Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage
The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repa...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 108; H. 12; S. 4944 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
22.03.2011
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase. |
|---|---|
| AbstractList | The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase. The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase.The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA structures arising during DNA replication. Previous investigations have revealed that unprocessed (X-shaped) homologous recombination repair (HRR) intermediates persist when S-phase is perturbed by using methyl methanesulfonate (MMS) in Saccharomyces cerevisiae cells with impaired Sgs1 or Top3. However, the precise nature of these persistent DNA structures remains poorly characterized. Here, we report that ectopic expression of either of two heterologous and structurally unrelated Holliday junction (HJ) resolvases, Escherichia coli RusA or human GEN1(1-527), promotes the removal of these X-structures in vivo. Moreover, other types of DNA replication intermediates, including stalled replication forks and non-HRR-dependent X-structures, are refractory to RusA or GEN1(1-527), demonstrating specificity of these HJ resolvases for MMS-induced X-structures in vivo. These data suggest that the X-structures persisting in cells with impaired Sgs1 or Top3 contain HJs. Furthermore, we demonstrate that Sgs1 directly promotes X-structure removal, because the persistent structures arising in Sgs1-deficient strains are eliminated when Sgs1 is reactivated in vivo. We propose that HJ resolvases and Sgs1-Top3-Rmi1 comprise two independent processes to deal with HJ-containing DNA intermediates arising during HRR in S-phase. |
| Author | Ashton, Thomas M Mankouri, Hocine W Hickson, Ian D |
| Author_xml | – sequence: 1 givenname: Hocine W surname: Mankouri fullname: Mankouri, Hocine W organization: Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom – sequence: 2 givenname: Thomas M surname: Ashton fullname: Ashton, Thomas M – sequence: 3 givenname: Ian D surname: Hickson fullname: Hickson, Ian D |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21383164$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAQhi1URD9gZkPemAK2Y8fOWJWPIlUwUObomjiVS2IH2xH035NCkZju1em5R3c3RSPrrEbokpIbSmR621kIQ6KccUKJOkETSnKaZDwno395jKYh7AghuVDkDI0ZTVVKMz5BfumaxlSwx7veltE4m5TORjDW2C2-e57jEH1fxt7rgDvtgwkRG4tL3TQBN1C-H7jXbaDYebx2XYrrweg-D2391bkwTOLoflQVtLDV5-i0hiboi2OdobeH-_VimaxeHp8W81VSCsFjAlnNU6IVo5BzziteS06gZozxmgCthrvqTGhJK9BCMVWVjOlUghQE9EYBm6HrX2_n3UevQyxaEw57g9WuD4USilMpcjmQV0ey37S6KjpvWvD74u9N7BvbE2y6 |
| CitedBy_id | crossref_primary_10_1038_emboj_2012_195 crossref_primary_10_1074_jbc_M113_496133 crossref_primary_10_1016_j_semcdb_2011_10_007 crossref_primary_10_1371_journal_pgen_1003833 crossref_primary_10_1371_journal_pgen_1003039 crossref_primary_10_3390_genes9110558 crossref_primary_10_1101_gad_278275_116 crossref_primary_10_1038_ncomms4574 crossref_primary_10_1534_genetics_119_302632 crossref_primary_10_15252_embj_2020104566 crossref_primary_10_1016_j_dnarep_2019_04_005 crossref_primary_10_1016_j_molcel_2015_01_021 crossref_primary_10_1038_s41467_024_45684_3 crossref_primary_10_1016_j_febslet_2011_04_053 crossref_primary_10_1038_nsmb_2888 crossref_primary_10_4161_15384101_2014_958912 crossref_primary_10_3390_genes9120603 crossref_primary_10_1016_j_mrfmmm_2012_11_005 crossref_primary_10_3109_10409238_2012_675644 crossref_primary_10_3390_biom3010039 crossref_primary_10_1038_s44318_024_00139_9 crossref_primary_10_1101_gad_240515_114 crossref_primary_10_3390_ijms22189811 crossref_primary_10_3892_ol_2016_4489 crossref_primary_10_1093_nar_gks713 crossref_primary_10_1073_pnas_1303046110 crossref_primary_10_1038_s41467_021_22217_w crossref_primary_10_1128_MCB_05415_11 crossref_primary_10_1038_s41467_020_19503_4 crossref_primary_10_1371_journal_pgen_1003340 crossref_primary_10_1093_nar_gkr587 crossref_primary_10_4061_2011_724215 crossref_primary_10_1016_j_molcel_2012_06_032 crossref_primary_10_3389_fgene_2016_00135 crossref_primary_10_1111_j_1365_2958_2011_07935_x crossref_primary_10_1038_s41576_022_00539_9 crossref_primary_10_4161_15384101_2014_989126 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1014240108 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 21383164 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c554t-a6f430e821a9444d4f740af2224f0a1d649f65e71dae5828dc22e37a750aeb8a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288712200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 12:16:38 EDT 2025 Mon Jul 21 06:05:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-a6f430e821a9444d4f740af2224f0a1d649f65e71dae5828dc22e37a750aeb8a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3064375 |
| PMID | 21383164 |
| PQID | 858417597 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_858417597 pubmed_primary_21383164 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-22 |
| PublicationDateYYYYMMDD | 2011-03-22 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2011 |
| References | 17378750 - Rejuvenation Res. 2007 Mar;10(1):27-40 9184215 - EMBO J. 1997 May 15;16(10):2682-92 20634321 - Genes Dev. 2010 Jul 15;24(14):1559-69 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68 10862619 - J Biol Chem. 2000 Sep 1;275(35):26898-905 20346738 - DNA Repair (Amst). 2010 Jun 4;9(6):661-9 11087418 - Biochemistry. 2000 Nov 28;39(47):14617-25 11124263 - J Biol Chem. 2001 Mar 23;276(12):8848-55 9571038 - J Mol Biol. 1998 Apr 24;278(1):117-33 16670433 - Nucleic Acids Res. 2006;34(8):2269-79 16354704 - Mol Cell Biol. 2006 Jan;26(1):343-53 15802523 - Genetics. 2005 Jun;170(2):519-31 12084712 - J Biol Chem. 2002 Sep 6;277(36):32753-9 10728666 - Cancer Res. 2000 Mar 1;60(5):1162-7 9372918 - Mol Cell Biol. 1997 Dec;17(12):6868-75 15775963 - EMBO J. 2005 Apr 6;24(7):1465-76 16849422 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11118-23 17671161 - Mol Biol Cell. 2007 Oct;18(10):4062-73 19657341 - Nat Rev Cancer. 2009 Sep;9(9):644-54 16816432 - Genetics. 2006 Oct;174(2):555-73 9671747 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8733-8 14685245 - Nature. 2003 Dec 18;426(6968):870-4 17081974 - Cell. 2006 Nov 3;127(3):509-22 12036100 - Genes Genet Syst. 2002 Feb;77(1):11-21 9512524 - Nucleic Acids Res. 1998 Apr 1;26(7):1560-6 16595695 - J Biol Chem. 2006 May 19;281(20):13861-4 16899506 - Mol Biol Cell. 2006 Oct;17(10):4473-83 8913739 - Genetics. 1996 Nov;144(3):935-45 15590327 - DNA Repair (Amst). 2005 Feb 3;4(2):191-201 7969174 - Mol Cell Biol. 1994 Dec;14(12):8391-8 12475932 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16887-92 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82 15687257 - Genes Dev. 2005 Feb 1;19(3):339-50 15889139 - EMBO J. 2005 Jun 1;24(11):2024-33 20086270 - J Biol Chem. 2010 Mar 12;285(11):8290-301 16537486 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4068-73 20040574 - Nucleic Acids Res. 2010 Apr;38(6):1866-73 15899853 - Mol Cell Biol. 2005 Jun;25(11):4476-87 14690603 - Mol Cell. 2003 Dec;12(6):1499-510 9169457 - J Biol Chem. 1997 Jun 6;272(23):14873-82 12228808 - Curr Genet. 2002 Sep;41(6):389-400 19020614 - Nature. 2008 Nov 20;456(7220):357-61 9973560 - J Mol Biol. 1999 Feb 19;286(2):403-15 10734115 - J Biol Chem. 2000 Mar 31;275(13):9636-44 11585898 - Mol Cell Biol. 2001 Nov;21(21):7150-62 12724426 - Mol Cell Biol. 2003 May;23(10):3692-705 7813450 - EMBO J. 1994 Dec 15;13(24):6133-42 10823897 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504-8 10835635 - Nat Genet. 2000 Jun;25(2):192-4 20071248 - DNA Repair (Amst). 2010 Mar 2;9(3):303-14 10835372 - EMBO J. 2000 Jun 1;19(11):2751-62 17980605 - Trends Biochem Sci. 2007 Dec;32(12):538-46 18923082 - Genes Dev. 2008 Oct 15;22(20):2843-55 20348905 - Nature. 2010 Apr 8;464(7290):937-41 |
| References_xml | – reference: 20346738 - DNA Repair (Amst). 2010 Jun 4;9(6):661-9 – reference: 14685245 - Nature. 2003 Dec 18;426(6968):870-4 – reference: 17081974 - Cell. 2006 Nov 3;127(3):509-22 – reference: 16670433 - Nucleic Acids Res. 2006;34(8):2269-79 – reference: 15775963 - EMBO J. 2005 Apr 6;24(7):1465-76 – reference: 9372918 - Mol Cell Biol. 1997 Dec;17(12):6868-75 – reference: 7813450 - EMBO J. 1994 Dec 15;13(24):6133-42 – reference: 16537486 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4068-73 – reference: 9671747 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8733-8 – reference: 10862619 - J Biol Chem. 2000 Sep 1;275(35):26898-905 – reference: 14690603 - Mol Cell. 2003 Dec;12(6):1499-510 – reference: 10835372 - EMBO J. 2000 Jun 1;19(11):2751-62 – reference: 20634321 - Genes Dev. 2010 Jul 15;24(14):1559-69 – reference: 10835635 - Nat Genet. 2000 Jun;25(2):192-4 – reference: 12724426 - Mol Cell Biol. 2003 May;23(10):3692-705 – reference: 20040574 - Nucleic Acids Res. 2010 Apr;38(6):1866-73 – reference: 15889139 - EMBO J. 2005 Jun 1;24(11):2024-33 – reference: 12228808 - Curr Genet. 2002 Sep;41(6):389-400 – reference: 12475932 - Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16887-92 – reference: 15590327 - DNA Repair (Amst). 2005 Feb 3;4(2):191-201 – reference: 16816432 - Genetics. 2006 Oct;174(2):555-73 – reference: 9512524 - Nucleic Acids Res. 1998 Apr 1;26(7):1560-6 – reference: 15899853 - Mol Cell Biol. 2005 Jun;25(11):4476-87 – reference: 10734115 - J Biol Chem. 2000 Mar 31;275(13):9636-44 – reference: 11087418 - Biochemistry. 2000 Nov 28;39(47):14617-25 – reference: 20071248 - DNA Repair (Amst). 2010 Mar 2;9(3):303-14 – reference: 18923082 - Genes Dev. 2008 Oct 15;22(20):2843-55 – reference: 9973560 - J Mol Biol. 1999 Feb 19;286(2):403-15 – reference: 16354704 - Mol Cell Biol. 2006 Jan;26(1):343-53 – reference: 7969174 - Mol Cell Biol. 1994 Dec;14(12):8391-8 – reference: 19020614 - Nature. 2008 Nov 20;456(7220):357-61 – reference: 16849422 - Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11118-23 – reference: 10728666 - Cancer Res. 2000 Mar 1;60(5):1162-7 – reference: 16899506 - Mol Biol Cell. 2006 Oct;17(10):4473-83 – reference: 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82 – reference: 11124263 - J Biol Chem. 2001 Mar 23;276(12):8848-55 – reference: 16595695 - J Biol Chem. 2006 May 19;281(20):13861-4 – reference: 17671161 - Mol Biol Cell. 2007 Oct;18(10):4062-73 – reference: 17980605 - Trends Biochem Sci. 2007 Dec;32(12):538-46 – reference: 11585898 - Mol Cell Biol. 2001 Nov;21(21):7150-62 – reference: 15687257 - Genes Dev. 2005 Feb 1;19(3):339-50 – reference: 8913739 - Genetics. 1996 Nov;144(3):935-45 – reference: 20348905 - Nature. 2010 Apr 8;464(7290):937-41 – reference: 10823897 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6504-8 – reference: 17378750 - Rejuvenation Res. 2007 Mar;10(1):27-40 – reference: 20086270 - J Biol Chem. 2010 Mar 12;285(11):8290-301 – reference: 12084712 - J Biol Chem. 2002 Sep 6;277(36):32753-9 – reference: 9184215 - EMBO J. 1997 May 15;16(10):2682-92 – reference: 15802523 - Genetics. 2005 Jun;170(2):519-31 – reference: 18923083 - Genes Dev. 2008 Oct 15;22(20):2856-68 – reference: 12036100 - Genes Genet Syst. 2002 Feb;77(1):11-21 – reference: 9169457 - J Biol Chem. 1997 Jun 6;272(23):14873-82 – reference: 19657341 - Nat Rev Cancer. 2009 Sep;9(9):644-54 – reference: 9571038 - J Mol Biol. 1998 Apr 24;278(1):117-33 |
| SSID | ssj0009580 |
| Score | 2.2318714 |
| Snippet | The Sgs1-Rmi1-Top3 "dissolvasome" is required for the maintenance of genome stability and has been implicated in the processing of various types of DNA... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4944 |
| SubjectTerms | DNA Damage - drug effects DNA Damage - physiology DNA, Cruciform - genetics DNA, Cruciform - metabolism DNA, Fungal - genetics DNA, Fungal - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Holliday Junction Resolvases - genetics Holliday Junction Resolvases - metabolism Humans Methyl Methanesulfonate - pharmacology Mutagens - pharmacology RecQ Helicases - genetics RecQ Helicases - metabolism S Phase - drug effects S Phase - physiology Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism |
| Title | Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21383164 https://www.proquest.com/docview/858417597 |
| Volume | 108 |
| WOSCitedRecordID | wos000288712200050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELW4Chru-5ALCigsEtskToVWwIqGFRIgbbea9YFAIgmbXY6_ZybJIhpEQRMpl-WMxzNvxs4bxo6iyAeFuEHE1hqhZcgEDJUTHmjZS-G5snWxibTXM_1-dtvuzanabZVTm1gbaldYypGfGvSU6Oqy9Lx8FVQ0ihZX2woas2xeIZIhpU775gfnrmnICLJYJDqLpsw-qTotc6gocNXo0OLI_A4vazfTXf5nB1fYUosveadRiFU24_M1ttrO4IoftzTTJ-tsdE183A4--TP6NhofQfvWm4oR_LLX4Q237AQDcl5SWq0a86ecU6q_4pT3o-fuHquYFyN-X5SKB2yxeKfL_qMsKPfIx0XdlIMXNFwb7KF7dX9xLdoKDMIizBgLSIJWkTcyhkxr7XRIdQQBMYUOEcQOpRqSM5_GDjytvzkrpVcpIAwBPzQgN9lcXuR-m_H6z0S8MSQIZmxiksQOZZQCKGeDhh3Gp2IdoIbTt0Dui0k1-BbsDttqhmZQNkwcAxljgI0B3-7fL--xxSYdrISU-2w-4Oz2B2zBvo2fqtFhrTl47N3efAGiVc5e |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Holliday+junction-containing+DNA+structures+persist+in+cells+lacking+Sgs1+or+Top3+following+exposure+to+DNA+damage&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Mankouri%2C+Hocine+W&rft.au=Ashton%2C+Thomas+M&rft.au=Hickson%2C+Ian+D&rft.date=2011-03-22&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=12&rft.spage=4944&rft_id=info:doi/10.1073%2Fpnas.1014240108&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |