635 crossref_primary_10_15252_embr_202255299 crossref_primary_10_3390_foods10020435 crossref_primary_10_1016_j_scitotenv_2022_153969 crossref_primary_10_1038_s41386_023_01633_0 crossref_primary_10_3389_fpls_2023_1303771 crossref_primary_10_3168_jds_2020_18661 crossref_primary_10_1016_j_chemosphere_2020_126812 crossref_primary_10_3390_metabo10100419 crossref_primary_10_1016_j_ejphar_2021_173927 crossref_primary_10_1007_s00216_012_6692_1 crossref_primary_10_1016_j_aca_2024_342694 crossref_primary_10_1080_02626667_2018_1425802 crossref_primary_10_1371_journal_pone_0087846 crossref_primary_10_1016_j_apr_2025_102576 crossref_primary_10_1073_pnas_1218524110 crossref_primary_10_1093_nar_gkx449 crossref_primary_10_1155_2013_539284 crossref_primary_10_1007_s00216_022_04428_2 crossref_primary_10_1371_journal_pone_0238316 crossref_primary_10_1038_srep35374 crossref_primary_10_3390_molecules25030583 crossref_primary_10_1016_j_foodchem_2020_127339 crossref_primary_10_1016_j_bbalip_2020_158857 crossref_primary_10_1038_s41598_017_13931_x crossref_primary_10_1371_journal_pone_0126843 crossref_primary_10_3390_plants12101946 crossref_primary_10_1371_journal_pone_0074507 crossref_primary_10_1016_j_jfoodeng_2019_109684 crossref_primary_10_1186_s12859_017_1579_y crossref_primary_10_1039_C5TX00399G crossref_primary_10_1186_1477_5956_11_S1_S13 crossref_primary_10_1016_j_ecolind_2024_111734 crossref_primary_10_1155_2015_543541 crossref_primary_10_1093_jn_nxaa374 crossref_primary_10_1007_s11240_025_02993_9 crossref_primary_10_1016_j_jchromb_2017_11_007 crossref_primary_10_1016_j_jchromb_2013_08_025 crossref_primary_10_1111_sms_14086 crossref_primary_10_1016_j_aca_2009_01_048 crossref_primary_10_1534_genetics_117_300374 crossref_primary_10_1016_j_chroma_2015_10_026 crossref_primary_10_1016_j_microc_2021_107066 crossref_primary_10_3389_fnagi_2020_555850 crossref_primary_10_1038_s41598_017_09431_7 crossref_primary_10_1016_j_bcp_2017_05_012 crossref_primary_10_1016_j_bse_2024_104912 crossref_primary_10_1007_s11306_012_0482_9 crossref_primary_10_1186_1471_2105_8_234 crossref_primary_10_1038_s41596_024_01046_3 crossref_primary_10_1002_jssc_200800194 crossref_primary_10_1111_nph_17608 crossref_primary_10_1140_epjp_s13360_024_05405_7 crossref_primary_10_1016_j_jchromb_2016_01_002 crossref_primary_10_1371_journal_pone_0228989 crossref_primary_10_3390_ijms12106469 crossref_primary_10_1038_s41598_019_52059_y crossref_primary_10_1007_s00216_023_04556_3 crossref_primary_10_1002_bit_27087 crossref_primary_10_1007_s11306_014_0697_z crossref_primary_10_3390_foods11233821 crossref_primary_10_1007_s11306_015_0785_8 crossref_primary_10_1371_journal_pone_0162917 crossref_primary_10_1038_s41598_018_31700_2 crossref_primary_10_3390_biology10010045 crossref_primary_10_3390_metabo9070139 crossref_primary_10_1371_journal_pone_0123114 crossref_primary_10_1093_nar_gky750 crossref_primary_10_3390_metabo9070145 crossref_primary_10_1186_s12284_025_00788_2 crossref_primary_10_1016_j_arabjc_2022_104204 crossref_primary_10_3389_fpls_2023_1025932 crossref_primary_10_3390_metabo9070143 crossref_primary_10_1016_j_chemolab_2007_08_002 crossref_primary_10_1016_j_mednuc_2020_03_002 crossref_primary_10_1002_rcm_8977 crossref_primary_10_1007_s11306_018_1447_4 crossref_primary_10_1038_s41597_022_01229_1 crossref_primary_10_1016_j_talanta_2015_10_070 crossref_primary_10_14309_ctg_0000000000000518 crossref_primary_10_1016_j_jbiotec_2023_10_005 crossref_primary_10_3389_fgene_2021_630359 crossref_primary_10_3390_foods14060919 crossref_primary_10_1021_acs_analchem_5c03274 crossref_primary_10_1002_smtd_202100206 crossref_primary_10_3389_fpls_2023_1112157 crossref_primary_10_1016_j_phrs_2016_11_007 crossref_primary_10_1016_j_ecolind_2015_12_029 crossref_primary_10_1016_j_radonc_2023_109950 crossref_primary_10_3390_biom12070986 crossref_primary_10_1186_s12868_023_00775_7 crossref_primary_10_1016_j_trac_2011_04_019 crossref_primary_10_1096_fj_14_266387 crossref_primary_10_3390_ani12091069 crossref_primary_10_1016_j_foodres_2022_111885 crossref_primary_10_1002_rcm_3498 crossref_primary_10_3390_metabo11100656 crossref_primary_10_1016_j_aca_2015_02_012 crossref_primary_10_1016_j_lwt_2023_115085 crossref_primary_10_3390_cells12081102 crossref_primary_10_3390_molecules24193468 crossref_primary_10_1007_s11011_016_9949_0 crossref_primary_10_1109_ACCESS_2025_3567153 crossref_primary_10_1007_s10661_023_11776_8 crossref_primary_10_1016_j_jprot_2016_05_030 crossref_primary_10_1094_PHYTO_02_19_0042_R crossref_primary_10_1016_j_bioelechem_2020_107501 crossref_primary_10_1007_s11306_024_02208_w crossref_primary_10_1038_s41598_020_78867_1 crossref_primary_10_1016_j_jchromb_2018_06_014 crossref_primary_10_1016_j_jembe_2024_152004 crossref_primary_10_1016_j_jad_2025_119768 crossref_primary_10_1007_s00216_020_02407_z crossref_primary_10_3390_cells11152369 crossref_primary_10_1016_j_ijms_2006_10_011 crossref_primary_10_1371_journal_pone_0122445 crossref_primary_10_1111_rssc_12565 crossref_primary_10_1002_cem_2576 crossref_primary_10_1007_s11306_011_0317_0 crossref_primary_10_1016_j_ebiom_2016_01_027 crossref_primary_10_1016_j_cbd_2017_10_005 crossref_primary_10_1007_s12539_008_0008_3 crossref_primary_10_1186_s12859_022_04918_1 crossref_primary_10_5812_ijcm_107678 crossref_primary_10_1016_j_jprot_2014_01_014 crossref_primary_10_3390_molecules24193456 crossref_primary_10_1016_j_jece_2025_117568 crossref_primary_10_3390_metabo9080155 crossref_primary_10_3390_ani13132201 crossref_primary_10_1016_j_prevetmed_2017_05_015 crossref_primary_10_1016_j_envpol_2015_05_029 crossref_primary_10_1016_j_forc_2018_05_002 crossref_primary_10_1007_s12170_010_0144_2 crossref_primary_10_1016_j_foodcont_2021_108508 crossref_primary_10_1002_nbm_4638 crossref_primary_10_1016_j_engappai_2022_104807 crossref_primary_10_1016_j_jtherbio_2023_103702 crossref_primary_10_1002_mrc_5350 crossref_primary_10_1002_elps_201400450 crossref_primary_10_1111_tpj_70391 crossref_primary_10_1016_j_pharmthera_2020_107542 crossref_primary_10_1093_llc_fqu006 crossref_primary_10_1016_j_foodchem_2024_142465 crossref_primary_10_1016_j_microc_2020_104948 crossref_primary_10_1007_s10886_017_0881_5 crossref_primary_10_1371_journal_pone_0247289 crossref_primary_10_3390_foods10102388 crossref_primary_10_1007_s11306_017_1313_9 crossref_primary_10_1038_s41598_021_99147_6 crossref_primary_10_1016_j_jpba_2017_10_036 crossref_primary_10_3390_metabo11050308 crossref_primary_10_1371_journal_pone_0020747 crossref_primary_10_3390_nu11020274 crossref_primary_10_12688_gatesopenres_13131_2 crossref_primary_10_1016_j_foodchem_2012_09_136 crossref_primary_10_1016_j_foodchem_2015_12_049 crossref_primary_10_1016_j_jpba_2016_02_028 crossref_primary_10_3390_horticulturae9010066 crossref_primary_10_1155_2013_825318 crossref_primary_10_1002_cem_2790 crossref_primary_10_1126_science_aax9198 crossref_primary_10_3390_ijms24098459 crossref_primary_10_3390_metabo10110434 crossref_primary_10_1089_omi_2013_0010 crossref_primary_10_1186_s13054_014_0729_0 crossref_primary_10_1038_s41598_021_83602_5 crossref_primary_10_3389_fnut_2018_00042 crossref_primary_10_1016_j_cbd_2019_01_006 crossref_primary_10_1016_j_tem_2023_06_006 crossref_primary_10_3390_foods14050734 crossref_primary_10_1007_s11306_013_0609_7 crossref_primary_10_1016_j_ab_2007_07_022 crossref_primary_10_1016_j_orggeochem_2014_06_012 crossref_primary_10_1039_c3an36818a crossref_primary_10_1002_jor_22949 crossref_primary_10_1016_j_tox_2012_10_015 crossref_primary_10_1089_omi_2020_0009 crossref_primary_10_3389_fevo_2021_643845 crossref_primary_10_1093_treephys_tps072 crossref_primary_10_1371_journal_pone_0221052 crossref_primary_10_1073_pnas_1609348114 crossref_primary_10_1111_tpj_13495 crossref_primary_10_1002_prep_202100019 crossref_primary_10_1016_j_cag_2010_07_004 crossref_primary_10_4155_bio_2016_0078 crossref_primary_10_1038_s41586_022_04984_8 crossref_primary_10_1093_toxsci_kfu009 crossref_primary_10_3390_molecules27010082 crossref_primary_10_1016_j_aca_2021_339043 crossref_primary_10_1016_j_bbadis_2022_166371 crossref_primary_10_1016_j_precisioneng_2014_03_001 crossref_primary_10_1186_s12864_018_5406_2 crossref_primary_10_5194_amt_18_1961_2025 crossref_primary_10_1038_s41570_017_0054 crossref_primary_10_1007_s11306_013_0553_6 crossref_primary_10_1007_s11306_018_1335_y crossref_primary_10_1038_s41598_020_74008_w crossref_primary_10_3390_agriculture14050749 crossref_primary_10_3390_rs12132109 crossref_primary_10_1016_j_watres_2017_10_003 crossref_primary_10_1111_1462_2920_16271 crossref_primary_10_1186_s13058_023_01602_x crossref_primary_10_1111_j_1469_8137_2007_02282_x crossref_primary_10_1016_j_clnu_2020_09_028 crossref_primary_10_1186_1471_2105_15_51 crossref_primary_10_1016_j_jfca_2023_105860 crossref_primary_10_1042_BJ20121349 crossref_primary_10_1002_mnfr_202000178 crossref_primary_10_1007_s11306_011_0351_y crossref_primary_10_1016_j_neurobiolaging_2016_03_005 crossref_primary_10_1039_D3RA03992G crossref_primary_10_1016_j_aquaculture_2021_736368 crossref_primary_10_3390_genes15101264 crossref_primary_10_1155_2014_602813 crossref_primary_10_1371_journal_pone_0232169 crossref_primary_10_1002_mnfr_201800384 crossref_primary_10_1038_s41598_020_76876_8 crossref_primary_10_4155_bio_2016_0090 crossref_primary_10_1016_j_foodchem_2019_125507 crossref_primary_10_3389_fmicb_2021_693075 crossref_primary_10_1111_tpj_14320 crossref_primary_10_1016_j_pnmrs_2017_01_001 crossref_primary_10_1016_j_csbj_2022_09_031 crossref_primary_10_1080_10826076_2019_1629956 crossref_primary_10_1371_journal_pone_0164394 crossref_primary_10_3390_vaccines10111838 crossref_primary_10_1371_journal_pone_0106077 crossref_primary_10_3390_metabo12030221 crossref_primary_10_1371_journal_ppat_1009326 crossref_primary_10_1007_s00217_020_03648_z crossref_primary_10_1016_j_chroma_2010_10_010 crossref_primary_10_1159_000477493 crossref_primary_10_1016_j_archoralbio_2018_10_016 crossref_primary_10_3390_ijms160921520 crossref_primary_10_1186_s12864_015_1431_6 crossref_primary_10_1016_j_jnutbio_2017_11_009 crossref_primary_10_3389_fmolb_2021_686770 crossref_primary_10_1007_s00122_017_2934_0 crossref_primary_10_3892_etm_2025_12945 crossref_primary_10_1093_bib_bbab138 crossref_primary_10_1016_j_ejphar_2009_03_079 crossref_primary_10_1016_j_jpba_2014_10_010 crossref_primary_10_1016_j_ypmed_2018_04_032 crossref_primary_10_1038_srep45477 crossref_primary_10_3389_fmolb_2016_00035 crossref_primary_10_3390_molecules21030259 crossref_primary_10_1002_mnfr_201700975 crossref_primary_10_1038_s41598_017_07693_9 crossref_primary_10_1016_j_indcrop_2025_121159 crossref_primary_10_3109_19396368_2015_1054003 crossref_primary_10_3168_jds_2018_14685 crossref_primary_10_1364_AO_546627 crossref_primary_10_1016_j_jff_2024_106054 crossref_primary_10_1039_b907243h crossref_primary_10_1093_ee_nvz157 crossref_primary_10_1186_s13058_024_01896_5 crossref_primary_10_3389_fmolb_2021_632950 crossref_primary_10_1111_cts_13088 crossref_primary_10_1007_s11306_020_01705_y crossref_primary_10_3389_feart_2020_563379 crossref_primary_10_3390_metabo15030154 crossref_primary_10_3390_antiox12061160 crossref_primary_10_1016_j_heliyon_2021_e06048 crossref_primary_10_1016_j_jpba_2014_10_009 crossref_primary_10_1038_s42003_025_08515_9 crossref_primary_10_3390_metabo7010003 crossref_primary_10_3390_molecules23061496 crossref_primary_10_1128_mSystems_00129_17 crossref_primary_10_1016_j_lwt_2020_109922 crossref_primary_10_1016_j_numecd_2021_09_024 crossref_primary_10_3390_cancers12061538 crossref_primary_10_1016_j_foodchem_2021_129422 crossref_primary_10_1007_s11802_021_4558_x crossref_primary_10_1016_j_jhazmat_2023_131879 crossref_primary_10_1242_jeb_227843 crossref_primary_10_1134_S1061934816060113 crossref_primary_10_1007_s00216_023_04511_2 crossref_primary_10_1016_j_tjnut_2023_06_039 crossref_primary_10_1007_s00216_014_8102_3 crossref_primary_10_1093_gigascience_gix036 crossref_primary_10_1016_j_jaci_2020_11_002 crossref_primary_10_1007_s11095_023_03600_2 crossref_primary_10_1371_journal_pone_0178514 crossref_primary_10_1007_s13205_021_02864_y crossref_primary_10_1093_chemse_bjv077 crossref_primary_10_1097_CCM_0b013e31822571ce crossref_primary_10_3390_plants10040772 crossref_primary_10_1515_hmbci_2018_0045 crossref_primary_10_1016_j_lwt_2012_08_016 crossref_primary_10_1289_EHP11360 crossref_primary_10_1186_s12864_021_07563_9 crossref_primary_10_1186_s40035_020_00188_0 crossref_primary_10_1136_oemed_2014_102264 crossref_primary_10_1109_TIM_2022_3141163 crossref_primary_10_1007_s11306_014_0730_2 crossref_primary_10_1016_j_molstruc_2007_12_026 crossref_primary_10_1016_j_watres_2021_116846 crossref_primary_10_1016_j_simpat_2016_12_013 crossref_primary_10_1016_j_trac_2007_11_004 crossref_primary_10_1002_trc2_12025 crossref_primary_10_1016_j_artmed_2020_101950 crossref_primary_10_1021_acs_est_8b02763 crossref_primary_10_3390_ijms20051245 crossref_primary_10_1016_j_envint_2016_11_026 crossref_primary_10_1016_j_indcrop_2023_117993 crossref_primary_10_1158_0008_5472_CAN_15_3403 crossref_primary_10_1038_s41598_022_09687_8 crossref_primary_10_1016_j_phytochem_2011_12_010 crossref_primary_10_1016_j_jbi_2014_12_001 crossref_primary_10_3390_metabo13020296 crossref_primary_10_1016_j_aca_2009_08_029 crossref_primary_10_1177_1469066718806450 crossref_primary_10_1007_s00217_025_04727_9 crossref_primary_10_1016_j_foodchem_2021_131741 crossref_primary_10_1038_srep18241 crossref_primary_10_3390_molecules26216645 crossref_primary_10_1080_10937404_2013_860318 crossref_primary_10_1016_j_aca_2018_05_038 crossref_primary_10_1016_j_jpba_2018_08_047 crossref_primary_10_1038_s41598_019_43374_5 crossref_primary_10_3389_fmolb_2022_932261 crossref_primary_10_1007_s11306_019_1536_z crossref_primary_10_1016_j_bcp_2025_116896 crossref_primary_10_3390_metabo13010020 crossref_primary_10_1371_journal_pone_0256388 crossref_primary_10_1371_journal_pone_0222393 crossref_primary_10_3390_molecules24142602 crossref_primary_10_1371_journal_ppat_1012926 crossref_primary_10_1016_j_jphotobiol_2016_08_030 crossref_primary_10_1016_j_aca_2023_341966 crossref_primary_10_1016_j_talanta_2018_01_074 crossref_primary_10_1111_1365_2435_12279 crossref_primary_10_3390_molecules25153502 crossref_primary_10_1002_mas_21886 crossref_primary_10_1007_s11306_014_0647_9 crossref_primary_10_1186_s12933_023_02102_0 crossref_primary_10_1016_j_chemosphere_2018_10_196 crossref_primary_10_1016_j_foodcont_2023_109943 crossref_primary_10_3389_fmolb_2022_1008908 crossref_primary_10_3390_foods13223554 crossref_primary_10_3390_metabo10040131 crossref_primary_10_1038_s41598_020_79733_w crossref_primary_10_1007_s10858_019_00279_9 crossref_primary_10_1186_1471_2105_10_340 crossref_primary_10_1371_journal_pone_0193563 crossref_primary_10_1002_pmic_201400255 crossref_primary_10_1038_s42255_021_00514_4 crossref_primary_10_1186_1471_2105_14_123 crossref_primary_10_1016_j_cma_2022_115718 crossref_primary_10_1002_mrc_2461 crossref_primary_10_1007_s00216_023_04748_x crossref_primary_10_1007_s11306_023_02051_5 crossref_primary_10_1007_s11306_025_02241_3 crossref_primary_10_2217_bmm_2017_0133 crossref_primary_10_1016_j_foodchem_2022_132925 crossref_primary_10_1016_j_gene_2012_11_028 crossref_primary_10_1016_j_aqrep_2020_100524 crossref_primary_10_1016_j_foodchem_2024_142604 crossref_primary_10_1080_09712119_2019_1623802 crossref_primary_10_3233_JAD_230053 crossref_primary_10_1080_10826068_2018_1466151 crossref_primary_10_3390_plants9060760 crossref_primary_10_1016_j_envpol_2023_122061 crossref_primary_10_1177_07487304221132088 crossref_primary_10_1016_j_foodchem_2012_07_097 crossref_primary_10_3390_metabo14020105 crossref_primary_10_1016_j_aca_2013_01_015 crossref_primary_10_1155_2016_9210408 crossref_primary_10_3390_metabo10040143 crossref_primary_10_1007_s11306_016_1107_5 crossref_primary_10_1016_j_cca_2021_12_019 crossref_primary_10_1371_journal_pntd_0000807 crossref_primary_10_3390_metabo13020235 crossref_primary_10_1116_1_4927528 crossref_primary_10_3390_metabo14030145 crossref_primary_10_1002_wics_70045 crossref_primary_10_1016_j_neuropsychologia_2013_10_011 crossref_primary_10_1002_ece3_3715 crossref_primary_10_1002_mrc_4658 crossref_primary_10_2174_0929867324666170914102236 crossref_primary_10_1007_s11365_025_01093_6 crossref_primary_10_1186_s13054_023_04573_9 crossref_primary_10_1093_bib_bbz137 crossref_primary_10_1080_00032719_2020_1793993 crossref_primary_10_3390_metabo10050180 crossref_primary_10_1007_s11306_017_1274_z crossref_primary_10_1016_j_isprsjprs_2018_05_012 crossref_primary_10_1016_j_aca_2013_10_025 crossref_primary_10_1098_rsos_250608 crossref_primary_10_3390_metabo10030112 crossref_primary_10_1002_nbm_4038 crossref_primary_10_1007_s00726_022_03204_x crossref_primary_10_3390_separations3020013 crossref_primary_10_1016_j_foodchem_2022_132701 crossref_primary_10_1111_nmo_13884 crossref_primary_10_1016_j_plaphy_2019_09_030 crossref_primary_10_3390_metabo10040151 crossref_primary_10_1016_j_aca_2017_09_019 crossref_primary_10_1016_j_biotechadv_2020_107616 crossref_primary_10_1002_elps_201700318 crossref_primary_10_1002_jssc_202000094 crossref_primary_10_1186_s12916_020_01653_3 crossref_primary_10_1371_journal_pone_0232324 crossref_primary_10_3390_molecules25040806 crossref_primary_10_1007_s00216_009_2623_1 crossref_primary_10_1016_j_scitotenv_2018_10_264 crossref_primary_10_1002_btpr_349 crossref_primary_10_1016_j_chroma_2021_461896 crossref_primary_10_1016_j_jpba_2013_09_021 crossref_primary_10_3390_metabo10050199 crossref_primary_10_3390_metabo12010005 crossref_primary_10_1038_s41396_018_0186_x crossref_primary_10_1039_C5AN00182J crossref_primary_10_1111_jvp_12961 crossref_primary_10_1371_journal_pntd_0008767 crossref_primary_10_1016_j_jbc_2024_107569 crossref_primary_10_2188_jea_JE20240099 crossref_primary_10_1016_j_atech_2025_100905 crossref_primary_10_1016_j_chemolab_2016_09_002 crossref_primary_10_1534_g3_115_020073 crossref_primary_10_1002_pca_3002 crossref_primary_10_3389_fphar_2019_00657 crossref_primary_10_1016_j_chemosphere_2024_143636 crossref_primary_10_1016_j_nutres_2022_05_007 crossref_primary_10_1038_s41467_018_05282_6 crossref_primary_10_1177_11786388241280859 crossref_primary_10_20517_jmi_2025_26 crossref_primary_10_1016_j_chroma_2021_462735 crossref_primary_10_1038_s41598_018_22338_1 crossref_primary_10_1096_fj_201900318RR crossref_primary_10_1161_HYPERTENSIONAHA_110_157297 crossref_primary_10_3390_metabo4020184 crossref_primary_10_3389_fmolb_2022_917911 crossref_primary_10_1002_ejlt_202400061 crossref_primary_10_1007_s13562_021_00722_9 crossref_primary_10_1007_s00500_014_1538_8 crossref_primary_10_1007_s11205_018_1902_7 crossref_primary_10_7554_eLife_68590 crossref_primary_10_1016_j_foodres_2022_111078 crossref_primary_10_1038_s41598_020_69051_6 crossref_primary_10_3390_ani10010068 crossref_primary_10_3390_ijms21217869 crossref_primary_10_1016_j_aca_2023_341578 crossref_primary_10_1007_s10886_018_0932_6 crossref_primary_10_1016_j_cmet_2024_11_007 crossref_primary_10_3390_agronomy11050824 crossref_primary_10_3389_fphar_2017_00122 crossref_primary_10_1038_ismej_2007_93 crossref_primary_10_7554_eLife_62800 crossref_primary_10_1016_j_phytol_2020_09_003 crossref_primary_10_1007_s00049_016_0227_8 crossref_primary_10_1016_j_foodres_2013_07_003 crossref_primary_10_1016_j_scitotenv_2020_140974 crossref_primary_10_1111_j_1750_3841_2012_02648_x crossref_primary_10_1007_s10811_021_02645_3 crossref_primary_10_1007_s11306_016_1099_1 crossref_primary_10_1007_s11306_016_1151_1 crossref_primary_10_1038_s41598_025_13475_5 crossref_primary_10_1242_jeb_189480 crossref_primary_10_1016_j_jtemb_2019_04_005 crossref_primary_10_1016_j_foodres_2020_109698 crossref_primary_10_1016_j_oregeorev_2021_104442 crossref_primary_10_1016_j_trac_2016_09_005 crossref_primary_10_1038_s41598_019_40182_9 crossref_primary_10_3390_life13122343 crossref_primary_10_1007_s12374_014_0110_5 crossref_primary_10_1093_bioinformatics_btp540 crossref_primary_10_1016_j_foodres_2012_12_025 crossref_primary_10_1002_jsfa_11729 crossref_primary_10_1016_S2095_3119_18_62055_6 crossref_primary_10_1134_S1061934815090117 crossref_primary_10_1016_j_carbon_2021_09_052 crossref_primary_10_3390_biom12050687 crossref_primary_10_3390_metabo12080708 crossref_primary_10_1016_j_chroma_2009_12_031 crossref_primary_10_1016_j_etap_2017_12_008 crossref_primary_10_1371_journal_pone_0171046 crossref_primary_10_1016_j_aca_2025_344175 crossref_primary_10_1007_s11306_017_1252_5 crossref_primary_10_1016_j_ijmm_2016_03_006 crossref_primary_10_1016_j_ibneur_2021_10_003 crossref_primary_10_3390_lipidology2010005 crossref_primary_10_1007_s10955_011_0215_x crossref_primary_10_1038_s41598_017_17921_x crossref_primary_10_1002_elps_200800031 crossref_primary_10_3390_jpm11090898 crossref_primary_10_1016_j_phytochem_2024_114095 crossref_primary_10_1016_j_scitotenv_2024_175306 crossref_primary_10_1016_j_aca_2015_06_003 crossref_primary_10_1016_j_euo_2019_07_005 crossref_primary_10_1017_S0007114507685365 crossref_primary_10_1007_s10695_013_9809_3 crossref_primary_10_1007_s11306_010_0221_z crossref_primary_10_1016_j_bbagrm_2024_195062 crossref_primary_10_1016_j_jobe_2025_111928 crossref_primary_10_1002_jbmr_2018 crossref_primary_10_3390_horticulturae8030224 crossref_primary_10_1089_omi_2009_0023 crossref_primary_10_3390_molecules26040931 crossref_primary_10_1038_s41598_020_64759_x crossref_primary_10_1080_20002297_2022_2123624 crossref_primary_10_1080_00032719_2021_2019758 crossref_primary_10_1016_j_scienta_2020_109814 crossref_primary_10_3168_jds_2023_23239 crossref_primary_10_1007_s11306_021_01793_4 crossref_primary_10_1128_AEM_01614_19 crossref_primary_10_1016_j_plipres_2018_06_003 crossref_primary_10_1007_s11306_013_0611_0 crossref_primary_10_1016_j_cdc_2021_100719 crossref_primary_10_1007_s11306_018_1431_z crossref_primary_10_1002_rcm_9217 crossref_primary_10_1016_j_foodres_2017_07_071 crossref_primary_10_1007_s00343_019_7268_0 crossref_primary_10_1007_s11306_023_02071_1 crossref_primary_10_1016_j_bbagrm_2024_195058 crossref_primary_10_1186_s41610_019_0103_x crossref_primary_10_1371_journal_pone_0037840 crossref_primary_10_3390_metabo11020110 crossref_primary_10_1186_1471_2105_11_571 crossref_primary_10_3390_metabo7030034 crossref_primary_10_3390_cells13181536 crossref_primary_10_1007_s11042_025_21046_z crossref_primary_10_1016_j_clnu_2025_07_027 crossref_primary_10_3382_ps_pey266 crossref_primary_10_3389_fonc_2023_1127446 crossref_primary_10_1016_j_foodchem_2018_12_025 crossref_primary_10_1515_jlm_2010_041 crossref_primary_10_1016_j_metabol_2023_155742 crossref_primary_10_1093_ibd_izz098 crossref_primary_10_1007_s10928_014_9369_x crossref_primary_10_3390_metabo15090603 crossref_primary_10_1016_j_febslet_2008_06_040 crossref_primary_10_1002_jwmg_22452 crossref_primary_10_1586_erm_10_110 crossref_primary_10_1002_ece3_2208 crossref_primary_10_1007_s11306_014_0758_3 crossref_primary_10_3389_fnut_2022_985797 crossref_primary_10_1007_s12161_015_0325_1 crossref_primary_10_1016_j_chroma_2007_10_063 crossref_primary_10_1371_journal_pcbi_1012407 crossref_primary_10_1007_s11306_008_0105_7 crossref_primary_10_1016_j_ejps_2018_06_023 crossref_primary_10_1016_j_jnutbio_2019_03_004 crossref_primary_10_1016_j_cmet_2024_02_009 crossref_primary_10_1016_j_jnutbio_2018_09_029 crossref_primary_10_1016_j_geoderma_2018_08_021 crossref_primary_10_1016_j_neurobiolaging_2025_03_004 crossref_primary_10_1016_j_chemosphere_2020_128961 crossref_primary_10_1016_j_chroma_2017_04_021 crossref_primary_10_4049_jimmunol_0804125 crossref_primary_10_1186_1472_6750_14_22 crossref_primary_10_1016_j_ejps_2019_105171 crossref_primary_10_1016_j_bse_2021_104380 crossref_primary_10_1007_s00216_013_7199_0 crossref_primary_10_1039_D0RE00321B crossref_primary_10_1373_clinchem_2011_167601 crossref_primary_10_1016_j_foodchem_2024_140816 crossref_primary_10_5194_bg_14_3371_2017 crossref_primary_10_1088_1752_7155_8_2_027105 crossref_primary_10_3168_jds_2019_17713 crossref_primary_10_1016_j_biopha_2024_116612 crossref_primary_10_1016_j_buildenv_2025_112520 crossref_primary_10_1016_j_soilbio_2021_108305 crossref_primary_10_1002_anie_200905579 crossref_primary_10_3389_fimmu_2019_02367 crossref_primary_10_3389_fmars_2015_00081 crossref_primary_10_1002_jssc_201500261 crossref_primary_10_1007_s11739_024_03626_3 crossref_primary_10_3390_nu13020394 crossref_primary_10_1016_j_aca_2019_12_062 crossref_primary_10_1186_1471_2164_9_250 crossref_primary_10_3390_metabo10070297 crossref_primary_10_1002_cem_3588 crossref_primary_10_1016_j_ins_2024_121580 crossref_primary_10_1093_ibd_izy349 crossref_primary_10_1038_s41598_022_18655_1 crossref_primary_10_1007_s00394_021_02692_z crossref_primary_10_3389_fmicb_2021_793136 crossref_primary_10_3390_metabo13030433 crossref_primary_10_1016_j_envexpbot_2025_106149 crossref_primary_10_1007_s10545_017_0080_0 crossref_primary_10_1016_j_talanta_2013_03_064 crossref_primary_10_1016_j_tifs_2017_01_001 crossref_primary_10_1093_toxsci_kfp227 crossref_primary_10_1186_s40168_020_0785_4 crossref_primary_10_1371_journal_pone_0000218 crossref_primary_10_1007_s12145_023_01039_y crossref_primary_10_1007_s10545_018_0139_6 crossref_primary_10_1016_j_marpolbul_2021_112295 crossref_primary_10_1016_j_combustflame_2011_12_024 crossref_primary_10_1016_j_foodcont_2024_110397 crossref_primary_10_3390_molecules25173972 crossref_primary_10_1039_C7MT00244K crossref_primary_10_3390_toxins12030192 crossref_primary_10_1016_j_phytochem_2015_07_014 crossref_primary_10_3390_microorganisms9040790 crossref_primary_10_1016_j_chroma_2019_07_007 crossref_primary_10_1016_j_foodqual_2010_12_001 crossref_primary_10_1016_j_chemolab_2015_05_005 crossref_primary_10_1063_5_0164374 crossref_primary_10_1186_s40246_018_0134_x crossref_primary_10_3390_molecules28062620 crossref_primary_10_3390_gels10090554 crossref_primary_10_1007_s10439_022_02904_5 crossref_primary_10_1007_s11306_020_1640_0 crossref_primary_10_1016_j_jbiosc_2013_01_004 crossref_primary_10_1016_j_bbalip_2024_159565 crossref_primary_10_3390_vetsci2040349 crossref_primary_10_1145_3653296 crossref_primary_10_1007_s11104_017_3355_1 crossref_primary_10_1007_s10784_025_09665_1 crossref_primary_10_1007_s11306_015_0782_y crossref_primary_10_1016_j_ufug_2018_02_012 crossref_primary_10_1038_s41596_021_00579_1 crossref_primary_10_1186_s13023_023_02673_x crossref_primary_10_1159_000350941 crossref_primary_10_1007_s11306_015_0925_1 crossref_primary_10_1186_s12931_019_1028_8 crossref_primary_10_3390_molecules27041390 crossref_primary_10_1016_j_soilbio_2020_108021 crossref_primary_10_1038_s41438_021_00502_5 crossref_primary_10_1002_cem_1387 crossref_primary_10_3389_fonc_2021_667843 crossref_primary_10_1080_14680629_2017_1352016 crossref_primary_10_3390_ijerph18084057 crossref_primary_10_1007_s10811_015_0733_z crossref_primary_10_1016_j_heliyon_2022_e11895 crossref_primary_10_1007_s11306_012_0415_7 crossref_primary_10_1088_1752_7163_aae557 crossref_primary_10_3390_molecules28114332 crossref_primary_10_1002_biot_201700745 crossref_primary_10_1038_nprot_2008_64 crossref_primary_10_1007_s11306_018_1408_y crossref_primary_10_3390_metabo14090480 crossref_primary_10_1016_j_plaphy_2023_108033 crossref_primary_10_3390_molecules22030425 crossref_primary_10_1002_mnfr_201600387 crossref_primary_10_1016_j_camwa_2024_01_003 crossref_primary_10_1016_j_talanta_2020_121533 crossref_primary_10_3390_molecules26082233 crossref_primary_10_1371_journal_pone_0085732 crossref_primary_10_1002_oby_21361 crossref_primary_10_1016_j_foodchem_2016_04_134 crossref_primary_10_1093_ajcn_nqab047 crossref_primary_10_1111_nph_17708 crossref_primary_10_1016_j_plipres_2022_101177 crossref_primary_10_1039_D3FO01770B crossref_primary_10_1371_journal_pone_0191909 crossref_primary_10_1039_C2MB25401H crossref_primary_10_1002_mnfr_201600150 crossref_primary_10_1007_s11306_010_0211_1 crossref_primary_10_3390_plants13091170 crossref_primary_10_1007_s11306_007_0081_3 crossref_primary_10_1016_j_envexpbot_2024_106057 crossref_primary_10_1016_j_talanta_2018_11_039 crossref_primary_10_1016_j_jaap_2021_105164 crossref_primary_10_1016_j_phytochem_2013_04_016 crossref_primary_10_1007_s42452_020_04061_7 crossref_primary_10_1371_journal_pone_0286312 crossref_primary_10_1016_j_toxicon_2014_12_003 crossref_primary_10_3390_diagnostics14232696 crossref_primary_10_1038_s41598_021_90931_y crossref_primary_10_1088_1752_7163_ab7b8d crossref_primary_10_1016_j_imu_2024_101507 crossref_primary_10_1016_j_ijfoodmicro_2009_06_006 crossref_primary_10_1016_j_scitotenv_2022_161054 crossref_primary_10_1186_1471_2229_11_104 crossref_primary_10_1007_s11306_010_0246_3 crossref_primary_10_1016_j_foodchem_2016_12_089 crossref_primary_10_1016_j_fitote_2022_105262 crossref_primary_10_1016_j_cpb_2022_100260 crossref_primary_10_1109_ACCESS_2024_3362647 crossref_primary_10_3389_fcimb_2024_1346813 crossref_primary_10_1038_s41598_025_90019_x crossref_primary_10_1002_elps_200800554 crossref_primary_10_1186_1471_2164_13_701 crossref_primary_10_1002_oby_22670 crossref_primary_10_1016_j_ijpara_2009_11_003 crossref_primary_10_1016_j_ejps_2018_05_008 crossref_primary_10_1016_j_plipres_2014_06_001 crossref_primary_10_1016_j_hpj_2020_12_003 crossref_primary_10_1038_s41598_019_50260_7 crossref_primary_10_3389_fpls_2023_1187803 crossref_primary_10_1016_j_chemphyslip_2015_08_011 crossref_primary_10_1007_s12665_019_8401_2 crossref_primary_10_1038_s41598_018_37494_7 crossref_primary_10_3390_antibiotics9020064 crossref_primary_10_3390_molecules24030419 crossref_primary_10_1038_s42003_025_07795_5 crossref_primary_10_1016_j_jpba_2024_116376 crossref_primary_10_1016_j_jprot_2015_01_019 crossref_primary_10_1109_TCBB_2021_3115876 crossref_primary_10_3390_ijms23179781 crossref_primary_10_1002_elps_201400196 crossref_primary_10_1088_1752_7163_abf20a crossref_primary_10_3390_app12010300 crossref_primary_10_1530_JOE_14_0600 crossref_primary_10_3389_fphar_2021_629561 crossref_primary_10_3390_md16100390 crossref_primary_10_1016_j_aquaculture_2019_01_058 crossref_primary_10_1152_jn_00375_2020 crossref_primary_10_1016_j_fm_2016_11_001 crossref_primary_10_1016_j_saa_2020_119259 crossref_primary_10_1097_CCE_0000000000000478 crossref_primary_10_3389_fpls_2017_00551 crossref_primary_10_3390_pathophysiology28020019 crossref_primary_10_1002_cem_3127 crossref_primary_10_1007_s13668_019_00279_z crossref_primary_10_1007_s11306_015_0773_z crossref_primary_10_1186_s12859_018_2134_1 crossref_primary_10_1007_s00204_015_1519_4 crossref_primary_10_1111_rssc_12060 crossref_primary_10_1016_j_jaci_2018_10_058 crossref_primary_10_1186_1471_2105_9_59 crossref_primary_10_3390_metabo12020192 crossref_primary_10_1016_j_compchemeng_2014_12_016 crossref_primary_10_1016_j_nbt_2025_01_005 crossref_primary_10_1007_s00217_022_04021_y crossref_primary_10_1016_j_aca_2022_339614 crossref_primary_10_1016_j_foodres_2020_109085 crossref_primary_10_3168_jds_2019_17566 crossref_primary_10_3390_metabo11110788 crossref_primary_10_1007_s13361_015_1128_8 crossref_primary_10_3390_proteomes6020020 crossref_primary_10_1007_s11306_014_0650_1 crossref_primary_10_1016_j_foodchem_2020_128778 crossref_primary_10_1016_j_chemolab_2009_05_004 crossref_primary_10_3390_metabo11040220 crossref_primary_10_1016_j_jff_2018_08_003 crossref_primary_10_1007_s10142_022_00904_1 crossref_primary_10_1002_jbio_201700219 crossref_primary_10_1016_j_foodcont_2023_110018 crossref_primary_10_1093_jn_nxaa021 crossref_primary_10_1016_j_jinf_2020_06_078 crossref_primary_10_1007_s10815_019_01670_z crossref_primary_10_1016_j_sab_2020_106016 crossref_primary_10_1016_j_aquaculture_2020_735627 crossref_primary_10_1186_1471_2105_9_199 crossref_primary_10_3389_fmicb_2021_643792 crossref_primary_10_1016_j_jff_2016_04_003 crossref_primary_10_1038_s42255_020_0228_3 crossref_primary_10_1016_j_jpedsurg_2015_04_014 crossref_primary_10_1186_s12911_024_02578_0 crossref_primary_10_3390_metabo11070448 crossref_primary_10_1016_j_algal_2024_103878 crossref_primary_10_1016_j_chom_2021_09_007 crossref_primary_10_1007_s10666_020_09700_2 crossref_primary_10_1007_s11306_016_1048_z crossref_primary_10_1186_1471_2164_13_380 crossref_primary_10_1016_j_joca_2019_07_017 crossref_primary_10_1111_pbi_13282 crossref_primary_10_1515_biol_2022_0556 crossref_primary_10_1002_mnfr_201900140 crossref_primary_10_1002_mnfr_202200111 crossref_primary_10_1016_j_foodchem_2020_127453 crossref_primary_10_1093_jas_skaa180 crossref_primary_10_3390_ijms241813724 crossref_primary_10_1093_pcp_pcab132 crossref_primary_10_1016_j_jpba_2015_01_025 crossref_primary_10_3389_fmars_2016_00001 crossref_primary_10_1016_j_phytochem_2011_04_006 crossref_primary_10_1016_j_bbi_2025_03_001 crossref_primary_10_1016_j_biochi_2015_01_005 crossref_primary_10_1016_j_semnephrol_2017_09_007 crossref_primary_10_1038_s41380_022_01724_2 crossref_primary_10_5511_plantbiotechnology_26_445 crossref_primary_10_1007_s00216_009_3338_z crossref_primary_10_1007_s10329_022_00995_1 crossref_primary_10_1038_s41598_018_36688_3 crossref_primary_10_1016_j_foodchem_2022_133476 crossref_primary_10_1002_rcm_6420 crossref_primary_10_1007_s11306_011_0305_4 crossref_primary_10_1289_EHP12125 crossref_primary_10_1016_S0208_5216_13_70053_6 crossref_primary_10_1186_1471_2164_13_350 crossref_primary_10_1007_s10529_014_1508_3 crossref_primary_10_1111_pce_12071 crossref_primary_10_1016_j_clinms_2019_05_002 crossref_primary_10_1126_scisignal_aad1932 crossref_primary_10_1002_mnfr_202200145 crossref_primary_10_4155_bio_16_31 crossref_primary_10_1038_s41598_020_72781_2 crossref_primary_10_1016_j_ijfoodmicro_2018_02_014 crossref_primary_10_1016_j_aca_2017_10_019 crossref_primary_10_1016_j_chemolab_2023_104841 crossref_primary_10_3390_ijms23020781 crossref_primary_10_1016_j_aca_2016_03_046 crossref_primary_10_1016_j_scitotenv_2015_03_136 crossref_primary_10_1039_c0an00834f crossref_primary_10_1007_s40618_020_01434_y crossref_primary_10_1007_s41348_022_00682_9 crossref_primary_10_1016_j_aca_2016_02_001 crossref_primary_10_1128_mSphere_00097_18 crossref_primary_10_3389_fonc_2018_00134 crossref_primary_10_1038_s41598_020_74909_w crossref_primary_10_1038_s41398_022_01856_7 crossref_primary_10_3389_fmolb_2023_1295216 crossref_primary_10_3390_metabo11070460 crossref_primary_10_1126_science_aay5947 crossref_primary_10_3389_fpls_2024_1164859 crossref_primary_10_1016_j_trac_2020_116157 crossref_primary_10_1039_c3ay41970c crossref_primary_10_3402_jev_v5_31242 crossref_primary_10_3109_09553002_2011_556177 crossref_primary_10_1016_j_fpsl_2021_100805 crossref_primary_10_1021_tx400451q crossref_primary_10_3390_biomedicines10112891 crossref_primary_10_1016_j_bcp_2016_03_020 crossref_primary_10_1016_j_hal_2021_102060 crossref_primary_10_1111_jpi_70068 crossref_primary_10_1016_j_jsbmb_2013_07_013 crossref_primary_10_1088_1752_7163_ad9b46 crossref_primary_10_1016_j_jtemb_2017_04_004 crossref_primary_10_3390_horticulturae10070663 crossref_primary_10_1007_s00216_013_7284_4 crossref_primary_10_1007_s11306_018_1370_8 crossref_primary_10_1016_j_foodchem_2023_136817 crossref_primary_10_1016_j_foodres_2022_111779 crossref_primary_10_3390_metabo12050432 crossref_primary_10_1007_s10654_023_00988_4 crossref_primary_10_1016_j_jnutbio_2019_108285 crossref_primary_10_1007_s11306_023_02034_6 crossref_primary_10_1038_s41598_021_86653_w crossref_primary_10_1038_s41598_021_03553_9 crossref_primary_10_3168_jds_2019_17114 crossref_primary_10_1016_j_burns_2010_03_015 crossref_primary_10_1093_toxsci_kfab096 crossref_primary_10_1007_s10646_012_0885_4 crossref_primary_10_1186_s12870_024_05342_8 crossref_primary_10_1371_journal_pone_0271460 crossref_primary_10_1016_j_foodchem_2018_01_038 crossref_primary_10_3390_bios15010020 crossref_primary_10_1007_s11306_016_1026_5 crossref_primary_10_1007_s13313_024_00981_9 crossref_primary_10_1016_j_ijbiomac_2022_09_012 crossref_primary_10_1038_s41598_017_16051_8 crossref_primary_10_1002_dta_3250 crossref_primary_10_1186_s12864_023_09647_0 crossref_primary_10_3390_metabo10060243 crossref_primary_10_1016_j_metabol_2019_154005 crossref_primary_10_1186_s12866_023_03141_z crossref_primary_10_1016_j_aei_2022_101805 crossref_primary_10_1016_j_jchromb_2008_07_004 crossref_primary_10_3390_ijms19051385 crossref_primary_10_1016_j_microc_2020_104830 crossref_primary_10_1016_j_talanta_2023_125598 crossref_primary_10_3233_JAD_200176 crossref_primary_10_1007_s11306_020_01747_2 crossref_primary_10_1016_j_aca_2024_343491 crossref_primary_10_1038_nrneph_2011_152 crossref_primary_10_3390_metabo12100963 crossref_primary_10_1007_s00216_014_8227_4 crossref_primary_10_1007_s00253_007_1029_2 crossref_primary_10_1016_j_biochi_2018_11_007 crossref_primary_10_1016_j_jpba_2017_04_047 crossref_primary_10_1371_journal_pone_0284315 crossref_primary_10_1053_j_gastro_2019_11_012 crossref_primary_10_1016_j_foodchem_2018_01_029 crossref_primary_10_1016_j_microc_2025_113793 crossref_primary_10_1111_1749_4877_12645 crossref_primary_10_1039_B906712B crossref_primary_10_1186_s12870_023_04074_5 crossref_primary_10_3390_metabo10060232 crossref_primary_10_1208_s12249_009_9303_5 crossref_primary_10_1002_cem_996 crossref_primary_10_1002_phar_2119 crossref_primary_10_1038_s41598_025_18172_x crossref_primary_10_1007_s12015_021_10239_2 crossref_primary_10_3389_fmicb_2021_723479 crossref_primary_10_1007_s11306_020_01736_5 crossref_primary_10_1016_j_jaci_2022_07_027 crossref_primary_10_1016_j_cca_2013_08_020 crossref_primary_10_1016_j_trac_2021_116251 crossref_primary_10_3390_metabo13060682 crossref_primary_10_1007_s11306_016_0987_8 crossref_primary_10_1134_S1990750821010042 crossref_primary_10_3390_nu10020164 crossref_primary_10_1007_s11306_021_01831_1 crossref_primary_10_1186_s12284_015_0043_8 crossref_primary_10_3390_metabo10070271 |
| Cites_doi | 10.1016/j.tibtech.2004.11.003 10.1016/0003-2670(92)85422-3 10.1093/nar/28.1.27 10.1007/978-1-4899-4541-9_11 10.1007/s11306-005-1109-1 10.1099/mic.0.28278-0 10.1016/S1044-0305(99)00047-1 10.1016/0167-7012(95)00104-2 10.1021/ac051683+ 10.1021/ac051080y 10.1128/AEM.56.5.1347-1351.1990 10.1016/S0003-2670(03)00094-1 10.1002/0471725331 10.1099/00221287-136-3-395 10.1016/j.mimet.2005.04.035 10.1111/j.2517-6161.1964.tb00553.x 10.1093/bioinformatics/bth268 10.1093/nar/gkh100 10.1002/cem.773 10.1158/0008-5472.CAN-04-3506 10.1073/pnas.95.25.14863 10.1023/A:1013713905833 10.1021/ac00073a010 10.1007/s10295-005-0231-4 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 van den Berg et al; licensee BioMed Central Ltd. 2006 van den Berg et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Copyright © 2006 van den Berg et al; licensee BioMed Central Ltd. 2006 van den Berg et al; licensee BioMed Central Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM DOA |
| DOI | 10.1186/1471-2164-7-142 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 142 |
| ExternalDocumentID | oai_doaj_org_article_c498c53e2e2741cd8d883176ddf21e78 PMC1534033 16762068 10_1186_1471_2164_7_142 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO IGS IHR INH IPNFZ ISR ITC KQ8 M48 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c554t-b9d7dd0a734d97b92f785dec4c076167ab0696d683fe4ed7873070930e838ea13 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1921 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239633700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:39:38 EDT 2025 Thu Aug 21 14:07:04 EDT 2025 Thu Sep 04 18:49:47 EDT 2025 Fri Sep 05 08:35:38 EDT 2025 Fri Dec 05 04:53:19 EST 2025 Tue Nov 18 22:11:24 EST 2025 Sat Nov 29 05:49:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-b9d7dd0a734d97b92f785dec4c076167ab0696d683fe4ed7873070930e838ea13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c498c53e2e2741cd8d883176ddf21e78 |
| PMID | 16762068 |
| PQID | 19335596 |
| PQPubID | 23462 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c498c53e2e2741cd8d883176ddf21e78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1534033 proquest_miscellaneous_68722312 proquest_miscellaneous_19335596 pubmed_primary_16762068 crossref_primary_10_1186_1471_2164_7_142 crossref_citationtrail_10_1186_1471_2164_7_142 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-06-08 |
| PublicationDateYYYYMMDD | 2006-06-08 |
| PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMC genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2006 |
| Publisher | BioMed Central BMC |
| Publisher_xml | – name: BioMed Central – name: BMC |
| References | GEP Box (525_CR24) 1964; 26 IT Jolliffe (525_CR25) 2002 B Efron (525_CR28) 1993 RR Sokal (525_CR13) 1995 M Koek (525_CR18) 2006; 78 MB Eisen (525_CR29) 1998; 95 GJG Ruijter (525_CR17) 1996; 25 JJ Jansen (525_CR23) 2004; 20 O Fiehn (525_CR4) 2002; 48 HR Keller (525_CR6) 1992; 263 S Hartmans (525_CR14) 1990; 56 SE Stein (525_CR20) 1999; 10 M Kanehisa (525_CR27) 2000; 28 Mathworks (525_CR21) 2005 Eigenvector (525_CR22) 2003 JE Jackson (525_CR9) 1991 MJ van der Werf (525_CR15) 2006; 152 YI Shurubor (525_CR5) 2005; 1 B Pieterse (525_CR16) 2006; 64 EM Reis (525_CR1) 2005; 65 OM Kvalheim (525_CR7) 1994; 66 L Eriksson (525_CR10) 1999 CJ Krieger (525_CR26) 2004; 32 AK Smilde (525_CR11) 2005; 77 MJ van der Werf (525_CR2) 2005; 23 MJ van der Werf (525_CR3) 2005; 32 HC Keun (525_CR12) 2003; 490 C Verduyn (525_CR19) 1990; 136 R Bro (525_CR8) 2003; 17 14681452 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D438-42 16223263 - Anal Chem. 2005 Oct 15;77(20):6729-36 2339888 - Appl Environ Microbiol. 1990 May;56(5):1347-51 16385135 - Microbiology. 2006 Jan;152(Pt 1):257-72 16478122 - Anal Chem. 2006 Feb 15;78(4):1272-81 11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71 15895265 - J Ind Microbiol Biotechnol. 2005 Jun;32(6):234-52 15753364 - Cancer Res. 2005 Mar 1;65(5):1693-9 15087313 - Bioinformatics. 2004 Oct 12;20(15):2438-46 15982764 - J Microbiol Methods. 2006 Feb;64(2):207-16 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 1975265 - J Gen Microbiol. 1990 Mar;136(3):395-403 15629852 - Trends Biotechnol. 2005 Jan;23(1):11-6 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 |
| References_xml | – volume: 23 start-page: 11 year: 2005 ident: 525_CR2 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2004.11.003 – volume-title: Matlab 7 year: 2005 ident: 525_CR21 – volume: 263 start-page: 29 year: 1992 ident: 525_CR6 publication-title: Anal Chim Acta doi: 10.1016/0003-2670(92)85422-3 – volume: 28 start-page: 27 year: 2000 ident: 525_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – start-page: 141 volume-title: An Introduction to the Bootstrap year: 1993 ident: 525_CR28 doi: 10.1007/978-1-4899-4541-9_11 – start-page: 392 volume-title: Biometry year: 1995 ident: 525_CR13 – volume: 1 start-page: 75 year: 2005 ident: 525_CR5 publication-title: Metabolomics doi: 10.1007/s11306-005-1109-1 – volume: 152 start-page: 257 year: 2006 ident: 525_CR15 publication-title: Microbiology doi: 10.1099/mic.0.28278-0 – volume: 10 start-page: 770 year: 1999 ident: 525_CR20 publication-title: J Am Soc Mass Spectrom doi: 10.1016/S1044-0305(99)00047-1 – volume: 25 start-page: 295 year: 1996 ident: 525_CR17 publication-title: J Microbiol Methods doi: 10.1016/0167-7012(95)00104-2 – volume: 78 start-page: 1272 year: 2006 ident: 525_CR18 publication-title: Anal Chem doi: 10.1021/ac051683+ – volume: 77 start-page: 6729 year: 2005 ident: 525_CR11 publication-title: Anal Chem doi: 10.1021/ac051080y – volume: 56 start-page: 1347 year: 1990 ident: 525_CR14 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.56.5.1347-1351.1990 – start-page: 213 volume-title: Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS) year: 1999 ident: 525_CR10 – volume: 490 start-page: 265 year: 2003 ident: 525_CR12 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(03)00094-1 – volume-title: A user's guide to principal components year: 1991 ident: 525_CR9 doi: 10.1002/0471725331 – volume: 136 start-page: 395 year: 1990 ident: 525_CR19 publication-title: J Gen Microbiol doi: 10.1099/00221287-136-3-395 – volume: 64 start-page: 207 year: 2006 ident: 525_CR16 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2005.04.035 – volume-title: PLS Toolbox 3.0 year: 2003 ident: 525_CR22 – volume: 26 start-page: 211 year: 1964 ident: 525_CR24 publication-title: J R Statist Soc B doi: 10.1111/j.2517-6161.1964.tb00553.x – volume: 20 start-page: 2438 year: 2004 ident: 525_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth268 – volume: 32 start-page: D438 year: 2004 ident: 525_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh100 – volume: 17 start-page: 16 year: 2003 ident: 525_CR8 publication-title: J Chemom doi: 10.1002/cem.773 – volume: 65 start-page: 1693 year: 2005 ident: 525_CR1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-3506 – volume-title: Principal Component Analysis year: 2002 ident: 525_CR25 – volume: 95 start-page: 14863 year: 1998 ident: 525_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.25.14863 – volume: 48 start-page: 151 year: 2002 ident: 525_CR4 publication-title: Plant Mol Biol doi: 10.1023/A:1013713905833 – volume: 66 start-page: 43 year: 1994 ident: 525_CR7 publication-title: Anal Chem doi: 10.1021/ac00073a010 – volume: 32 start-page: 234 year: 2005 ident: 525_CR3 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-005-0231-4 – reference: 16223263 - Anal Chem. 2005 Oct 15;77(20):6729-36 – reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 16385135 - Microbiology. 2006 Jan;152(Pt 1):257-72 – reference: 15982764 - J Microbiol Methods. 2006 Feb;64(2):207-16 – reference: 16478122 - Anal Chem. 2006 Feb 15;78(4):1272-81 – reference: 15753364 - Cancer Res. 2005 Mar 1;65(5):1693-9 – reference: 15895265 - J Ind Microbiol Biotechnol. 2005 Jun;32(6):234-52 – reference: 11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71 – reference: 15087313 - Bioinformatics. 2004 Oct 12;20(15):2438-46 – reference: 2339888 - Appl Environ Microbiol. 1990 May;56(5):1347-51 – reference: 15629852 - Trends Biotechnol. 2005 Jan;23(1):11-6 – reference: 14681452 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D438-42 – reference: 1975265 - J Gen Microbiol. 1990 Mar;136(3):395-403 |
| SSID | ssj0017825 |
| Score | 2.470079 |
| Snippet | Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper... Abstract Background Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 142 |
| SubjectTerms | Automatic Data Processing - methods Cluster Analysis Databases, Genetic Fermentation - genetics Metabolism - genetics Models, Theoretical Observer Variation Oligonucleotide Array Sequence Analysis - statistics & numerical data Pseudomonas putida - genetics Reproducibility of Results Statistical Distributions |
| Title | Centering, scaling, and transformations: improving the biological information content of metabolomics data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16762068 https://www.proquest.com/docview/19335596 https://www.proquest.com/docview/68722312 https://pubmed.ncbi.nlm.nih.gov/PMC1534033 https://doaj.org/article/c498c53e2e2741cd8d883176ddf21e78 |
| Volume | 7 |
| WOSCitedRecordID | wos000239633700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKVSQuiJZXC2194MABU8d2_ODWolZcWvUA0t4sx-OIRW0WdVMkLvz2jp3ssououCBFUeTYluMZZz7b428IeVMLgLqygaXAG6bQSLDAQ8MyGq4iKJC8KcEmzMWFnUzc5Uqor-wTNtADDx13FJWzsZZJpEy0EsGCtWjzNEArqmTKMV9EPYvJ1Lh_gHavLueKTMUEzghGUp_K6qNlGjOsUmLNHhXa_r9hzT9dJlds0NkT8ngEj_R4aPQ22UjdDnk4hJP8-ZR8y0u1hVrwHZ1j35eH0AHtV9ApatkHOl0sJVDEf3QgYsrSoiOPas5Gsxc7VkhnLb1OPSrLVT7BPKfZqfQZ-XJ2-vnjJzbGUmARAUPPGgcGgAcjFTjTONEaW0OKKuaFDG1Cw7XToK1sk0qAwzj_DJzkyUqbQiWfk81u1qWXhBqTorWtkrJB-MGjawFABJWUkoIbsUveL3rUx5FoPMe7uPJlwmG1zyLwWQTe4DMWeLss8H3g2Lg_60kW0TJbJscuCagyflQZ_y-V2SWHCwF7HEx5hyR0aXY794hmEX85fX8ObQ0Cqgob8mJQiN8t1mhXuMbazZqqrLV1_U03_VoIvdHqKC7l3v_4uFfk0bBKhJd9TTb7m9u0T7bij346vzkgD8zEHpSxgvfzX6d3IBQX7A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centering%2C+scaling%2C+and+transformations%3A+improving+the+biological+information+content+of+metabolomics+data&rft.jtitle=BMC+genomics&rft.au=van+den+Berg%2C+Robert+A&rft.au=Hoefsloot%2C+Huub+C+J&rft.au=Westerhuis%2C+Johan+A&rft.au=Smilde%2C+Age+K&rft.date=2006-06-08&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=7&rft.spage=142&rft_id=info:doi/10.1186%2F1471-2164-7-142&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |