Centering, scaling, and transformations: improving the biological information content of metabolomics data

Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics dat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC genomics Ročník 7; číslo 1; s. 142
Hlavní autoři: van den Berg, Robert A, Hoefsloot, Huub CJ, Westerhuis, Johan A, Smilde, Age K, van der Werf, Mariët J
Médium: Journal Article
Jazyk:angličtina
Vydáno: England BioMed Central 08.06.2006
BMC
Témata:
ISSN:1471-2164, 1471-2164
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.
AbstractList Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability.BACKGROUNDExtracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability.Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis.RESULTSDifferent data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis.Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.CONCLUSIONDifferent pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.
Abstract Background Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Results Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Conclusion Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis). In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.
Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis).In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.
Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper their biological interpretation. For instance, 5000-fold differences in concentration for different metabolites are present in a metabolomics data set, while these differences are not proportional to the biological relevance of these metabolites. However, data analysis methods are not able to make this distinction. Data pretreatment methods can correct for aspects that hinder the biological interpretation of metabolomics data sets by emphasizing the biological information in the data set and thus improving their biological interpretability. Different data pretreatment methods, i.e. centering, autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, were tested on a real-life metabolomics data set. They were found to greatly affect the outcome of the data analysis and thus the rank of the, from a biological point of view, most important metabolites. Furthermore, the stability of the rank, the influence of technical errors on data analysis, and the preference of data analysis methods for selecting highly abundant metabolites were affected by the data pretreatment method used prior to data analysis. Different pretreatment methods emphasize different aspects of the data and each pretreatment method has its own merits and drawbacks. The choice for a pretreatment method depends on the biological question to be answered, the properties of the data set and the data analysis method selected. For the explorative analysis of the validation data set used in this study, autoscaling and range scaling performed better than the other pretreatment methods. That is, range scaling and autoscaling were able to remove the dependence of the rank of the metabolites on the average concentration and the magnitude of the fold changes and showed biologically sensible results after PCA (principal component analysis). In conclusion, selecting a proper data pretreatment method is an essential step in the analysis of metabolomics data and greatly affects the metabolites that are identified to be the most important.
ArticleNumber 142
Author Hoefsloot, Huub CJ
Smilde, Age K
van den Berg, Robert A
Westerhuis, Johan A
van der Werf, Mariët J
AuthorAffiliation 1 TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist, The Netherlands
2 Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
AuthorAffiliation_xml – name: 2 Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
– name: 1 TNO Quality of Life, P.O. Box 360, 3700 AJ Zeist, The Netherlands
Author_xml – sequence: 1
  givenname: Robert A
  surname: van den Berg
  fullname: van den Berg, Robert A
– sequence: 2
  givenname: Huub CJ
  surname: Hoefsloot
  fullname: Hoefsloot, Huub CJ
– sequence: 3
  givenname: Johan A
  surname: Westerhuis
  fullname: Westerhuis, Johan A
– sequence: 4
  givenname: Age K
  surname: Smilde
  fullname: Smilde, Age K
– sequence: 5
  givenname: Mariët J
  surname: van der Werf
  fullname: van der Werf, Mariët J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16762068$$D View this record in MEDLINE/PubMed
BookMark eNqFksuLFDEQxoOsuA89e5OcPNluXp2kPQgy-FhY8KLnkE6qZzN0J2OSXfC_NzOzjruCeMpH1a--VFF1jk5iioDQS0reUqrlJRWKdoxK0amOCvYEnR0jJw_0KTovZUMIVZr1z9AplUoyIvUZ2qwgVsghrt_g4uy8FzZ6XLONZUp5sTWkWN7hsGxzumt5XG8AjyHNaR1aBQ7xiGGXmlusOE14gWrHBi3BFexttc_R08nOBV7cvxfo-6eP31Zfuuuvn69WH6471_eiduPglffEKi78oMaBTUr3HpxwRMnWuB2JHKSXmk8gwCutOFFk4AQ012Apv0BXB1-f7MZsc1hs_mmSDWYfSHltbK7BzWCcGLTrOTBgSlDntdeaUyW9nxgFpZvX-4PX9nZcwLs2W7bzI9PHmRhuzDrdGdpzQThvBq_vDXL6cQulmiUUB_NsI6TbYqRWjHHK_gvSgfO-H2QDXz1s6djL75024PIAuJxKyTD9QYjZXY3Z3YXZ3YVRTe_-7v-qcKHuF9pmCvM_634BsITGyg
CitedBy_id crossref_primary_10_1007_s12263_012_0288_4
crossref_primary_10_1007_s11306_010_0229_4
crossref_primary_10_1016_j_chroma_2014_11_050
crossref_primary_10_3390_nu13051567
crossref_primary_10_3389_fcvm_2022_994483
crossref_primary_10_3390_plants12163004
crossref_primary_10_1007_s11306_011_0350_z
crossref_primary_10_1007_s11306_022_01893_9
crossref_primary_10_1104_pp_111_187229
crossref_primary_10_3390_metabo10090359
crossref_primary_10_3390_plants8050115
crossref_primary_10_1371_journal_pcbi_1002119
crossref_primary_10_1016_j_ctarc_2017_08_002
crossref_primary_10_3390_ani12040515
crossref_primary_10_1111_raq_12146
crossref_primary_10_3390_metabo9020032
crossref_primary_10_1007_s11306_017_1220_0
crossref_primary_10_1038_s41598_019_52667_8
crossref_primary_10_3390_nu15040965
crossref_primary_10_1016_j_chroma_2007_02_108
crossref_primary_10_1042_BJ20101405
crossref_primary_10_1016_j_gexplo_2020_106593
crossref_primary_10_1016_j_jpba_2010_01_002
crossref_primary_10_1093_molehr_gat062
crossref_primary_10_1093_pcp_pcx068
crossref_primary_10_3390_metabo9020034
crossref_primary_10_1016_j_clnu_2024_09_030
crossref_primary_10_3390_ijms26136260
crossref_primary_10_1016_j_chemosphere_2018_11_044
crossref_primary_10_1007_s00216_022_04134_z
crossref_primary_10_1016_j_jbiosc_2010_07_008
crossref_primary_10_3168_jds_2025_26923
crossref_primary_10_1038_hortres_2017_38
crossref_primary_10_1080_01652176_2022_2145619
crossref_primary_10_3390_molecules27217275
crossref_primary_10_1016_j_chemosphere_2020_129362
crossref_primary_10_1038_s41598_022_06014_z
crossref_primary_10_1186_s12859_021_04478_w
crossref_primary_10_3390_metabo11050326
crossref_primary_10_3390_ijms25105098
crossref_primary_10_1016_j_stress_2024_100680
crossref_primary_10_1016_j_prostaglandins_2022_106651
crossref_primary_10_1080_15592294_2016_1168673
crossref_primary_10_1016_j_aquaculture_2016_05_041
crossref_primary_10_1038_s41467_024_44990_0
crossref_primary_10_1007_s10654_016_0166_2
crossref_primary_10_1016_j_jpba_2017_07_044
crossref_primary_10_1002_ibd_21426
crossref_primary_10_1016_j_jcs_2013_10_002
crossref_primary_10_1016_j_phytochem_2012_05_030
crossref_primary_10_1586_14737159_2015_974562
crossref_primary_10_3390_metabo13101031
crossref_primary_10_1016_j_foodchem_2014_12_043
crossref_primary_10_1016_j_foodchem_2022_135016
crossref_primary_10_1007_s10661_019_7205_x
crossref_primary_10_1007_s11306_018_1321_4
crossref_primary_10_3390_cells11162605
crossref_primary_10_1007_s11306_013_0541_x
crossref_primary_10_1038_s41598_018_30553_z
crossref_primary_10_3390_metabo9030055
crossref_primary_10_1007_s11336_016_9522_0
crossref_primary_10_1093_bioinformatics_btn634
crossref_primary_10_3390_ijms20194928
crossref_primary_10_1093_hr_uhac095
crossref_primary_10_1039_c3np70086k
crossref_primary_10_1007_s11306_015_0887_3
crossref_primary_10_1016_j_chroma_2024_465538
crossref_primary_10_1002_pmic_201800422
crossref_primary_10_1002_rcm_4525
crossref_primary_10_3390_metabo10030084
crossref_primary_10_1007_s11306_022_01949_w
crossref_primary_10_1016_j_jchromb_2020_122028
crossref_primary_10_1007_s11306_014_0740_0
crossref_primary_10_3390_metabo13050605
crossref_primary_10_1093_nar_gkr969
crossref_primary_10_1002_jssc_200900152
crossref_primary_10_1007_s11306_013_0598_6
crossref_primary_10_1007_s43450_023_00454_y
crossref_primary_10_3390_metabo9030043
crossref_primary_10_1007_s00216_015_8882_0
crossref_primary_10_1016_j_bpj_2016_12_018
crossref_primary_10_1016_j_phytochem_2019_112084
crossref_primary_10_1080_14737159_2016_1199277
crossref_primary_10_1007_s11306_009_0168_0
crossref_primary_10_1080_02699052_2017_1296192
crossref_primary_10_1111_cns_70324
crossref_primary_10_1016_j_pnpbp_2023_110849
crossref_primary_10_1038_nprot_2011_319
crossref_primary_10_1111_pce_14785
crossref_primary_10_1016_j_chemolab_2016_11_005
crossref_primary_10_1038_s41531_023_00558_1
crossref_primary_10_1016_j_chroma_2019_460739
crossref_primary_10_1080_14767058_2021_1970133
crossref_primary_10_1002_elps_201400544
crossref_primary_10_3389_fonc_2020_00973
crossref_primary_10_2217_nmt_13_43
crossref_primary_10_1016_j_aca_2022_340419
crossref_primary_10_1016_j_jchromb_2016_12_020
crossref_primary_10_1002_bit_27894
crossref_primary_10_1007_s42081_023_00205_2
crossref_primary_10_3390_biochem4020005
crossref_primary_10_1016_j_artmed_2023_102556
crossref_primary_10_3390_app12041932
crossref_primary_10_3390_nu15010042
crossref_primary_10_1007_s11306_014_0731_1
crossref_primary_10_1158_0008_5472_CAN_22_1744
crossref_primary_10_1371_journal_pone_0193883
crossref_primary_10_1093_nar_gkp356
crossref_primary_10_1007_s11306_021_01787_2
crossref_primary_10_1371_journal_pone_0178650
crossref_primary_10_1016_j_molmet_2021_101295
crossref_primary_10_1007_s11306_016_1058_x
crossref_primary_10_3390_molecules25122919
crossref_primary_10_1016_j_csbj_2016_02_003
crossref_primary_10_1111_gcb_70390
crossref_primary_10_1007_s00216_025_05735_0
crossref_primary_10_1016_j_livsci_2020_104269
crossref_primary_10_1371_journal_pone_0205968
crossref_primary_10_1371_journal_pcbi_1009197
crossref_primary_10_1038_s41598_024_71439_7
crossref_primary_10_3389_fnut_2021_780228
crossref_primary_10_1016_j_heliyon_2023_e16774
crossref_primary_10_1371_journal_pntd_0008866
crossref_primary_10_1038_s41598_024_55032_6
crossref_primary_10_1016_j_chroma_2013_01_111
crossref_primary_10_1016_j_funbio_2022_05_005
crossref_primary_10_1080_09637486_2018_1499711
crossref_primary_10_1016_j_aca_2020_10_038
crossref_primary_10_1016_j_aca_2009_11_042
crossref_primary_10_1093_biostatistics_kxab006
crossref_primary_10_1371_journal_pone_0003259
crossref_primary_10_1016_j_fertnstert_2018_02_119
crossref_primary_10_1038_s41586_019_1658_5
crossref_primary_10_1155_2017_8091749
crossref_primary_10_15446_rev_colomb_quim_v51n1_99258
crossref_primary_10_3390_nu12113457
crossref_primary_10_1016_j_ijpharm_2022_121847
crossref_primary_10_1007_s11306_020_01739_2
crossref_primary_10_1007_s12161_015_0285_5
crossref_primary_10_3390_app7070708
crossref_primary_10_1186_s12864_020_07299_y
crossref_primary_10_1093_bib_bbaa105
crossref_primary_10_3109_00365513_2014_1003593
crossref_primary_10_3389_fmicb_2014_00445
crossref_primary_10_1038_srep23963
crossref_primary_10_1038_s41596_021_00636_9
crossref_primary_10_3389_fpsyt_2020_00496
crossref_primary_10_3390_foods12173240
crossref_primary_10_1016_j_physbeh_2018_07_011
crossref_primary_10_1371_journal_pntd_0004483
crossref_primary_10_2174_0929867325666181008122749
crossref_primary_10_1016_j_scitotenv_2021_148005
crossref_primary_10_3168_jds_2020_19185
crossref_primary_10_3389_fphar_2021_621146
crossref_primary_10_3390_metabo14050248
crossref_primary_10_1016_j_foodres_2018_05_025
crossref_primary_10_1016_j_jpba_2012_06_004
crossref_primary_10_1007_s10661_020_08638_y
crossref_primary_10_1016_j_jphotobiol_2017_09_002
crossref_primary_10_3390_metabo15080514
crossref_primary_10_3390_agronomy12081926
crossref_primary_10_3390_metabo4020433
crossref_primary_10_1007_s11306_017_1200_4
crossref_primary_10_1016_j_chroma_2011_04_080
crossref_primary_10_1016_j_asoc_2025_112911
crossref_primary_10_1016_j_aquatox_2023_106669
crossref_primary_10_1093_hmg_ddac151
crossref_primary_10_3945_ajcn_114_103804
crossref_primary_10_1073_pnas_1001149107
crossref_primary_10_1111_jvp_12884
crossref_primary_10_1016_j_postharvbio_2017_01_006
crossref_primary_10_1038_s41598_019_55339_9
crossref_primary_10_3233_JAD_170880
crossref_primary_10_1016_j_ijfoodmicro_2018_04_041
crossref_primary_10_1093_hmg_ddz309
crossref_primary_10_15252_emmm_202013591
crossref_primary_10_1002_jsfa_6689
crossref_primary_10_1016_j_jff_2024_106383
crossref_primary_10_1016_j_lwt_2022_113217
crossref_primary_10_1371_journal_ppat_1009642
crossref_primary_10_1002_sae2_70091
crossref_primary_10_1016_j_foodres_2018_05_010
crossref_primary_10_1111_eth_12938
crossref_primary_10_3390_su12125009
crossref_primary_10_3390_metabo15080522
crossref_primary_10_1007_s00216_011_4929_z
crossref_primary_10_1007_s10967_023_09024_x
crossref_primary_10_1016_j_chemolab_2010_07_006
crossref_primary_10_1007_s12519_023_00788_6
crossref_primary_10_1016_j_aca_2014_12_056
crossref_primary_10_3390_metabo12111045
crossref_primary_10_1007_s11306_007_0060_8
crossref_primary_10_1016_j_chemolab_2011_03_008
crossref_primary_10_3390_foods11244070
crossref_primary_10_1016_j_exger_2015_09_013
crossref_primary_10_1016_j_jnutbio_2018_11_003
crossref_primary_10_1139_cjfas_2020_0052
crossref_primary_10_3390_metabo8040060
crossref_primary_10_1109_ACCESS_2020_3039064
crossref_primary_10_1016_j_envexpbot_2017_08_008
crossref_primary_10_1016_j_jnutbio_2022_109051
crossref_primary_10_3168_jds_2022_22681
crossref_primary_10_1016_j_jnutbio_2013_05_003
crossref_primary_10_1194_jlr_RA120000652
crossref_primary_10_1016_j_cca_2012_01_026
crossref_primary_10_1016_j_foodres_2025_115920
crossref_primary_10_1080_03610470_2023_2213238
crossref_primary_10_3390_metabo3020204
crossref_primary_10_1007_s12630_020_01895_y
crossref_primary_10_1016_j_aquatox_2024_107217
crossref_primary_10_1016_j_foodres_2023_113187
crossref_primary_10_1038_s41598_025_89600_1
crossref_primary_10_3390_metabo10010035
crossref_primary_10_1016_j_foodchem_2023_137308
crossref_primary_10_1016_j_scitotenv_2019_03_477
crossref_primary_10_1016_j_mimet_2019_105795
crossref_primary_10_1155_2015_627201
crossref_primary_10_1186_s40538_024_00553_5
crossref_primary_10_2196_63176
crossref_primary_10_1007_s11306_017_1273_0
crossref_primary_10_1007_s11306_019_1564_8
crossref_primary_10_1007_s12161_017_0848_8
crossref_primary_10_1371_journal_pcbi_1009148
crossref_primary_10_1055_a_2660_2042
crossref_primary_10_1016_j_phytochem_2023_113611
crossref_primary_10_1016_j_jpba_2009_12_026
crossref_primary_10_3390_metabo15080509
crossref_primary_10_1093_ismejo_wrae187
crossref_primary_10_1007_s10886_018_0953_1
crossref_primary_10_1016_j_asoc_2019_105524
crossref_primary_10_1016_j_chroma_2017_03_071
crossref_primary_10_3389_fendo_2021_786952
crossref_primary_10_3390_cancers12010241
crossref_primary_10_1016_j_jtcvs_2025_06_028
crossref_primary_10_3390_ijms241713343
crossref_primary_10_3390_metabo8040082
crossref_primary_10_1016_j_trac_2016_07_004
crossref_primary_10_3390_metabo9120291
crossref_primary_10_1007_s11306_018_1387_z
crossref_primary_10_1093_plphys_kiad093
crossref_primary_10_4155_bio_09_158
crossref_primary_10_1038_s41598_019_50063_w
crossref_primary_10_1177_11786388241297143
crossref_primary_10_3390_jcm8050720
crossref_primary_10_1016_j_foodres_2016_11_014
crossref_primary_10_3390_foods12234335
crossref_primary_10_7717_peerj_6276
crossref_primary_10_3390_metabo8030047
crossref_primary_10_3390_min10121046
crossref_primary_10_1007_s00217_023_04340_8
crossref_primary_10_1016_j_jchromb_2008_04_033
crossref_primary_10_1093_femsec_fiaa052
crossref_primary_10_1007_s11306_009_0177_z
crossref_primary_10_1186_s40478_023_01642_6
crossref_primary_10_1002_jssc_201901064
crossref_primary_10_1093_aob_mcw282
crossref_primary_10_1007_s10337_016_3031_2
crossref_primary_10_1007_s11306_015_0823_6
crossref_primary_10_3390_metabo12111012
crossref_primary_10_1016_j_carbpol_2013_09_023
crossref_primary_10_1007_s00216_014_8169_x
crossref_primary_10_3390_molecules28031175
crossref_primary_10_1242_bio_019273
crossref_primary_10_1038_s42003_024_06186_6
crossref_primary_10_1111_vco_13034
crossref_primary_10_1038_s41598_022_13031_5
crossref_primary_10_1016_j_foodres_2018_07_045
crossref_primary_10_3390_metabo10020053
crossref_primary_10_1007_s00338_021_02125_7
crossref_primary_10_1007_s11306_025_02309_0
crossref_primary_10_1039_c3np20111b
crossref_primary_10_1002_pd_5893
crossref_primary_10_1016_j_fbp_2017_09_005
crossref_primary_10_1038_s41598_024_53323_6
crossref_primary_10_1371_journal_pone_0259973
crossref_primary_10_1016_j_rse_2022_113170
crossref_primary_10_1002_elps_201700420
crossref_primary_10_1016_j_jplph_2019_01_005
crossref_primary_10_1093_gigascience_giae005
crossref_primary_10_1177_11786388221148858
crossref_primary_10_3390_metabo13070833
crossref_primary_10_1002_adma_202008432
crossref_primary_10_1007_s11306_011_0354_8
crossref_primary_10_1053_j_gastro_2018_12_002
crossref_primary_10_1016_j_plaphy_2020_09_006
crossref_primary_10_1007_s11306_017_1179_x
crossref_primary_10_1038_nprot_2016_156
crossref_primary_10_1007_s00216_017_0628_8
crossref_primary_10_1016_j_lwt_2023_114435
crossref_primary_10_1002_rco2_68
crossref_primary_10_3390_ijms24033039
crossref_primary_10_1016_j_aca_2019_05_068
crossref_primary_10_3389_fmicb_2025_1484183
crossref_primary_10_1016_j_ijgfs_2023_100680
crossref_primary_10_1177_1475921717717310
crossref_primary_10_1016_j_chemolab_2020_103959
crossref_primary_10_3382_ps_pex080
crossref_primary_10_1007_s11306_014_0690_6
crossref_primary_10_1007_s11306_016_1030_9
crossref_primary_10_1007_s00216_023_04516_x
crossref_primary_10_3389_fpubh_2017_00355
crossref_primary_10_1371_journal_pone_0150476
crossref_primary_10_1038_s41398_024_03080_x
crossref_primary_10_1038_nprot_2009_237
crossref_primary_10_1016_j_chroma_2014_11_005
crossref_primary_10_3390_plants11050700
crossref_primary_10_1016_j_trac_2013_04_015
crossref_primary_10_1002_bit_25880
crossref_primary_10_1016_j_jpba_2010_12_023
crossref_primary_10_1016_j_foodcont_2022_109336
crossref_primary_10_1093_bib_bby127
crossref_primary_10_1007_s11306_019_1520_7
crossref_primary_10_1016_j_foodchem_2024_139986
crossref_primary_10_1016_j_joca_2021_10_006
crossref_primary_10_3390_cancers13010147
crossref_primary_10_1016_j_watres_2022_119480
crossref_primary_10_3390_nu11030528
crossref_primary_10_1007_s00299_025_03600_z
crossref_primary_10_1038_s41514_025_00249_6
crossref_primary_10_3847_1538_3881_ac6e64
crossref_primary_10_3390_metabo13070815
crossref_primary_10_1039_D2NJ02513B
crossref_primary_10_1016_j_jchromb_2008_04_044
crossref_primary_10_1371_journal_pone_0089393
crossref_primary_10_3390_dairy2030028
crossref_primary_10_3390_jcm11030627
crossref_primary_10_1007_s13197_019_04143_4
crossref_primary_10_3390_s20175001
crossref_primary_10_1021_pr500462f
crossref_primary_10_1038_s41598_022_23977_1
crossref_primary_10_1111_j_1399_3054_2007_01004_x
crossref_primary_10_1016_j_aca_2019_04_038
crossref_primary_10_1007_s11306_022_01891_x
crossref_primary_10_1007_s11306_018_1365_5
crossref_primary_10_1371_journal_pone_0103030
crossref_primary_10_1371_journal_pone_0306637
crossref_primary_10_3390_nu16060895
crossref_primary_10_1016_j_neuroscience_2016_06_049
crossref_primary_10_3389_fpls_2017_01108
crossref_primary_10_1093_bioinformatics_btm181
crossref_primary_10_1080_07420528_2022_2131562
crossref_primary_10_1128_msystems_00793_25
crossref_primary_10_1302_2046_3758_99_BJR_2019_0192_R1
crossref_primary_10_3390_ijms26062719
crossref_primary_10_1007_s11306_017_1242_7
crossref_primary_10_3390_ijerph14070697
crossref_primary_10_7554_eLife_44235
crossref_primary_10_1159_000357785
crossref_primary_10_3389_fnut_2024_1340735
crossref_primary_10_1016_j_chemolab_2015_09_008
crossref_primary_10_1016_j_foodchem_2013_07_037
crossref_primary_10_3389_fpls_2015_01014
crossref_primary_10_1016_j_tifs_2024_104430
crossref_primary_10_1016_j_chemolab_2013_05_002
crossref_primary_10_1089_omi_2019_0140
crossref_primary_10_1007_s00216_021_03294_8
crossref_primary_10_1016_j_foodchem_2019_125660
crossref_primary_10_3389_fpls_2021_807710
crossref_primary_10_1016_j_chroma_2010_08_040
crossref_primary_10_1074_jbc_M117_791558
crossref_primary_10_3390_biomedicines8040081
crossref_primary_10_1371_journal_pone_0207051
crossref_primary_10_3390_diagnostics11091602
crossref_primary_10_1007_s11306_021_01817_z
crossref_primary_10_1016_j_rbmo_2020_09_002
crossref_primary_10_1371_journal_pone_0234404
crossref_primary_10_1186_s13054_021_03810_3
crossref_primary_10_1016_j_mimet_2008_07_029
crossref_primary_10_1016_j_exer_2025_110655
crossref_primary_10_1093_bib_bbv077
crossref_primary_10_1371_journal_pone_0058411
crossref_primary_10_1016_j_scitotenv_2020_138317
crossref_primary_10_1097_RHU_0b013e3181ba3926
crossref_primary_10_1007_s11306_017_1299_3
crossref_primary_10_3390_fishes3020021
crossref_primary_10_3390_metabo2041090
crossref_primary_10_1007_s00216_013_6934_x
crossref_primary_10_1016_j_foodres_2021_110878
crossref_primary_10_1080_07388551_2017_1421899
crossref_primary_10_1016_j_foodres_2025_117272
crossref_primary_10_1016_j_marpolbul_2021_113242
crossref_primary_10_3390_molecules29204947
crossref_primary_10_1038_s41598_019_44726_x
crossref_primary_10_3390_metabo3010119
crossref_primary_10_1016_j_scitotenv_2017_12_320
crossref_primary_10_1016_j_bbadis_2014_09_014
crossref_primary_10_1016_j_fgb_2010_03_005
crossref_primary_10_1016_j_ab_2021_114153
crossref_primary_10_1016_j_jfoodeng_2023_111795
crossref_primary_10_1093_treephys_tpad087
crossref_primary_10_1007_s00216_018_1283_4
crossref_primary_10_1016_j_talanta_2017_10_025
crossref_primary_10_3390_metabo11100692
crossref_primary_10_1289_ehp_11891
crossref_primary_10_1016_j_biotechadv_2024_108400
crossref_primary_10_1016_j_watres_2024_121130
crossref_primary_10_1093_nar_gkae335
crossref_primary_10_3389_fmicb_2018_00284
crossref_primary_10_1016_j_chemolab_2011_05_006
crossref_primary_10_1039_D2CC03598G
crossref_primary_10_3390_nu13041191
crossref_primary_10_3390_metabo8010001
crossref_primary_10_1016_j_fuel_2024_132701
crossref_primary_10_1186_1471_2105_9_470
crossref_primary_10_1007_s10750_016_3057_3
crossref_primary_10_1038_s41564_023_01580_y
crossref_primary_10_1007_s10142_017_0585_5
crossref_primary_10_1002_hep_28953
crossref_primary_10_1007_s00216_021_03813_7
crossref_primary_10_1016_j_ppees_2024_125844
crossref_primary_10_1007_s11481_009_9156_4
crossref_primary_10_1177_1757913918772598
crossref_primary_10_1093_bioadv_vbaf073
crossref_primary_10_1007_s11306_011_0335_y
crossref_primary_10_1016_j_trac_2023_117248
crossref_primary_10_1007_s11306_014_0738_7
crossref_primary_10_1002_mas_21370
crossref_primary_10_1007_s11306_011_0311_6
crossref_primary_10_3109_09513590_2010_487615
crossref_primary_10_1016_j_chemolab_2011_05_010
crossref_primary_10_1016_j_foodres_2017_06_007
crossref_primary_10_3390_fermentation7010015
crossref_primary_10_3390_metabo12020093
crossref_primary_10_1016_j_aca_2020_07_029
crossref_primary_10_1371_journal_pone_0134099
crossref_primary_10_1007_s00216_016_9376_4
crossref_primary_10_1093_jxb_erx134
crossref_primary_10_1016_j_plefa_2018_05_001
crossref_primary_10_1039_D3NH00510K
crossref_primary_10_1007_s11306_016_1116_4
crossref_primary_10_1016_j_atmosenv_2021_118297
crossref_primary_10_1038_s41598_019_53287_y
crossref_primary_10_1038_s41598_018_26427_z
crossref_primary_10_3390_metabo11100672
crossref_primary_10_1039_C4MB00747F
crossref_primary_10_1038_s41598_020_67939_x
crossref_primary_10_1186_s13104_020_4920_x
crossref_primary_10_1111_nph_12795
crossref_primary_10_1038_srep42514
crossref_primary_10_1371_journal_pone_0170148
crossref_primary_10_1038_s41366_024_01576_6
crossref_primary_10_1007_s11306_010_0210_2
crossref_primary_10_1186_1471_2105_10_52
crossref_primary_10_3389_fpls_2022_921008
crossref_primary_10_1007_s11306_012_0449_x
crossref_primary_10_1016_j_chroma_2016_03_023
crossref_primary_10_1111_ppl_14150
crossref_primary_10_1186_s13068_015_0212_4
crossref_primary_10_1002_ijc_32146
crossref_primary_10_2217_bmm_2018_0229
crossref_primary_10_1016_j_kint_2018_10_020
crossref_primary_10_3390_ijms24044202
crossref_primary_10_3390_metabo14020086
crossref_primary_10_1093_nar_gks374
crossref_primary_10_1007_s00216_020_02830_2
crossref_primary_10_3390_metabo11090578
crossref_primary_10_1177_11786388221111126
crossref_primary_10_3390_metabo11100664
crossref_primary_10_1007_s00521_019_04588_w
crossref_primary_10_1016_j_plaphy_2013_07_016
crossref_primary_10_3390_biomedicines12112593
crossref_primary_10_1109_TCBB_2014_2377723
crossref_primary_10_1016_j_jff_2017_06_046
crossref_primary_10_3389_fpls_2023_1166813
crossref_primary_10_3390_ijms17071017
crossref_primary_10_1007_s00216_023_04715_6
crossref_primary_10_1007_s00216_020_03117_2
crossref_primary_10_3389_fped_2020_613749
crossref_primary_10_1002_gepi_22211
crossref_primary_10_1186_s12874_022_01812_5
crossref_primary_10_1016_j_envpol_2023_121741
crossref_primary_10_1038_s41467_023_37394_z
crossref_primary_10_1007_s00415_020_09824_1
crossref_primary_10_1007_s10534_014_9774_z
crossref_primary_10_1007_s11306_020_01720_z
crossref_primary_10_3389_fpls_2017_01524
crossref_primary_10_1186_s13054_015_1026_2
crossref_primary_10_1002_ange_200905579
crossref_primary_10_1039_C7AN00700K
crossref_primary_10_1039_D5MO00019J
crossref_primary_10_1111_grs_12439
crossref_primary_10_3390_foods12122322
crossref_primary_10_1093_intbio_zyaa013
crossref_primary_10_1186_1471_2105_8_93
crossref_primary_10_3168_jds_2020_18628
crossref_primary_10_1038_s41570_023_00476_z
crossref_primary_10_1242_jeb_203596
crossref_primary_10_1093_aobpla_plv045
crossref_primary_10_1016_j_cimid_2022_101907
crossref_primary_10_1016_j_aca_2016_12_009
crossref_primary_10_1016_j_jenvman_2023_119920
crossref_primary_10_3390_foods10050956
crossref_primary_10_1016_j_csbj_2020_10_011
crossref_primary_10_1128_spectrum_01795_23
crossref_primary_10_1007_s11356_022_19989_z
crossref_primary_10_1038_s41598_023_45997_1
crossref_primary_10_1371_journal_pone_0218360
crossref_primary_10_1002_pros_24145
crossref_primary_10_3390_cancers13205157
crossref_primary_10_1371_journal_pone_0187545
crossref_primary_10_1155_2022_8932137
crossref_primary_10_1038_s41467_019_08406_8
crossref_primary_10_1556_AChrom_21_2009_4_1
crossref_primary_10_3390_ijms20010059
crossref_primary_10_1007_s00216_019_01639_y
crossref_primary_10_1371_journal_pcbi_1006018
crossref_primary_10_1007_s10886_023_01443_0
crossref_primary_10_1111_ajgw_12365
crossref_primary_10_3390_metabo9050102
crossref_primary_10_1002_mnfr_201700363
crossref_primary_10_1016_j_foodchem_2025_145858
crossref_primary_10_1002_pld3_276
crossref_primary_10_3390_foods9121797
crossref_primary_10_1002_jrs_5357
crossref_primary_10_1007_s11306_011_0292_5
crossref_primary_10_5194_jsss_7_489_2018
crossref_primary_10_1002_jsfa_9266
crossref_primary_10_1016_j_chemolab_2024_105237
crossref_primary_10_1016_j_foodchem_2022_134632
crossref_primary_10_1080_10408347_2021_1905503
crossref_primary_10_1515_sagmb_2018_0056
crossref_primary_10_1016_j_eswa_2018_08_002
crossref_primary_10_1371_journal_pone_0050520
crossref_primary_10_1016_j_phytol_2018_04_013
crossref_primary_10_1016_j_watres_2022_118413
crossref_primary_10_1186_1743_7075_11_24
crossref_primary_10_3390_pharmaceutics15092324
crossref_primary_10_1007_s11306_016_0971_3
crossref_primary_10_1007_s13399_022_03537_3
crossref_primary_10_1016_j_foodchem_2016_11_156
crossref_primary_10_1186_s12933_023_02111_z
crossref_primary_10_1002_art_41537
crossref_primary_10_1016_j_chroma_2008_02_024
crossref_primary_10_1007_s42835_024_01981_x
crossref_primary_10_1016_j_ard_2025_01_012
crossref_primary_10_1186_1471_2164_9_541
crossref_primary_10_1002_cem_3004
crossref_primary_10_1016_j_foodchem_2019_02_072
crossref_primary_10_1038_s41598_023_49032_1
crossref_primary_10_1371_journal_pntd_0003829
crossref_primary_10_1016_j_fbio_2025_106563
crossref_primary_10_3390_metabo12010032
crossref_primary_10_1007_s11306_010_0247_2
crossref_primary_10_1016_j_microc_2024_110491
crossref_primary_10_3389_fnut_2022_1017090
crossref_primary_10_1007_s00248_025_02590_5
crossref_primary_10_1016_j_chemolab_2017_01_014
crossref_primary_10_1007_s40495_017_0107_0
crossref_primary_10_1016_j_biotechadv_2014_11_008
crossref_primary_10_1016_j_jbiosc_2015_12_008
crossref_primary_10_1126_sciadv_adp4532
crossref_primary_10_1016_j_scienta_2021_110262
crossref_primary_10_1016_j_toxicon_2019_05_007
crossref_primary_10_3389_fmolb_2015_00004
crossref_primary_10_3390_metabo10100405
crossref_primary_10_1016_j_trac_2010_11_003
crossref_primary_10_1111_aji_13673
crossref_primary_10_1080_14756366_2019_1611802
crossref_primary_10_1182_bloodadvances_2021004973
crossref_primary_10_3390_metabo9070126
crossref_primary_10_3390_molecules25245965
crossref_primary_10_1017_S1431927618000090
crossref_primary_10_1038_srep38881
crossref_primary_10_1016_j_chroma_2013_06_022
crossref_primary_10_1016_j_ymben_2014_06_001
crossref_primary_10_1016_j_jpba_2020_113200
crossref_primary_10_1109_ACCESS_2022_3178521
crossref_primary_10_1016_j_talanta_2017_12_032
crossref_primary_10_1016_j_nexres_2025_100635
crossref_primary_10_15252_embr_202255299
crossref_primary_10_3390_foods10020435
crossref_primary_10_1016_j_scitotenv_2022_153969
crossref_primary_10_1038_s41386_023_01633_0
crossref_primary_10_3389_fpls_2023_1303771
crossref_primary_10_3168_jds_2020_18661
crossref_primary_10_1016_j_chemosphere_2020_126812
crossref_primary_10_3390_metabo10100419
crossref_primary_10_1016_j_ejphar_2021_173927
crossref_primary_10_1007_s00216_012_6692_1
crossref_primary_10_1016_j_aca_2024_342694
crossref_primary_10_1080_02626667_2018_1425802
crossref_primary_10_1371_journal_pone_0087846
crossref_primary_10_1016_j_apr_2025_102576
crossref_primary_10_1073_pnas_1218524110
crossref_primary_10_1093_nar_gkx449
crossref_primary_10_1155_2013_539284
crossref_primary_10_1007_s00216_022_04428_2
crossref_primary_10_1371_journal_pone_0238316
crossref_primary_10_1038_srep35374
crossref_primary_10_3390_molecules25030583
crossref_primary_10_1016_j_foodchem_2020_127339
crossref_primary_10_1016_j_bbalip_2020_158857
crossref_primary_10_1038_s41598_017_13931_x
crossref_primary_10_1371_journal_pone_0126843
crossref_primary_10_3390_plants12101946
crossref_primary_10_1371_journal_pone_0074507
crossref_primary_10_1016_j_jfoodeng_2019_109684
crossref_primary_10_1186_s12859_017_1579_y
crossref_primary_10_1039_C5TX00399G
crossref_primary_10_1186_1477_5956_11_S1_S13
crossref_primary_10_1016_j_ecolind_2024_111734
crossref_primary_10_1155_2015_543541
crossref_primary_10_1093_jn_nxaa374
crossref_primary_10_1007_s11240_025_02993_9
crossref_primary_10_1016_j_jchromb_2017_11_007
crossref_primary_10_1016_j_jchromb_2013_08_025
crossref_primary_10_1111_sms_14086
crossref_primary_10_1016_j_aca_2009_01_048
crossref_primary_10_1534_genetics_117_300374
crossref_primary_10_1016_j_chroma_2015_10_026
crossref_primary_10_1016_j_microc_2021_107066
crossref_primary_10_3389_fnagi_2020_555850
crossref_primary_10_1038_s41598_017_09431_7
crossref_primary_10_1016_j_bcp_2017_05_012
crossref_primary_10_1016_j_bse_2024_104912
crossref_primary_10_1007_s11306_012_0482_9
crossref_primary_10_1186_1471_2105_8_234
crossref_primary_10_1038_s41596_024_01046_3
crossref_primary_10_1002_jssc_200800194
crossref_primary_10_1111_nph_17608
crossref_primary_10_1140_epjp_s13360_024_05405_7
crossref_primary_10_1016_j_jchromb_2016_01_002
crossref_primary_10_1371_journal_pone_0228989
crossref_primary_10_3390_ijms12106469
crossref_primary_10_1038_s41598_019_52059_y
crossref_primary_10_1007_s00216_023_04556_3
crossref_primary_10_1002_bit_27087
crossref_primary_10_1007_s11306_014_0697_z
crossref_primary_10_3390_foods11233821
crossref_primary_10_1007_s11306_015_0785_8
crossref_primary_10_1371_journal_pone_0162917
crossref_primary_10_1038_s41598_018_31700_2
crossref_primary_10_3390_biology10010045
crossref_primary_10_3390_metabo9070139
crossref_primary_10_1371_journal_pone_0123114
crossref_primary_10_1093_nar_gky750
crossref_primary_10_3390_metabo9070145
crossref_primary_10_1186_s12284_025_00788_2
crossref_primary_10_1016_j_arabjc_2022_104204
crossref_primary_10_3389_fpls_2023_1025932
crossref_primary_10_3390_metabo9070143
crossref_primary_10_1016_j_chemolab_2007_08_002
crossref_primary_10_1016_j_mednuc_2020_03_002
crossref_primary_10_1002_rcm_8977
crossref_primary_10_1007_s11306_018_1447_4
crossref_primary_10_1038_s41597_022_01229_1
crossref_primary_10_1016_j_talanta_2015_10_070
crossref_primary_10_14309_ctg_0000000000000518
crossref_primary_10_1016_j_jbiotec_2023_10_005
crossref_primary_10_3389_fgene_2021_630359
crossref_primary_10_3390_foods14060919
crossref_primary_10_1021_acs_analchem_5c03274
crossref_primary_10_1002_smtd_202100206
crossref_primary_10_3389_fpls_2023_1112157
crossref_primary_10_1016_j_phrs_2016_11_007
crossref_primary_10_1016_j_ecolind_2015_12_029
crossref_primary_10_1016_j_radonc_2023_109950
crossref_primary_10_3390_biom12070986
crossref_primary_10_1186_s12868_023_00775_7
crossref_primary_10_1016_j_trac_2011_04_019
crossref_primary_10_1096_fj_14_266387
crossref_primary_10_3390_ani12091069
crossref_primary_10_1016_j_foodres_2022_111885
crossref_primary_10_1002_rcm_3498
crossref_primary_10_3390_metabo11100656
crossref_primary_10_1016_j_aca_2015_02_012
crossref_primary_10_1016_j_lwt_2023_115085
crossref_primary_10_3390_cells12081102
crossref_primary_10_3390_molecules24193468
crossref_primary_10_1007_s11011_016_9949_0
crossref_primary_10_1109_ACCESS_2025_3567153
crossref_primary_10_1007_s10661_023_11776_8
crossref_primary_10_1016_j_jprot_2016_05_030
crossref_primary_10_1094_PHYTO_02_19_0042_R
crossref_primary_10_1016_j_bioelechem_2020_107501
crossref_primary_10_1007_s11306_024_02208_w
crossref_primary_10_1038_s41598_020_78867_1
crossref_primary_10_1016_j_jchromb_2018_06_014
crossref_primary_10_1016_j_jembe_2024_152004
crossref_primary_10_1016_j_jad_2025_119768
crossref_primary_10_1007_s00216_020_02407_z
crossref_primary_10_3390_cells11152369
crossref_primary_10_1016_j_ijms_2006_10_011
crossref_primary_10_1371_journal_pone_0122445
crossref_primary_10_1111_rssc_12565
crossref_primary_10_1002_cem_2576
crossref_primary_10_1007_s11306_011_0317_0
crossref_primary_10_1016_j_ebiom_2016_01_027
crossref_primary_10_1016_j_cbd_2017_10_005
crossref_primary_10_1007_s12539_008_0008_3
crossref_primary_10_1186_s12859_022_04918_1
crossref_primary_10_5812_ijcm_107678
crossref_primary_10_1016_j_jprot_2014_01_014
crossref_primary_10_3390_molecules24193456
crossref_primary_10_1016_j_jece_2025_117568
crossref_primary_10_3390_metabo9080155
crossref_primary_10_3390_ani13132201
crossref_primary_10_1016_j_prevetmed_2017_05_015
crossref_primary_10_1016_j_envpol_2015_05_029
crossref_primary_10_1016_j_forc_2018_05_002
crossref_primary_10_1007_s12170_010_0144_2
crossref_primary_10_1016_j_foodcont_2021_108508
crossref_primary_10_1002_nbm_4638
crossref_primary_10_1016_j_engappai_2022_104807
crossref_primary_10_1016_j_jtherbio_2023_103702
crossref_primary_10_1002_mrc_5350
crossref_primary_10_1002_elps_201400450
crossref_primary_10_1111_tpj_70391
crossref_primary_10_1016_j_pharmthera_2020_107542
crossref_primary_10_1093_llc_fqu006
crossref_primary_10_1016_j_foodchem_2024_142465
crossref_primary_10_1016_j_microc_2020_104948
crossref_primary_10_1007_s10886_017_0881_5
crossref_primary_10_1371_journal_pone_0247289
crossref_primary_10_3390_foods10102388
crossref_primary_10_1007_s11306_017_1313_9
crossref_primary_10_1038_s41598_021_99147_6
crossref_primary_10_1016_j_jpba_2017_10_036
crossref_primary_10_3390_metabo11050308
crossref_primary_10_1371_journal_pone_0020747
crossref_primary_10_3390_nu11020274
crossref_primary_10_12688_gatesopenres_13131_2
crossref_primary_10_1016_j_foodchem_2012_09_136
crossref_primary_10_1016_j_foodchem_2015_12_049
crossref_primary_10_1016_j_jpba_2016_02_028
crossref_primary_10_3390_horticulturae9010066
crossref_primary_10_1155_2013_825318
crossref_primary_10_1002_cem_2790
crossref_primary_10_1126_science_aax9198
crossref_primary_10_3390_ijms24098459
crossref_primary_10_3390_metabo10110434
crossref_primary_10_1089_omi_2013_0010
crossref_primary_10_1186_s13054_014_0729_0
crossref_primary_10_1038_s41598_021_83602_5
crossref_primary_10_3389_fnut_2018_00042
crossref_primary_10_1016_j_cbd_2019_01_006
crossref_primary_10_1016_j_tem_2023_06_006
crossref_primary_10_3390_foods14050734
crossref_primary_10_1007_s11306_013_0609_7
crossref_primary_10_1016_j_ab_2007_07_022
crossref_primary_10_1016_j_orggeochem_2014_06_012
crossref_primary_10_1039_c3an36818a
crossref_primary_10_1002_jor_22949
crossref_primary_10_1016_j_tox_2012_10_015
crossref_primary_10_1089_omi_2020_0009
crossref_primary_10_3389_fevo_2021_643845
crossref_primary_10_1093_treephys_tps072
crossref_primary_10_1371_journal_pone_0221052
crossref_primary_10_1073_pnas_1609348114
crossref_primary_10_1111_tpj_13495
crossref_primary_10_1002_prep_202100019
crossref_primary_10_1016_j_cag_2010_07_004
crossref_primary_10_4155_bio_2016_0078
crossref_primary_10_1038_s41586_022_04984_8
crossref_primary_10_1093_toxsci_kfu009
crossref_primary_10_3390_molecules27010082
crossref_primary_10_1016_j_aca_2021_339043
crossref_primary_10_1016_j_bbadis_2022_166371
crossref_primary_10_1016_j_precisioneng_2014_03_001
crossref_primary_10_1186_s12864_018_5406_2
crossref_primary_10_5194_amt_18_1961_2025
crossref_primary_10_1038_s41570_017_0054
crossref_primary_10_1007_s11306_013_0553_6
crossref_primary_10_1007_s11306_018_1335_y
crossref_primary_10_1038_s41598_020_74008_w
crossref_primary_10_3390_agriculture14050749
crossref_primary_10_3390_rs12132109
crossref_primary_10_1016_j_watres_2017_10_003
crossref_primary_10_1111_1462_2920_16271
crossref_primary_10_1186_s13058_023_01602_x
crossref_primary_10_1111_j_1469_8137_2007_02282_x
crossref_primary_10_1016_j_clnu_2020_09_028
crossref_primary_10_1186_1471_2105_15_51
crossref_primary_10_1016_j_jfca_2023_105860
crossref_primary_10_1042_BJ20121349
crossref_primary_10_1002_mnfr_202000178
crossref_primary_10_1007_s11306_011_0351_y
crossref_primary_10_1016_j_neurobiolaging_2016_03_005
crossref_primary_10_1039_D3RA03992G
crossref_primary_10_1016_j_aquaculture_2021_736368
crossref_primary_10_3390_genes15101264
crossref_primary_10_1155_2014_602813
crossref_primary_10_1371_journal_pone_0232169
crossref_primary_10_1002_mnfr_201800384
crossref_primary_10_1038_s41598_020_76876_8
crossref_primary_10_4155_bio_2016_0090
crossref_primary_10_1016_j_foodchem_2019_125507
crossref_primary_10_3389_fmicb_2021_693075
crossref_primary_10_1111_tpj_14320
crossref_primary_10_1016_j_pnmrs_2017_01_001
crossref_primary_10_1016_j_csbj_2022_09_031
crossref_primary_10_1080_10826076_2019_1629956
crossref_primary_10_1371_journal_pone_0164394
crossref_primary_10_3390_vaccines10111838
crossref_primary_10_1371_journal_pone_0106077
crossref_primary_10_3390_metabo12030221
crossref_primary_10_1371_journal_ppat_1009326
crossref_primary_10_1007_s00217_020_03648_z
crossref_primary_10_1016_j_chroma_2010_10_010
crossref_primary_10_1159_000477493
crossref_primary_10_1016_j_archoralbio_2018_10_016
crossref_primary_10_3390_ijms160921520
crossref_primary_10_1186_s12864_015_1431_6
crossref_primary_10_1016_j_jnutbio_2017_11_009
crossref_primary_10_3389_fmolb_2021_686770
crossref_primary_10_1007_s00122_017_2934_0
crossref_primary_10_3892_etm_2025_12945
crossref_primary_10_1093_bib_bbab138
crossref_primary_10_1016_j_ejphar_2009_03_079
crossref_primary_10_1016_j_jpba_2014_10_010
crossref_primary_10_1016_j_ypmed_2018_04_032
crossref_primary_10_1038_srep45477
crossref_primary_10_3389_fmolb_2016_00035
crossref_primary_10_3390_molecules21030259
crossref_primary_10_1002_mnfr_201700975
crossref_primary_10_1038_s41598_017_07693_9
crossref_primary_10_1016_j_indcrop_2025_121159
crossref_primary_10_3109_19396368_2015_1054003
crossref_primary_10_3168_jds_2018_14685
crossref_primary_10_1364_AO_546627
crossref_primary_10_1016_j_jff_2024_106054
crossref_primary_10_1039_b907243h
crossref_primary_10_1093_ee_nvz157
crossref_primary_10_1186_s13058_024_01896_5
crossref_primary_10_3389_fmolb_2021_632950
crossref_primary_10_1111_cts_13088
crossref_primary_10_1007_s11306_020_01705_y
crossref_primary_10_3389_feart_2020_563379
crossref_primary_10_3390_metabo15030154
crossref_primary_10_3390_antiox12061160
crossref_primary_10_1016_j_heliyon_2021_e06048
crossref_primary_10_1016_j_jpba_2014_10_009
crossref_primary_10_1038_s42003_025_08515_9
crossref_primary_10_3390_metabo7010003
crossref_primary_10_3390_molecules23061496
crossref_primary_10_1128_mSystems_00129_17
crossref_primary_10_1016_j_lwt_2020_109922
crossref_primary_10_1016_j_numecd_2021_09_024
crossref_primary_10_3390_cancers12061538
crossref_primary_10_1016_j_foodchem_2021_129422
crossref_primary_10_1007_s11802_021_4558_x
crossref_primary_10_1016_j_jhazmat_2023_131879
crossref_primary_10_1242_jeb_227843
crossref_primary_10_1134_S1061934816060113
crossref_primary_10_1007_s00216_023_04511_2
crossref_primary_10_1016_j_tjnut_2023_06_039
crossref_primary_10_1007_s00216_014_8102_3
crossref_primary_10_1093_gigascience_gix036
crossref_primary_10_1016_j_jaci_2020_11_002
crossref_primary_10_1007_s11095_023_03600_2
crossref_primary_10_1371_journal_pone_0178514
crossref_primary_10_1007_s13205_021_02864_y
crossref_primary_10_1093_chemse_bjv077
crossref_primary_10_1097_CCM_0b013e31822571ce
crossref_primary_10_3390_plants10040772
crossref_primary_10_1515_hmbci_2018_0045
crossref_primary_10_1016_j_lwt_2012_08_016
crossref_primary_10_1289_EHP11360
crossref_primary_10_1186_s12864_021_07563_9
crossref_primary_10_1186_s40035_020_00188_0
crossref_primary_10_1136_oemed_2014_102264
crossref_primary_10_1109_TIM_2022_3141163
crossref_primary_10_1007_s11306_014_0730_2
crossref_primary_10_1016_j_molstruc_2007_12_026
crossref_primary_10_1016_j_watres_2021_116846
crossref_primary_10_1016_j_simpat_2016_12_013
crossref_primary_10_1016_j_trac_2007_11_004
crossref_primary_10_1002_trc2_12025
crossref_primary_10_1016_j_artmed_2020_101950
crossref_primary_10_1021_acs_est_8b02763
crossref_primary_10_3390_ijms20051245
crossref_primary_10_1016_j_envint_2016_11_026
crossref_primary_10_1016_j_indcrop_2023_117993
crossref_primary_10_1158_0008_5472_CAN_15_3403
crossref_primary_10_1038_s41598_022_09687_8
crossref_primary_10_1016_j_phytochem_2011_12_010
crossref_primary_10_1016_j_jbi_2014_12_001
crossref_primary_10_3390_metabo13020296
crossref_primary_10_1016_j_aca_2009_08_029
crossref_primary_10_1177_1469066718806450
crossref_primary_10_1007_s00217_025_04727_9
crossref_primary_10_1016_j_foodchem_2021_131741
crossref_primary_10_1038_srep18241
crossref_primary_10_3390_molecules26216645
crossref_primary_10_1080_10937404_2013_860318
crossref_primary_10_1016_j_aca_2018_05_038
crossref_primary_10_1016_j_jpba_2018_08_047
crossref_primary_10_1038_s41598_019_43374_5
crossref_primary_10_3389_fmolb_2022_932261
crossref_primary_10_1007_s11306_019_1536_z
crossref_primary_10_1016_j_bcp_2025_116896
crossref_primary_10_3390_metabo13010020
crossref_primary_10_1371_journal_pone_0256388
crossref_primary_10_1371_journal_pone_0222393
crossref_primary_10_3390_molecules24142602
crossref_primary_10_1371_journal_ppat_1012926
crossref_primary_10_1016_j_jphotobiol_2016_08_030
crossref_primary_10_1016_j_aca_2023_341966
crossref_primary_10_1016_j_talanta_2018_01_074
crossref_primary_10_1111_1365_2435_12279
crossref_primary_10_3390_molecules25153502
crossref_primary_10_1002_mas_21886
crossref_primary_10_1007_s11306_014_0647_9
crossref_primary_10_1186_s12933_023_02102_0
crossref_primary_10_1016_j_chemosphere_2018_10_196
crossref_primary_10_1016_j_foodcont_2023_109943
crossref_primary_10_3389_fmolb_2022_1008908
crossref_primary_10_3390_foods13223554
crossref_primary_10_3390_metabo10040131
crossref_primary_10_1038_s41598_020_79733_w
crossref_primary_10_1007_s10858_019_00279_9
crossref_primary_10_1186_1471_2105_10_340
crossref_primary_10_1371_journal_pone_0193563
crossref_primary_10_1002_pmic_201400255
crossref_primary_10_1038_s42255_021_00514_4
crossref_primary_10_1186_1471_2105_14_123
crossref_primary_10_1016_j_cma_2022_115718
crossref_primary_10_1002_mrc_2461
crossref_primary_10_1007_s00216_023_04748_x
crossref_primary_10_1007_s11306_023_02051_5
crossref_primary_10_1007_s11306_025_02241_3
crossref_primary_10_2217_bmm_2017_0133
crossref_primary_10_1016_j_foodchem_2022_132925
crossref_primary_10_1016_j_gene_2012_11_028
crossref_primary_10_1016_j_aqrep_2020_100524
crossref_primary_10_1016_j_foodchem_2024_142604
crossref_primary_10_1080_09712119_2019_1623802
crossref_primary_10_3233_JAD_230053
crossref_primary_10_1080_10826068_2018_1466151
crossref_primary_10_3390_plants9060760
crossref_primary_10_1016_j_envpol_2023_122061
crossref_primary_10_1177_07487304221132088
crossref_primary_10_1016_j_foodchem_2012_07_097
crossref_primary_10_3390_metabo14020105
crossref_primary_10_1016_j_aca_2013_01_015
crossref_primary_10_1155_2016_9210408
crossref_primary_10_3390_metabo10040143
crossref_primary_10_1007_s11306_016_1107_5
crossref_primary_10_1016_j_cca_2021_12_019
crossref_primary_10_1371_journal_pntd_0000807
crossref_primary_10_3390_metabo13020235
crossref_primary_10_1116_1_4927528
crossref_primary_10_3390_metabo14030145
crossref_primary_10_1002_wics_70045
crossref_primary_10_1016_j_neuropsychologia_2013_10_011
crossref_primary_10_1002_ece3_3715
crossref_primary_10_1002_mrc_4658
crossref_primary_10_2174_0929867324666170914102236
crossref_primary_10_1007_s11365_025_01093_6
crossref_primary_10_1186_s13054_023_04573_9
crossref_primary_10_1093_bib_bbz137
crossref_primary_10_1080_00032719_2020_1793993
crossref_primary_10_3390_metabo10050180
crossref_primary_10_1007_s11306_017_1274_z
crossref_primary_10_1016_j_isprsjprs_2018_05_012
crossref_primary_10_1016_j_aca_2013_10_025
crossref_primary_10_1098_rsos_250608
crossref_primary_10_3390_metabo10030112
crossref_primary_10_1002_nbm_4038
crossref_primary_10_1007_s00726_022_03204_x
crossref_primary_10_3390_separations3020013
crossref_primary_10_1016_j_foodchem_2022_132701
crossref_primary_10_1111_nmo_13884
crossref_primary_10_1016_j_plaphy_2019_09_030
crossref_primary_10_3390_metabo10040151
crossref_primary_10_1016_j_aca_2017_09_019
crossref_primary_10_1016_j_biotechadv_2020_107616
crossref_primary_10_1002_elps_201700318
crossref_primary_10_1002_jssc_202000094
crossref_primary_10_1186_s12916_020_01653_3
crossref_primary_10_1371_journal_pone_0232324
crossref_primary_10_3390_molecules25040806
crossref_primary_10_1007_s00216_009_2623_1
crossref_primary_10_1016_j_scitotenv_2018_10_264
crossref_primary_10_1002_btpr_349
crossref_primary_10_1016_j_chroma_2021_461896
crossref_primary_10_1016_j_jpba_2013_09_021
crossref_primary_10_3390_metabo10050199
crossref_primary_10_3390_metabo12010005
crossref_primary_10_1038_s41396_018_0186_x
crossref_primary_10_1039_C5AN00182J
crossref_primary_10_1111_jvp_12961
crossref_primary_10_1371_journal_pntd_0008767
crossref_primary_10_1016_j_jbc_2024_107569
crossref_primary_10_2188_jea_JE20240099
crossref_primary_10_1016_j_atech_2025_100905
crossref_primary_10_1016_j_chemolab_2016_09_002
crossref_primary_10_1534_g3_115_020073
crossref_primary_10_1002_pca_3002
crossref_primary_10_3389_fphar_2019_00657
crossref_primary_10_1016_j_chemosphere_2024_143636
crossref_primary_10_1016_j_nutres_2022_05_007
crossref_primary_10_1038_s41467_018_05282_6
crossref_primary_10_1177_11786388241280859
crossref_primary_10_20517_jmi_2025_26
crossref_primary_10_1016_j_chroma_2021_462735
crossref_primary_10_1038_s41598_018_22338_1
crossref_primary_10_1096_fj_201900318RR
crossref_primary_10_1161_HYPERTENSIONAHA_110_157297
crossref_primary_10_3390_metabo4020184
crossref_primary_10_3389_fmolb_2022_917911
crossref_primary_10_1002_ejlt_202400061
crossref_primary_10_1007_s13562_021_00722_9
crossref_primary_10_1007_s00500_014_1538_8
crossref_primary_10_1007_s11205_018_1902_7
crossref_primary_10_7554_eLife_68590
crossref_primary_10_1016_j_foodres_2022_111078
crossref_primary_10_1038_s41598_020_69051_6
crossref_primary_10_3390_ani10010068
crossref_primary_10_3390_ijms21217869
crossref_primary_10_1016_j_aca_2023_341578
crossref_primary_10_1007_s10886_018_0932_6
crossref_primary_10_1016_j_cmet_2024_11_007
crossref_primary_10_3390_agronomy11050824
crossref_primary_10_3389_fphar_2017_00122
crossref_primary_10_1038_ismej_2007_93
crossref_primary_10_7554_eLife_62800
crossref_primary_10_1016_j_phytol_2020_09_003
crossref_primary_10_1007_s00049_016_0227_8
crossref_primary_10_1016_j_foodres_2013_07_003
crossref_primary_10_1016_j_scitotenv_2020_140974
crossref_primary_10_1111_j_1750_3841_2012_02648_x
crossref_primary_10_1007_s10811_021_02645_3
crossref_primary_10_1007_s11306_016_1099_1
crossref_primary_10_1007_s11306_016_1151_1
crossref_primary_10_1038_s41598_025_13475_5
crossref_primary_10_1242_jeb_189480
crossref_primary_10_1016_j_jtemb_2019_04_005
crossref_primary_10_1016_j_foodres_2020_109698
crossref_primary_10_1016_j_oregeorev_2021_104442
crossref_primary_10_1016_j_trac_2016_09_005
crossref_primary_10_1038_s41598_019_40182_9
crossref_primary_10_3390_life13122343
crossref_primary_10_1007_s12374_014_0110_5
crossref_primary_10_1093_bioinformatics_btp540
crossref_primary_10_1016_j_foodres_2012_12_025
crossref_primary_10_1002_jsfa_11729
crossref_primary_10_1016_S2095_3119_18_62055_6
crossref_primary_10_1134_S1061934815090117
crossref_primary_10_1016_j_carbon_2021_09_052
crossref_primary_10_3390_biom12050687
crossref_primary_10_3390_metabo12080708
crossref_primary_10_1016_j_chroma_2009_12_031
crossref_primary_10_1016_j_etap_2017_12_008
crossref_primary_10_1371_journal_pone_0171046
crossref_primary_10_1016_j_aca_2025_344175
crossref_primary_10_1007_s11306_017_1252_5
crossref_primary_10_1016_j_ijmm_2016_03_006
crossref_primary_10_1016_j_ibneur_2021_10_003
crossref_primary_10_3390_lipidology2010005
crossref_primary_10_1007_s10955_011_0215_x
crossref_primary_10_1038_s41598_017_17921_x
crossref_primary_10_1002_elps_200800031
crossref_primary_10_3390_jpm11090898
crossref_primary_10_1016_j_phytochem_2024_114095
crossref_primary_10_1016_j_scitotenv_2024_175306
crossref_primary_10_1016_j_aca_2015_06_003
crossref_primary_10_1016_j_euo_2019_07_005
crossref_primary_10_1017_S0007114507685365
crossref_primary_10_1007_s10695_013_9809_3
crossref_primary_10_1007_s11306_010_0221_z
crossref_primary_10_1016_j_bbagrm_2024_195062
crossref_primary_10_1016_j_jobe_2025_111928
crossref_primary_10_1002_jbmr_2018
crossref_primary_10_3390_horticulturae8030224
crossref_primary_10_1089_omi_2009_0023
crossref_primary_10_3390_molecules26040931
crossref_primary_10_1038_s41598_020_64759_x
crossref_primary_10_1080_20002297_2022_2123624
crossref_primary_10_1080_00032719_2021_2019758
crossref_primary_10_1016_j_scienta_2020_109814
crossref_primary_10_3168_jds_2023_23239
crossref_primary_10_1007_s11306_021_01793_4
crossref_primary_10_1128_AEM_01614_19
crossref_primary_10_1016_j_plipres_2018_06_003
crossref_primary_10_1007_s11306_013_0611_0
crossref_primary_10_1016_j_cdc_2021_100719
crossref_primary_10_1007_s11306_018_1431_z
crossref_primary_10_1002_rcm_9217
crossref_primary_10_1016_j_foodres_2017_07_071
crossref_primary_10_1007_s00343_019_7268_0
crossref_primary_10_1007_s11306_023_02071_1
crossref_primary_10_1016_j_bbagrm_2024_195058
crossref_primary_10_1186_s41610_019_0103_x
crossref_primary_10_1371_journal_pone_0037840
crossref_primary_10_3390_metabo11020110
crossref_primary_10_1186_1471_2105_11_571
crossref_primary_10_3390_metabo7030034
crossref_primary_10_3390_cells13181536
crossref_primary_10_1007_s11042_025_21046_z
crossref_primary_10_1016_j_clnu_2025_07_027
crossref_primary_10_3382_ps_pey266
crossref_primary_10_3389_fonc_2023_1127446
crossref_primary_10_1016_j_foodchem_2018_12_025
crossref_primary_10_1515_jlm_2010_041
crossref_primary_10_1016_j_metabol_2023_155742
crossref_primary_10_1093_ibd_izz098
crossref_primary_10_1007_s10928_014_9369_x
crossref_primary_10_3390_metabo15090603
crossref_primary_10_1016_j_febslet_2008_06_040
crossref_primary_10_1002_jwmg_22452
crossref_primary_10_1586_erm_10_110
crossref_primary_10_1002_ece3_2208
crossref_primary_10_1007_s11306_014_0758_3
crossref_primary_10_3389_fnut_2022_985797
crossref_primary_10_1007_s12161_015_0325_1
crossref_primary_10_1016_j_chroma_2007_10_063
crossref_primary_10_1371_journal_pcbi_1012407
crossref_primary_10_1007_s11306_008_0105_7
crossref_primary_10_1016_j_ejps_2018_06_023
crossref_primary_10_1016_j_jnutbio_2019_03_004
crossref_primary_10_1016_j_cmet_2024_02_009
crossref_primary_10_1016_j_jnutbio_2018_09_029
crossref_primary_10_1016_j_geoderma_2018_08_021
crossref_primary_10_1016_j_neurobiolaging_2025_03_004
crossref_primary_10_1016_j_chemosphere_2020_128961
crossref_primary_10_1016_j_chroma_2017_04_021
crossref_primary_10_4049_jimmunol_0804125
crossref_primary_10_1186_1472_6750_14_22
crossref_primary_10_1016_j_ejps_2019_105171
crossref_primary_10_1016_j_bse_2021_104380
crossref_primary_10_1007_s00216_013_7199_0
crossref_primary_10_1039_D0RE00321B
crossref_primary_10_1373_clinchem_2011_167601
crossref_primary_10_1016_j_foodchem_2024_140816
crossref_primary_10_5194_bg_14_3371_2017
crossref_primary_10_1088_1752_7155_8_2_027105
crossref_primary_10_3168_jds_2019_17713
crossref_primary_10_1016_j_biopha_2024_116612
crossref_primary_10_1016_j_buildenv_2025_112520
crossref_primary_10_1016_j_soilbio_2021_108305
crossref_primary_10_1002_anie_200905579
crossref_primary_10_3389_fimmu_2019_02367
crossref_primary_10_3389_fmars_2015_00081
crossref_primary_10_1002_jssc_201500261
crossref_primary_10_1007_s11739_024_03626_3
crossref_primary_10_3390_nu13020394
crossref_primary_10_1016_j_aca_2019_12_062
crossref_primary_10_1186_1471_2164_9_250
crossref_primary_10_3390_metabo10070297
crossref_primary_10_1002_cem_3588
crossref_primary_10_1016_j_ins_2024_121580
crossref_primary_10_1093_ibd_izy349
crossref_primary_10_1038_s41598_022_18655_1
crossref_primary_10_1007_s00394_021_02692_z
crossref_primary_10_3389_fmicb_2021_793136
crossref_primary_10_3390_metabo13030433
crossref_primary_10_1016_j_envexpbot_2025_106149
crossref_primary_10_1007_s10545_017_0080_0
crossref_primary_10_1016_j_talanta_2013_03_064
crossref_primary_10_1016_j_tifs_2017_01_001
crossref_primary_10_1093_toxsci_kfp227
crossref_primary_10_1186_s40168_020_0785_4
crossref_primary_10_1371_journal_pone_0000218
crossref_primary_10_1007_s12145_023_01039_y
crossref_primary_10_1007_s10545_018_0139_6
crossref_primary_10_1016_j_marpolbul_2021_112295
crossref_primary_10_1016_j_combustflame_2011_12_024
crossref_primary_10_1016_j_foodcont_2024_110397
crossref_primary_10_3390_molecules25173972
crossref_primary_10_1039_C7MT00244K
crossref_primary_10_3390_toxins12030192
crossref_primary_10_1016_j_phytochem_2015_07_014
crossref_primary_10_3390_microorganisms9040790
crossref_primary_10_1016_j_chroma_2019_07_007
crossref_primary_10_1016_j_foodqual_2010_12_001
crossref_primary_10_1016_j_chemolab_2015_05_005
crossref_primary_10_1063_5_0164374
crossref_primary_10_1186_s40246_018_0134_x
crossref_primary_10_3390_molecules28062620
crossref_primary_10_3390_gels10090554
crossref_primary_10_1007_s10439_022_02904_5
crossref_primary_10_1007_s11306_020_1640_0
crossref_primary_10_1016_j_jbiosc_2013_01_004
crossref_primary_10_1016_j_bbalip_2024_159565
crossref_primary_10_3390_vetsci2040349
crossref_primary_10_1145_3653296
crossref_primary_10_1007_s11104_017_3355_1
crossref_primary_10_1007_s10784_025_09665_1
crossref_primary_10_1007_s11306_015_0782_y
crossref_primary_10_1016_j_ufug_2018_02_012
crossref_primary_10_1038_s41596_021_00579_1
crossref_primary_10_1186_s13023_023_02673_x
crossref_primary_10_1159_000350941
crossref_primary_10_1007_s11306_015_0925_1
crossref_primary_10_1186_s12931_019_1028_8
crossref_primary_10_3390_molecules27041390
crossref_primary_10_1016_j_soilbio_2020_108021
crossref_primary_10_1038_s41438_021_00502_5
crossref_primary_10_1002_cem_1387
crossref_primary_10_3389_fonc_2021_667843
crossref_primary_10_1080_14680629_2017_1352016
crossref_primary_10_3390_ijerph18084057
crossref_primary_10_1007_s10811_015_0733_z
crossref_primary_10_1016_j_heliyon_2022_e11895
crossref_primary_10_1007_s11306_012_0415_7
crossref_primary_10_1088_1752_7163_aae557
crossref_primary_10_3390_molecules28114332
crossref_primary_10_1002_biot_201700745
crossref_primary_10_1038_nprot_2008_64
crossref_primary_10_1007_s11306_018_1408_y
crossref_primary_10_3390_metabo14090480
crossref_primary_10_1016_j_plaphy_2023_108033
crossref_primary_10_3390_molecules22030425
crossref_primary_10_1002_mnfr_201600387
crossref_primary_10_1016_j_camwa_2024_01_003
crossref_primary_10_1016_j_talanta_2020_121533
crossref_primary_10_3390_molecules26082233
crossref_primary_10_1371_journal_pone_0085732
crossref_primary_10_1002_oby_21361
crossref_primary_10_1016_j_foodchem_2016_04_134
crossref_primary_10_1093_ajcn_nqab047
crossref_primary_10_1111_nph_17708
crossref_primary_10_1016_j_plipres_2022_101177
crossref_primary_10_1039_D3FO01770B
crossref_primary_10_1371_journal_pone_0191909
crossref_primary_10_1039_C2MB25401H
crossref_primary_10_1002_mnfr_201600150
crossref_primary_10_1007_s11306_010_0211_1
crossref_primary_10_3390_plants13091170
crossref_primary_10_1007_s11306_007_0081_3
crossref_primary_10_1016_j_envexpbot_2024_106057
crossref_primary_10_1016_j_talanta_2018_11_039
crossref_primary_10_1016_j_jaap_2021_105164
crossref_primary_10_1016_j_phytochem_2013_04_016
crossref_primary_10_1007_s42452_020_04061_7
crossref_primary_10_1371_journal_pone_0286312
crossref_primary_10_1016_j_toxicon_2014_12_003
crossref_primary_10_3390_diagnostics14232696
crossref_primary_10_1038_s41598_021_90931_y
crossref_primary_10_1088_1752_7163_ab7b8d
crossref_primary_10_1016_j_imu_2024_101507
crossref_primary_10_1016_j_ijfoodmicro_2009_06_006
crossref_primary_10_1016_j_scitotenv_2022_161054
crossref_primary_10_1186_1471_2229_11_104
crossref_primary_10_1007_s11306_010_0246_3
crossref_primary_10_1016_j_foodchem_2016_12_089
crossref_primary_10_1016_j_fitote_2022_105262
crossref_primary_10_1016_j_cpb_2022_100260
crossref_primary_10_1109_ACCESS_2024_3362647
crossref_primary_10_3389_fcimb_2024_1346813
crossref_primary_10_1038_s41598_025_90019_x
crossref_primary_10_1002_elps_200800554
crossref_primary_10_1186_1471_2164_13_701
crossref_primary_10_1002_oby_22670
crossref_primary_10_1016_j_ijpara_2009_11_003
crossref_primary_10_1016_j_ejps_2018_05_008
crossref_primary_10_1016_j_plipres_2014_06_001
crossref_primary_10_1016_j_hpj_2020_12_003
crossref_primary_10_1038_s41598_019_50260_7
crossref_primary_10_3389_fpls_2023_1187803
crossref_primary_10_1016_j_chemphyslip_2015_08_011
crossref_primary_10_1007_s12665_019_8401_2
crossref_primary_10_1038_s41598_018_37494_7
crossref_primary_10_3390_antibiotics9020064
crossref_primary_10_3390_molecules24030419
crossref_primary_10_1038_s42003_025_07795_5
crossref_primary_10_1016_j_jpba_2024_116376
crossref_primary_10_1016_j_jprot_2015_01_019
crossref_primary_10_1109_TCBB_2021_3115876
crossref_primary_10_3390_ijms23179781
crossref_primary_10_1002_elps_201400196
crossref_primary_10_1088_1752_7163_abf20a
crossref_primary_10_3390_app12010300
crossref_primary_10_1530_JOE_14_0600
crossref_primary_10_3389_fphar_2021_629561
crossref_primary_10_3390_md16100390
crossref_primary_10_1016_j_aquaculture_2019_01_058
crossref_primary_10_1152_jn_00375_2020
crossref_primary_10_1016_j_fm_2016_11_001
crossref_primary_10_1016_j_saa_2020_119259
crossref_primary_10_1097_CCE_0000000000000478
crossref_primary_10_3389_fpls_2017_00551
crossref_primary_10_3390_pathophysiology28020019
crossref_primary_10_1002_cem_3127
crossref_primary_10_1007_s13668_019_00279_z
crossref_primary_10_1007_s11306_015_0773_z
crossref_primary_10_1186_s12859_018_2134_1
crossref_primary_10_1007_s00204_015_1519_4
crossref_primary_10_1111_rssc_12060
crossref_primary_10_1016_j_jaci_2018_10_058
crossref_primary_10_1186_1471_2105_9_59
crossref_primary_10_3390_metabo12020192
crossref_primary_10_1016_j_compchemeng_2014_12_016
crossref_primary_10_1016_j_nbt_2025_01_005
crossref_primary_10_1007_s00217_022_04021_y
crossref_primary_10_1016_j_aca_2022_339614
crossref_primary_10_1016_j_foodres_2020_109085
crossref_primary_10_3168_jds_2019_17566
crossref_primary_10_3390_metabo11110788
crossref_primary_10_1007_s13361_015_1128_8
crossref_primary_10_3390_proteomes6020020
crossref_primary_10_1007_s11306_014_0650_1
crossref_primary_10_1016_j_foodchem_2020_128778
crossref_primary_10_1016_j_chemolab_2009_05_004
crossref_primary_10_3390_metabo11040220
crossref_primary_10_1016_j_jff_2018_08_003
crossref_primary_10_1007_s10142_022_00904_1
crossref_primary_10_1002_jbio_201700219
crossref_primary_10_1016_j_foodcont_2023_110018
crossref_primary_10_1093_jn_nxaa021
crossref_primary_10_1016_j_jinf_2020_06_078
crossref_primary_10_1007_s10815_019_01670_z
crossref_primary_10_1016_j_sab_2020_106016
crossref_primary_10_1016_j_aquaculture_2020_735627
crossref_primary_10_1186_1471_2105_9_199
crossref_primary_10_3389_fmicb_2021_643792
crossref_primary_10_1016_j_jff_2016_04_003
crossref_primary_10_1038_s42255_020_0228_3
crossref_primary_10_1016_j_jpedsurg_2015_04_014
crossref_primary_10_1186_s12911_024_02578_0
crossref_primary_10_3390_metabo11070448
crossref_primary_10_1016_j_algal_2024_103878
crossref_primary_10_1016_j_chom_2021_09_007
crossref_primary_10_1007_s10666_020_09700_2
crossref_primary_10_1007_s11306_016_1048_z
crossref_primary_10_1186_1471_2164_13_380
crossref_primary_10_1016_j_joca_2019_07_017
crossref_primary_10_1111_pbi_13282
crossref_primary_10_1515_biol_2022_0556
crossref_primary_10_1002_mnfr_201900140
crossref_primary_10_1002_mnfr_202200111
crossref_primary_10_1016_j_foodchem_2020_127453
crossref_primary_10_1093_jas_skaa180
crossref_primary_10_3390_ijms241813724
crossref_primary_10_1093_pcp_pcab132
crossref_primary_10_1016_j_jpba_2015_01_025
crossref_primary_10_3389_fmars_2016_00001
crossref_primary_10_1016_j_phytochem_2011_04_006
crossref_primary_10_1016_j_bbi_2025_03_001
crossref_primary_10_1016_j_biochi_2015_01_005
crossref_primary_10_1016_j_semnephrol_2017_09_007
crossref_primary_10_1038_s41380_022_01724_2
crossref_primary_10_5511_plantbiotechnology_26_445
crossref_primary_10_1007_s00216_009_3338_z
crossref_primary_10_1007_s10329_022_00995_1
crossref_primary_10_1038_s41598_018_36688_3
crossref_primary_10_1016_j_foodchem_2022_133476
crossref_primary_10_1002_rcm_6420
crossref_primary_10_1007_s11306_011_0305_4
crossref_primary_10_1289_EHP12125
crossref_primary_10_1016_S0208_5216_13_70053_6
crossref_primary_10_1186_1471_2164_13_350
crossref_primary_10_1007_s10529_014_1508_3
crossref_primary_10_1111_pce_12071
crossref_primary_10_1016_j_clinms_2019_05_002
crossref_primary_10_1126_scisignal_aad1932
crossref_primary_10_1002_mnfr_202200145
crossref_primary_10_4155_bio_16_31
crossref_primary_10_1038_s41598_020_72781_2
crossref_primary_10_1016_j_ijfoodmicro_2018_02_014
crossref_primary_10_1016_j_aca_2017_10_019
crossref_primary_10_1016_j_chemolab_2023_104841
crossref_primary_10_3390_ijms23020781
crossref_primary_10_1016_j_aca_2016_03_046
crossref_primary_10_1016_j_scitotenv_2015_03_136
crossref_primary_10_1039_c0an00834f
crossref_primary_10_1007_s40618_020_01434_y
crossref_primary_10_1007_s41348_022_00682_9
crossref_primary_10_1016_j_aca_2016_02_001
crossref_primary_10_1128_mSphere_00097_18
crossref_primary_10_3389_fonc_2018_00134
crossref_primary_10_1038_s41598_020_74909_w
crossref_primary_10_1038_s41398_022_01856_7
crossref_primary_10_3389_fmolb_2023_1295216
crossref_primary_10_3390_metabo11070460
crossref_primary_10_1126_science_aay5947
crossref_primary_10_3389_fpls_2024_1164859
crossref_primary_10_1016_j_trac_2020_116157
crossref_primary_10_1039_c3ay41970c
crossref_primary_10_3402_jev_v5_31242
crossref_primary_10_3109_09553002_2011_556177
crossref_primary_10_1016_j_fpsl_2021_100805
crossref_primary_10_1021_tx400451q
crossref_primary_10_3390_biomedicines10112891
crossref_primary_10_1016_j_bcp_2016_03_020
crossref_primary_10_1016_j_hal_2021_102060
crossref_primary_10_1111_jpi_70068
crossref_primary_10_1016_j_jsbmb_2013_07_013
crossref_primary_10_1088_1752_7163_ad9b46
crossref_primary_10_1016_j_jtemb_2017_04_004
crossref_primary_10_3390_horticulturae10070663
crossref_primary_10_1007_s00216_013_7284_4
crossref_primary_10_1007_s11306_018_1370_8
crossref_primary_10_1016_j_foodchem_2023_136817
crossref_primary_10_1016_j_foodres_2022_111779
crossref_primary_10_3390_metabo12050432
crossref_primary_10_1007_s10654_023_00988_4
crossref_primary_10_1016_j_jnutbio_2019_108285
crossref_primary_10_1007_s11306_023_02034_6
crossref_primary_10_1038_s41598_021_86653_w
crossref_primary_10_1038_s41598_021_03553_9
crossref_primary_10_3168_jds_2019_17114
crossref_primary_10_1016_j_burns_2010_03_015
crossref_primary_10_1093_toxsci_kfab096
crossref_primary_10_1007_s10646_012_0885_4
crossref_primary_10_1186_s12870_024_05342_8
crossref_primary_10_1371_journal_pone_0271460
crossref_primary_10_1016_j_foodchem_2018_01_038
crossref_primary_10_3390_bios15010020
crossref_primary_10_1007_s11306_016_1026_5
crossref_primary_10_1007_s13313_024_00981_9
crossref_primary_10_1016_j_ijbiomac_2022_09_012
crossref_primary_10_1038_s41598_017_16051_8
crossref_primary_10_1002_dta_3250
crossref_primary_10_1186_s12864_023_09647_0
crossref_primary_10_3390_metabo10060243
crossref_primary_10_1016_j_metabol_2019_154005
crossref_primary_10_1186_s12866_023_03141_z
crossref_primary_10_1016_j_aei_2022_101805
crossref_primary_10_1016_j_jchromb_2008_07_004
crossref_primary_10_3390_ijms19051385
crossref_primary_10_1016_j_microc_2020_104830
crossref_primary_10_1016_j_talanta_2023_125598
crossref_primary_10_3233_JAD_200176
crossref_primary_10_1007_s11306_020_01747_2
crossref_primary_10_1016_j_aca_2024_343491
crossref_primary_10_1038_nrneph_2011_152
crossref_primary_10_3390_metabo12100963
crossref_primary_10_1007_s00216_014_8227_4
crossref_primary_10_1007_s00253_007_1029_2
crossref_primary_10_1016_j_biochi_2018_11_007
crossref_primary_10_1016_j_jpba_2017_04_047
crossref_primary_10_1371_journal_pone_0284315
crossref_primary_10_1053_j_gastro_2019_11_012
crossref_primary_10_1016_j_foodchem_2018_01_029
crossref_primary_10_1016_j_microc_2025_113793
crossref_primary_10_1111_1749_4877_12645
crossref_primary_10_1039_B906712B
crossref_primary_10_1186_s12870_023_04074_5
crossref_primary_10_3390_metabo10060232
crossref_primary_10_1208_s12249_009_9303_5
crossref_primary_10_1002_cem_996
crossref_primary_10_1002_phar_2119
crossref_primary_10_1038_s41598_025_18172_x
crossref_primary_10_1007_s12015_021_10239_2
crossref_primary_10_3389_fmicb_2021_723479
crossref_primary_10_1007_s11306_020_01736_5
crossref_primary_10_1016_j_jaci_2022_07_027
crossref_primary_10_1016_j_cca_2013_08_020
crossref_primary_10_1016_j_trac_2021_116251
crossref_primary_10_3390_metabo13060682
crossref_primary_10_1007_s11306_016_0987_8
crossref_primary_10_1134_S1990750821010042
crossref_primary_10_3390_nu10020164
crossref_primary_10_1007_s11306_021_01831_1
crossref_primary_10_1186_s12284_015_0043_8
crossref_primary_10_3390_metabo10070271
Cites_doi 10.1016/j.tibtech.2004.11.003
10.1016/0003-2670(92)85422-3
10.1093/nar/28.1.27
10.1007/978-1-4899-4541-9_11
10.1007/s11306-005-1109-1
10.1099/mic.0.28278-0
10.1016/S1044-0305(99)00047-1
10.1016/0167-7012(95)00104-2
10.1021/ac051683+
10.1021/ac051080y
10.1128/AEM.56.5.1347-1351.1990
10.1016/S0003-2670(03)00094-1
10.1002/0471725331
10.1099/00221287-136-3-395
10.1016/j.mimet.2005.04.035
10.1111/j.2517-6161.1964.tb00553.x
10.1093/bioinformatics/bth268
10.1093/nar/gkh100
10.1002/cem.773
10.1158/0008-5472.CAN-04-3506
10.1073/pnas.95.25.14863
10.1023/A:1013713905833
10.1021/ac00073a010
10.1007/s10295-005-0231-4
ContentType Journal Article
Copyright Copyright © 2006 van den Berg et al; licensee BioMed Central Ltd. 2006 van den Berg et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 van den Berg et al; licensee BioMed Central Ltd. 2006 van den Berg et al; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2164-7-142
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 142
ExternalDocumentID oai_doaj_org_article_c498c53e2e2741cd8d883176ddf21e78
PMC1534033
16762068
10_1186_1471_2164_7_142
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
IGS
IHR
INH
IPNFZ
ISR
ITC
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c554t-b9d7dd0a734d97b92f785dec4c076167ab0696d683fe4ed7873070930e838ea13
IEDL.DBID DOA
ISICitedReferencesCount 1921
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239633700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Fri Oct 03 12:39:38 EDT 2025
Thu Aug 21 14:07:04 EDT 2025
Thu Sep 04 18:49:47 EDT 2025
Fri Sep 05 08:35:38 EDT 2025
Fri Dec 05 04:53:19 EST 2025
Tue Nov 18 22:11:24 EST 2025
Sat Nov 29 05:49:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-b9d7dd0a734d97b92f785dec4c076167ab0696d683fe4ed7873070930e838ea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/c498c53e2e2741cd8d883176ddf21e78
PMID 16762068
PQID 19335596
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c498c53e2e2741cd8d883176ddf21e78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1534033
proquest_miscellaneous_68722312
proquest_miscellaneous_19335596
pubmed_primary_16762068
crossref_primary_10_1186_1471_2164_7_142
crossref_citationtrail_10_1186_1471_2164_7_142
PublicationCentury 2000
PublicationDate 2006-06-08
PublicationDateYYYYMMDD 2006-06-08
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-08
  day: 08
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2006
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References GEP Box (525_CR24) 1964; 26
IT Jolliffe (525_CR25) 2002
B Efron (525_CR28) 1993
RR Sokal (525_CR13) 1995
M Koek (525_CR18) 2006; 78
MB Eisen (525_CR29) 1998; 95
GJG Ruijter (525_CR17) 1996; 25
JJ Jansen (525_CR23) 2004; 20
O Fiehn (525_CR4) 2002; 48
HR Keller (525_CR6) 1992; 263
S Hartmans (525_CR14) 1990; 56
SE Stein (525_CR20) 1999; 10
M Kanehisa (525_CR27) 2000; 28
Mathworks (525_CR21) 2005
Eigenvector (525_CR22) 2003
JE Jackson (525_CR9) 1991
MJ van der Werf (525_CR15) 2006; 152
YI Shurubor (525_CR5) 2005; 1
B Pieterse (525_CR16) 2006; 64
EM Reis (525_CR1) 2005; 65
OM Kvalheim (525_CR7) 1994; 66
L Eriksson (525_CR10) 1999
CJ Krieger (525_CR26) 2004; 32
AK Smilde (525_CR11) 2005; 77
MJ van der Werf (525_CR2) 2005; 23
MJ van der Werf (525_CR3) 2005; 32
HC Keun (525_CR12) 2003; 490
C Verduyn (525_CR19) 1990; 136
R Bro (525_CR8) 2003; 17
14681452 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D438-42
16223263 - Anal Chem. 2005 Oct 15;77(20):6729-36
2339888 - Appl Environ Microbiol. 1990 May;56(5):1347-51
16385135 - Microbiology. 2006 Jan;152(Pt 1):257-72
16478122 - Anal Chem. 2006 Feb 15;78(4):1272-81
11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71
15895265 - J Ind Microbiol Biotechnol. 2005 Jun;32(6):234-52
15753364 - Cancer Res. 2005 Mar 1;65(5):1693-9
15087313 - Bioinformatics. 2004 Oct 12;20(15):2438-46
15982764 - J Microbiol Methods. 2006 Feb;64(2):207-16
10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
1975265 - J Gen Microbiol. 1990 Mar;136(3):395-403
15629852 - Trends Biotechnol. 2005 Jan;23(1):11-6
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
References_xml – volume: 23
  start-page: 11
  year: 2005
  ident: 525_CR2
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2004.11.003
– volume-title: Matlab 7
  year: 2005
  ident: 525_CR21
– volume: 263
  start-page: 29
  year: 1992
  ident: 525_CR6
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(92)85422-3
– volume: 28
  start-page: 27
  year: 2000
  ident: 525_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– start-page: 141
  volume-title: An Introduction to the Bootstrap
  year: 1993
  ident: 525_CR28
  doi: 10.1007/978-1-4899-4541-9_11
– start-page: 392
  volume-title: Biometry
  year: 1995
  ident: 525_CR13
– volume: 1
  start-page: 75
  year: 2005
  ident: 525_CR5
  publication-title: Metabolomics
  doi: 10.1007/s11306-005-1109-1
– volume: 152
  start-page: 257
  year: 2006
  ident: 525_CR15
  publication-title: Microbiology
  doi: 10.1099/mic.0.28278-0
– volume: 10
  start-page: 770
  year: 1999
  ident: 525_CR20
  publication-title: J Am Soc Mass Spectrom
  doi: 10.1016/S1044-0305(99)00047-1
– volume: 25
  start-page: 295
  year: 1996
  ident: 525_CR17
  publication-title: J Microbiol Methods
  doi: 10.1016/0167-7012(95)00104-2
– volume: 78
  start-page: 1272
  year: 2006
  ident: 525_CR18
  publication-title: Anal Chem
  doi: 10.1021/ac051683+
– volume: 77
  start-page: 6729
  year: 2005
  ident: 525_CR11
  publication-title: Anal Chem
  doi: 10.1021/ac051080y
– volume: 56
  start-page: 1347
  year: 1990
  ident: 525_CR14
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.56.5.1347-1351.1990
– start-page: 213
  volume-title: Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS)
  year: 1999
  ident: 525_CR10
– volume: 490
  start-page: 265
  year: 2003
  ident: 525_CR12
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(03)00094-1
– volume-title: A user's guide to principal components
  year: 1991
  ident: 525_CR9
  doi: 10.1002/0471725331
– volume: 136
  start-page: 395
  year: 1990
  ident: 525_CR19
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-136-3-395
– volume: 64
  start-page: 207
  year: 2006
  ident: 525_CR16
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2005.04.035
– volume-title: PLS Toolbox 3.0
  year: 2003
  ident: 525_CR22
– volume: 26
  start-page: 211
  year: 1964
  ident: 525_CR24
  publication-title: J R Statist Soc B
  doi: 10.1111/j.2517-6161.1964.tb00553.x
– volume: 20
  start-page: 2438
  year: 2004
  ident: 525_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth268
– volume: 32
  start-page: D438
  year: 2004
  ident: 525_CR26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh100
– volume: 17
  start-page: 16
  year: 2003
  ident: 525_CR8
  publication-title: J Chemom
  doi: 10.1002/cem.773
– volume: 65
  start-page: 1693
  year: 2005
  ident: 525_CR1
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-3506
– volume-title: Principal Component Analysis
  year: 2002
  ident: 525_CR25
– volume: 95
  start-page: 14863
  year: 1998
  ident: 525_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.14863
– volume: 48
  start-page: 151
  year: 2002
  ident: 525_CR4
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1013713905833
– volume: 66
  start-page: 43
  year: 1994
  ident: 525_CR7
  publication-title: Anal Chem
  doi: 10.1021/ac00073a010
– volume: 32
  start-page: 234
  year: 2005
  ident: 525_CR3
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-005-0231-4
– reference: 16223263 - Anal Chem. 2005 Oct 15;77(20):6729-36
– reference: 10592173 - Nucleic Acids Res. 2000 Jan 1;28(1):27-30
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 16385135 - Microbiology. 2006 Jan;152(Pt 1):257-72
– reference: 15982764 - J Microbiol Methods. 2006 Feb;64(2):207-16
– reference: 16478122 - Anal Chem. 2006 Feb 15;78(4):1272-81
– reference: 15753364 - Cancer Res. 2005 Mar 1;65(5):1693-9
– reference: 15895265 - J Ind Microbiol Biotechnol. 2005 Jun;32(6):234-52
– reference: 11860207 - Plant Mol Biol. 2002 Jan;48(1-2):155-71
– reference: 15087313 - Bioinformatics. 2004 Oct 12;20(15):2438-46
– reference: 2339888 - Appl Environ Microbiol. 1990 May;56(5):1347-51
– reference: 15629852 - Trends Biotechnol. 2005 Jan;23(1):11-6
– reference: 14681452 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D438-42
– reference: 1975265 - J Gen Microbiol. 1990 Mar;136(3):395-403
SSID ssj0017825
Score 2.470079
Snippet Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of the data hamper...
Abstract Background Extracting relevant biological information from large data sets is a major challenge in functional genomics research. Different aspects of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 142
SubjectTerms Automatic Data Processing - methods
Cluster Analysis
Databases, Genetic
Fermentation - genetics
Metabolism - genetics
Models, Theoretical
Observer Variation
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Pseudomonas putida - genetics
Reproducibility of Results
Statistical Distributions
Title Centering, scaling, and transformations: improving the biological information content of metabolomics data
URI https://www.ncbi.nlm.nih.gov/pubmed/16762068
https://www.proquest.com/docview/19335596
https://www.proquest.com/docview/68722312
https://pubmed.ncbi.nlm.nih.gov/PMC1534033
https://doaj.org/article/c498c53e2e2741cd8d883176ddf21e78
Volume 7
WOSCitedRecordID wos000239633700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZgBRKXqtDXtgV86KGHBhLb8aO3FrHiAuLQSnuzHNtRt1qyFRsqceG3d8bJbncRiAtSFEWOYzmeseezPf6GkE_OlFHJ3GdMVQYmKLXJtIfBMOR5LcrgSuGrFGxCXVzo8dhcroT6Qp-wjh64a7hjL4z2JY8sItGKDzpoDTZPhlCzIqp0zBdQz2Iy1e8fgN0r07kiVWQMZgQ9qU-h5fEyLVNZIdiaPUq0_Q9hzfsukys2aPSSvOjBI_3WVXqXbMRmj2x34SRvX5HfuFSbqAW_0Dm0fXpwTaDtCjoFLftKJ4ulBAr4j3ZETCgt2vOoYjaKXuxQIJ3V9Cq2oCxTPME8p-hU-pr8HJ3-ODnL-lgKmQfA0GaVCSqE3CkuggGxsFrpMkQvPC5kSOWqXBoZpOZ1FDFAN8bBwPA8aq6jK_gbMmhmTXxHqJcVksiVmgknShYqDnbe8aKoYXTwqh6So0WLWt8TjWO8i6lNEw4tLYrAogisgmc2JJ-XH_zpODYez_odRbTMhuTYKQFUxvYqY59SmSE5XAjYQmfCHRLXxNnN3AKaBfxl5OM5pFYAqAqoyNtOIf7XWIJdySWUrtZUZa2u62-aya9E6A1WR-Scv3-On_tAdrpVIrj0RzJor2_iPtnyf9vJ_PqAbKqxPkh9Be7nd6f_AFhqF4E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Centering%2C+scaling%2C+and+transformations%3A+improving+the+biological+information+content+of+metabolomics+data&rft.jtitle=BMC+genomics&rft.au=van+den+Berg%2C+Robert+A&rft.au=Hoefsloot%2C+Huub+CJ&rft.au=Westerhuis%2C+Johan+A&rft.au=Smilde%2C+Age+K&rft.date=2006-06-08&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=7&rft.spage=142&rft.epage=142&rft_id=info:doi/10.1186%2F1471-2164-7-142&rft_id=info%3Apmid%2F16762068&rft.externalDocID=PMC1534033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon