Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage

The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 108; číslo 12; s. 4944
Hlavní autoři: Mankouri, Hocine W, Ashton, Thomas M, Hickson, Ian D
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 22.03.2011
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
AbstractList The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.
Author Ashton, Thomas M
Mankouri, Hocine W
Hickson, Ian D
Author_xml – sequence: 1
  givenname: Hocine W
  surname: Mankouri
  fullname: Mankouri, Hocine W
  organization: Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
– sequence: 2
  givenname: Thomas M
  surname: Ashton
  fullname: Ashton, Thomas M
– sequence: 3
  givenname: Ian D
  surname: Hickson
  fullname: Hickson, Ian D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21383164$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAQhi1URD9gZkPemAK2Y8fOWJWPIlUwUObomjiVS2IH2xH035NCkZju1em5R3c3RSPrrEbokpIbSmR621kIQ6KccUKJOkETSnKaZDwno395jKYh7AghuVDkDI0ZTVVKMz5BfumaxlSwx7veltE4m5TORjDW2C2-e57jEH1fxt7rgDvtgwkRG4tL3TQBN1C-H7jXbaDYebx2XYrrweg-D2391bkwTOLoflQVtLDV5-i0hiboi2OdobeH-_VimaxeHp8W81VSCsFjAlnNU6IVo5BzziteS06gZozxmgCthrvqTGhJK9BCMVWVjOlUghQE9EYBm6HrX2_n3UevQyxaEw57g9WuD4USilMpcjmQV0ey37S6KjpvWvD74u9N7BvbE2y6
CitedBy_id crossref_primary_10_1038_emboj_2012_195
crossref_primary_10_1074_jbc_M113_496133
crossref_primary_10_1016_j_semcdb_2011_10_007
crossref_primary_10_1371_journal_pgen_1003833
crossref_primary_10_1371_journal_pgen_1003039
crossref_primary_10_3390_genes9110558
crossref_primary_10_1101_gad_278275_116
crossref_primary_10_1038_ncomms4574
crossref_primary_10_1534_genetics_119_302632
crossref_primary_10_15252_embj_2020104566
crossref_primary_10_1016_j_dnarep_2019_04_005
crossref_primary_10_1016_j_molcel_2015_01_021
crossref_primary_10_1038_s41467_024_45684_3
crossref_primary_10_1016_j_febslet_2011_04_053
crossref_primary_10_1038_nsmb_2888
crossref_primary_10_4161_15384101_2014_958912
crossref_primary_10_3390_genes9120603
crossref_primary_10_1016_j_mrfmmm_2012_11_005
crossref_primary_10_3109_10409238_2012_675644
crossref_primary_10_3390_biom3010039
crossref_primary_10_1038_s44318_024_00139_9
crossref_primary_10_1101_gad_240515_114
crossref_primary_10_3390_ijms22189811
crossref_primary_10_3892_ol_2016_4489
crossref_primary_10_1093_nar_gks713
crossref_primary_10_1073_pnas_1303046110
crossref_primary_10_1038_s41467_021_22217_w
crossref_primary_10_1128_MCB_05415_11
crossref_primary_10_1038_s41467_020_19503_4
crossref_primary_10_1371_journal_pgen_1003340
crossref_primary_10_1093_nar_gkr587
crossref_primary_10_4061_2011_724215
crossref_primary_10_1016_j_molcel_2012_06_032
crossref_primary_10_3389_fgene_2016_00135
crossref_primary_10_1111_j_1365_2958_2011_07935_x
crossref_primary_10_1038_s41576_022_00539_9
crossref_primary_10_4161_15384101_2014_989126
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1014240108
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 21383164
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c554t-a6f430e821a9444d4f740af2224f0a1d649f65e71dae5828dc22e37a750aeb8a2
IEDL.DBID 7X8
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288712200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 12:16:38 EDT 2025
Mon Jul 21 06:05:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-a6f430e821a9444d4f740af2224f0a1d649f65e71dae5828dc22e37a750aeb8a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3064375
PMID 21383164
PQID 858417597
PQPubID 23479
ParticipantIDs proquest_miscellaneous_858417597
pubmed_primary_21383164
PublicationCentury 2000
PublicationDate 2011-03-22
PublicationDateYYYYMMDD 2011-03-22
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
References 17378750 - Rejuvenation Res. 2007 Mar;10(1):27-40
9184215 - EMBO J. 1997 May 15;16(10):2682-92
20634321 - Genes Dev. 2010 Jul 15;24(14):1559-69
18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68
10862619 - J Biol Chem. 2000 Sep 1;275(35):26898-905
20346738 - DNA Repair (Amst). 2010 Jun 4;9(6):661-9
11087418 - Biochemistry. 2000 Nov 28;39(47):14617-25
11124263 - J Biol Chem. 2001 Mar 23;276(12):8848-55
9571038 - J Mol Biol. 1998 Apr 24;278(1):117-33
16670433 - Nucleic Acids Res. 2006;34(8):2269-79
16354704 - Mol Cell Biol. 2006 Jan;26(1):343-53
15802523 - Genetics. 2005 Jun;170(2):519-31
12084712 - J Biol Chem. 2002 Sep 6;277(36):32753-9
10728666 - Cancer Res. 2000 Mar 1;60(5):1162-7
9372918 - Mol Cell Biol. 1997 Dec;17(12):6868-75
15775963 - EMBO J. 2005 Apr 6;24(7):1465-76
16849422 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11118-23
17671161 - Mol Biol Cell. 2007 Oct;18(10):4062-73
19657341 - Nat Rev Cancer. 2009 Sep;9(9):644-54
16816432 - Genetics. 2006 Oct;174(2):555-73
9671747 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8733-8
14685245 - Nature. 2003 Dec 18;426(6968):870-4
17081974 - Cell. 2006 Nov 3;127(3):509-22
12036100 - Genes Genet Syst. 2002 Feb;77(1):11-21
9512524 - Nucleic Acids Res. 1998 Apr 1;26(7):1560-6
16595695 - J Biol Chem. 2006 May 19;281(20):13861-4
16899506 - Mol Biol Cell. 2006 Oct;17(10):4473-83
8913739 - Genetics. 1996 Nov;144(3):935-45
15590327 - DNA Repair (Amst). 2005 Feb 3;4(2):191-201
7969174 - Mol Cell Biol. 1994 Dec;14(12):8391-8
12475932 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16887-92
20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82
15687257 - Genes Dev. 2005 Feb 1;19(3):339-50
15889139 - EMBO J. 2005 Jun 1;24(11):2024-33
20086270 - J Biol Chem. 2010 Mar 12;285(11):8290-301
16537486 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4068-73
20040574 - Nucleic Acids Res. 2010 Apr;38(6):1866-73
15899853 - Mol Cell Biol. 2005 Jun;25(11):4476-87
14690603 - Mol Cell. 2003 Dec;12(6):1499-510
9169457 - J Biol Chem. 1997 Jun 6;272(23):14873-82
12228808 - Curr Genet. 2002 Sep;41(6):389-400
19020614 - Nature. 2008 Nov 20;456(7220):357-61
9973560 - J Mol Biol. 1999 Feb 19;286(2):403-15
10734115 - J Biol Chem. 2000 Mar 31;275(13):9636-44
11585898 - Mol Cell Biol. 2001 Nov;21(21):7150-62
12724426 - Mol Cell Biol. 2003 May;23(10):3692-705
7813450 - EMBO J. 1994 Dec 15;13(24):6133-42
10823897 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504-8
10835635 - Nat Genet. 2000 Jun;25(2):192-4
20071248 - DNA Repair (Amst). 2010 Mar 2;9(3):303-14
10835372 - EMBO J. 2000 Jun 1;19(11):2751-62
17980605 - Trends Biochem Sci. 2007 Dec;32(12):538-46
18923082 - Genes Dev. 2008 Oct 15;22(20):2843-55
20348905 - Nature. 2010 Apr 8;464(7290):937-41
References_xml – reference: 20346738 - DNA Repair (Amst). 2010 Jun 4;9(6):661-9
– reference: 14685245 - Nature. 2003 Dec 18;426(6968):870-4
– reference: 17081974 - Cell. 2006 Nov 3;127(3):509-22
– reference: 16670433 - Nucleic Acids Res. 2006;34(8):2269-79
– reference: 15775963 - EMBO J. 2005 Apr 6;24(7):1465-76
– reference: 9372918 - Mol Cell Biol. 1997 Dec;17(12):6868-75
– reference: 7813450 - EMBO J. 1994 Dec 15;13(24):6133-42
– reference: 16537486 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4068-73
– reference: 9671747 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8733-8
– reference: 10862619 - J Biol Chem. 2000 Sep 1;275(35):26898-905
– reference: 14690603 - Mol Cell. 2003 Dec;12(6):1499-510
– reference: 10835372 - EMBO J. 2000 Jun 1;19(11):2751-62
– reference: 20634321 - Genes Dev. 2010 Jul 15;24(14):1559-69
– reference: 10835635 - Nat Genet. 2000 Jun;25(2):192-4
– reference: 12724426 - Mol Cell Biol. 2003 May;23(10):3692-705
– reference: 20040574 - Nucleic Acids Res. 2010 Apr;38(6):1866-73
– reference: 15889139 - EMBO J. 2005 Jun 1;24(11):2024-33
– reference: 12228808 - Curr Genet. 2002 Sep;41(6):389-400
– reference: 12475932 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16887-92
– reference: 15590327 - DNA Repair (Amst). 2005 Feb 3;4(2):191-201
– reference: 16816432 - Genetics. 2006 Oct;174(2):555-73
– reference: 9512524 - Nucleic Acids Res. 1998 Apr 1;26(7):1560-6
– reference: 15899853 - Mol Cell Biol. 2005 Jun;25(11):4476-87
– reference: 10734115 - J Biol Chem. 2000 Mar 31;275(13):9636-44
– reference: 11087418 - Biochemistry. 2000 Nov 28;39(47):14617-25
– reference: 20071248 - DNA Repair (Amst). 2010 Mar 2;9(3):303-14
– reference: 18923082 - Genes Dev. 2008 Oct 15;22(20):2843-55
– reference: 9973560 - J Mol Biol. 1999 Feb 19;286(2):403-15
– reference: 16354704 - Mol Cell Biol. 2006 Jan;26(1):343-53
– reference: 7969174 - Mol Cell Biol. 1994 Dec;14(12):8391-8
– reference: 19020614 - Nature. 2008 Nov 20;456(7220):357-61
– reference: 16849422 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11118-23
– reference: 10728666 - Cancer Res. 2000 Mar 1;60(5):1162-7
– reference: 16899506 - Mol Biol Cell. 2006 Oct;17(10):4473-83
– reference: 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82
– reference: 11124263 - J Biol Chem. 2001 Mar 23;276(12):8848-55
– reference: 16595695 - J Biol Chem. 2006 May 19;281(20):13861-4
– reference: 17671161 - Mol Biol Cell. 2007 Oct;18(10):4062-73
– reference: 17980605 - Trends Biochem Sci. 2007 Dec;32(12):538-46
– reference: 11585898 - Mol Cell Biol. 2001 Nov;21(21):7150-62
– reference: 15687257 - Genes Dev. 2005 Feb 1;19(3):339-50
– reference: 8913739 - Genetics. 1996 Nov;144(3):935-45
– reference: 20348905 - Nature. 2010 Apr 8;464(7290):937-41
– reference: 10823897 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504-8
– reference: 17378750 - Rejuvenation Res. 2007 Mar;10(1):27-40
– reference: 20086270 - J Biol Chem. 2010 Mar 12;285(11):8290-301
– reference: 12084712 - J Biol Chem. 2002 Sep 6;277(36):32753-9
– reference: 9184215 - EMBO J. 1997 May 15;16(10):2682-92
– reference: 15802523 - Genetics. 2005 Jun;170(2):519-31
– reference: 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68
– reference: 12036100 - Genes Genet Syst. 2002 Feb;77(1):11-21
– reference: 9169457 - J Biol Chem. 1997 Jun 6;272(23):14873-82
– reference: 19657341 - Nat Rev Cancer. 2009 Sep;9(9):644-54
– reference: 9571038 - J Mol Biol. 1998 Apr 24;278(1):117-33
SSID ssj0009580
Score 2.2318714
Snippet The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4944
SubjectTerms DNA Damage - drug effects
DNA Damage - physiology
DNA, Cruciform - genetics
DNA, Cruciform - metabolism
DNA, Fungal - genetics
DNA, Fungal - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Holliday Junction Resolvases - genetics
Holliday Junction Resolvases - metabolism
Humans
Methyl Methanesulfonate - pharmacology
Mutagens - pharmacology
RecQ Helicases - genetics
RecQ Helicases - metabolism
S Phase - drug effects
S Phase - physiology
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Title Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage
URI https://www.ncbi.nlm.nih.gov/pubmed/21383164
https://www.proquest.com/docview/858417597
Volume 108
WOSCitedRecordID wos000288712200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5Vle8sAAg9U4dmt7QhUPdYCqEgV1q1w_UJFIQtPy-PeckxSxIAaWDFFiJXfnu-_Op-8QOm1FbRsZw4lQPibcMkHGMWXEcsF8pI2XxRyyx1vR68nhUPWr3py8aqtc-MTCUdvUhBp5U0KkhFCnxEX2SsLQqHC4Wk3QWEY1BkgmGLUYyh-cu7IkI1CUtLmKFsw-gjWzROchceUQ0Ggkf4eXRZi52fjnB26i9Qpf4k5pEHW05JItVK92cI7PKprp82007QY-bqs_8TPEtqAfEvrWy4kR-KrXwSW37BwScpyFslo-w5MEh1J_jkPdLzx3_5RTnE7xIM0Y9rBi-h5uu48sDbVHPEuLpax-Ace1gx5urgeXXVJNYCAGYMaM6LbnLHIyplpxzi33gkfaA6bgoEhqQaq-3XKCWu3C-Zs1ceyY0ABDtBtLHe-ilSRN3D7CrbEBNEk1wEfDIQfUximpBFVcU2cYbyC8EOsILDz8i05cOs9H34JtoL1SNaOsZOIYgVVJBgnfwd8vH6K1shzMSBwfoZqH3e2O0ap5m03y6UlhOXDt9e--AFGxzho
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holliday+junction-containing+DNA+structures+persist+in+cells+lacking+Sgs1+or+Top3+following+exposure+to+DNA+damage&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mankouri%2C+Hocine+W&rft.au=Ashton%2C+Thomas+M&rft.au=Hickson%2C+Ian+D&rft.date=2011-03-22&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=12&rft.spage=4944&rft_id=info:doi/10.1073%2Fpnas.1014240108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon