Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis

Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics Vol. 164; p. 112316
Main Authors: Huang, Zhen, Tian, Di, Liu, Yang, Lin, Zhen, Lyon, Christopher J., Lai, Weihua, Fusco, Dahlene, Drouin, Arnaud, Yin, Xiaoming, Hu, Tony, Ning, Bo
Format: Journal Article
Language:English
Published: England Elsevier B.V 15.09.2020
Subjects:
ISSN:0956-5663, 1873-4235, 1873-4235
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts. •Integrated CRISPR for COVID-19 clinical diagnosis.•Rapidly identify SARS-CoV-2-specific RNA signatures at an ultra-low concentration.•Detection environment friendly and compatible for high throughput COVID-19 screening in hospital.•Successful development and validation with swab samples from patients.•Improve diagnosis of individuals with suspected COVID-19 infections.
AbstractList Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts. • Integrated CRISPR for COVID-19 clinical diagnosis. • Rapidly identify SARS-CoV-2-specific RNA signatures at an ultra-low concentration. • Detection environment friendly and compatible for high throughput COVID-19 screening in hospital. • Successful development and validation with swab samples from patients. • Improve diagnosis of individuals with suspected COVID-19 infections.
Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.
Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.
Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts. •Integrated CRISPR for COVID-19 clinical diagnosis.•Rapidly identify SARS-CoV-2-specific RNA signatures at an ultra-low concentration.•Detection environment friendly and compatible for high throughput COVID-19 screening in hospital.•Successful development and validation with swab samples from patients.•Improve diagnosis of individuals with suspected COVID-19 infections.
Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may infect 5.6 other individuals on average. This situation highlights the need for rapid, sensitive SARS-CoV-2 diagnostic assays capable of high-throughput operation that can preferably utilize existing equipment to facilitate broad, large-scale screening efforts. We have developed a CRISPR-based assay that can meet all these criteria. This assay utilizes a custom CRISPR Cas12a/gRNA complex and a fluorescent probe to detect target amplicons produced by standard RT-PCR or isothermal recombinase polymerase amplification (RPA), to allow sensitive detection at sites not equipped with real-time PCR systems required for qPCR diagnostics. We found this approach allowed sensitive and robust detection of SARS-CoV-2 positive samples, with a sample-to-answer time of ~50 min, and a limit of detection of 2 copies per sample. CRISPR assay diagnostic results obtained nasal swab samples of individuals with suspected COVID-19 cases were comparable to paired results from a CDC-approved quantitative RT-PCR (RT-qPCR) assay performed in a state testing lab, and superior to those produced by same assay in a clinical lab, where the RT-qPCR assay exhibited multiple invalid or inconclusive results. Our assay also demonstrated greater analytical sensitivity and more robust diagnostic performance than other recently reported CRISPR-based assays. Based on these findings, we believe that a CRISPR-based fluorescent application has potential to improve current COVID-19 screening efforts.
ArticleNumber 112316
Author Lin, Zhen
Yin, Xiaoming
Tian, Di
Lyon, Christopher J.
Drouin, Arnaud
Fusco, Dahlene
Liu, Yang
Lai, Weihua
Hu, Tony
Ning, Bo
Huang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Huang
  fullname: Huang, Zhen
  organization: Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 2
  givenname: Di
  surname: Tian
  fullname: Tian, Di
  organization: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 3
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 4
  givenname: Zhen
  surname: Lin
  fullname: Lin, Zhen
  organization: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 5
  givenname: Christopher J.
  surname: Lyon
  fullname: Lyon, Christopher J.
  organization: Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 6
  givenname: Weihua
  surname: Lai
  fullname: Lai, Weihua
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjin Road, Nanchang, 330047, China
– sequence: 7
  givenname: Dahlene
  surname: Fusco
  fullname: Fusco, Dahlene
  organization: Departments of Medicine and Pathology, Tulane University School of Medicine, 333 S Liberty St New Orleans, LA, 70114, USA
– sequence: 8
  givenname: Arnaud
  surname: Drouin
  fullname: Drouin, Arnaud
  organization: Departments of Medicine and Pathology, Tulane University School of Medicine, 333 S Liberty St New Orleans, LA, 70114, USA
– sequence: 9
  givenname: Xiaoming
  surname: Yin
  fullname: Yin, Xiaoming
  organization: Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 10
  givenname: Tony
  surname: Hu
  fullname: Hu, Tony
  email: tonyhu@tulane.edu
  organization: Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
– sequence: 11
  givenname: Bo
  surname: Ning
  fullname: Ning, Bo
  email: bning1@tulane.edu
  organization: Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32553350$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9r3DAQxUVJaTZpv0APxcdetNV_r6AUyqZpFwIJadOrkOXxWovX2krylnz72GxSkh5CTgMz7z1-zDtBR33oAaH3lMwpoerTZl75kOaMsHFBGafqFZrRRcmxYFweoRnRUmGpFD9GJyltCCEl1eQNOuZMSs4lmaHzmy5HixP0yWe_h8L2ddH6dYtzG8OwbndDLpbXq59X13hXhL8QoS6Wl79XZ5jqovZ23Yfk01v0urFdgnf38xTdnH_7tfyBLy6_r5ZfL7CTUmRcVpI3SpQcuNCUN6UAVVsYcYWSjHMmXEmtoFJXWmpFhBJVw13DnKisbCg_RV8Oubuh2kLtoB_pO7OLfmvjrQnWm6eX3rdmHfamZEKOjxoDPt4HxPBngJTN1icHXWd7CEMyTHAtyEJT9QIplUwLsZiwPjzG-sfz8OdRsDgIXAwpRWiM89lmHyZK3xlKzFSp2ZipUjNVag6Vjlb2n_Uh_VnT54MJxjL2HqJJzkPvoPYRXDZ18M_Z7wD3JrfE
CitedBy_id crossref_primary_10_1007_s00203_023_03579_9
crossref_primary_10_1016_j_bioelechem_2022_108105
crossref_primary_10_1038_s41579_020_00461_z
crossref_primary_10_1016_j_talanta_2023_124841
crossref_primary_10_3389_fcimb_2022_835213
crossref_primary_10_3390_life11070660
crossref_primary_10_1016_j_bios_2022_114501
crossref_primary_10_1080_21655979_2021_1987821
crossref_primary_10_1016_j_talanta_2020_121977
crossref_primary_10_1016_j_crmeth_2023_100444
crossref_primary_10_1002_advs_202506716
crossref_primary_10_3389_fmolb_2021_772788
crossref_primary_10_1007_s12291_021_00977_y
crossref_primary_10_1016_j_bios_2020_112673
crossref_primary_10_1038_s41467_022_30862_y
crossref_primary_10_1093_nsr_nwac104
crossref_primary_10_1007_s00216_021_03752_3
crossref_primary_10_1038_s41598_021_01585_9
crossref_primary_10_1080_1040841X_2021_2025041
crossref_primary_10_1038_s41563_020_00906_z
crossref_primary_10_1016_j_antiviral_2023_105624
crossref_primary_10_1007_s00436_020_07023_5
crossref_primary_10_1039_D3NR04583H
crossref_primary_10_1016_j_bios_2020_112686
crossref_primary_10_1016_j_snb_2022_131598
crossref_primary_10_1002_rmv_2168
crossref_primary_10_1016_j_bios_2022_113994
crossref_primary_10_1002_admt_202300230
crossref_primary_10_1002_ar_24849
crossref_primary_10_3390_bioengineering10030391
crossref_primary_10_1039_D2RA04162F
crossref_primary_10_1016_j_bios_2020_112578
crossref_primary_10_1172_JCI146031
crossref_primary_10_1002_rmv_2274
crossref_primary_10_1038_s41467_021_21121_7
crossref_primary_10_1016_j_talanta_2021_122415
crossref_primary_10_3389_fmicb_2024_1503356
crossref_primary_10_1002_slct_202200256
crossref_primary_10_3390_bios12100898
crossref_primary_10_1186_s11658_024_00548_y
crossref_primary_10_1016_j_diagmicrobio_2025_117062
crossref_primary_10_1016_j_aca_2020_10_009
crossref_primary_10_1016_j_bios_2021_113330
crossref_primary_10_1002_smtd_202200794
crossref_primary_10_1016_j_virusres_2021_198530
crossref_primary_10_1002_jmv_28096
crossref_primary_10_1089_crispr_2020_0138
crossref_primary_10_1016_j_ymeth_2021_04_007
crossref_primary_10_1021_acs_jafc_5c02188
crossref_primary_10_1016_j_eswa_2024_125712
crossref_primary_10_3389_fcimb_2021_680728
crossref_primary_10_1002_advs_202105231
crossref_primary_10_1016_j_hsr_2023_100112
crossref_primary_10_1016_j_microc_2024_112638
crossref_primary_10_1007_s11356_022_18868_x
crossref_primary_10_1016_j_scitotenv_2023_168905
crossref_primary_10_1016_j_microc_2023_109873
crossref_primary_10_3390_vetsci12050464
crossref_primary_10_1016_j_bios_2021_113049
crossref_primary_10_1002_fft2_176
crossref_primary_10_1016_j_bios_2021_113168
crossref_primary_10_1016_j_bios_2021_113960
crossref_primary_10_3389_fcimb_2021_663949
crossref_primary_10_1016_j_bios_2021_113046
crossref_primary_10_1016_j_chom_2021_04_003
crossref_primary_10_1108_AJIM_07_2020_0216
crossref_primary_10_1016_j_snb_2022_132011
crossref_primary_10_1007_s15010_022_01819_6
crossref_primary_10_1016_j_bios_2021_113281
crossref_primary_10_1016_j_crmeth_2021_100093
crossref_primary_10_1016_j_talanta_2024_126139
crossref_primary_10_1002_cjoc_202000609
crossref_primary_10_1007_s12195_021_00686_9
crossref_primary_10_1016_j_jcis_2021_06_170
crossref_primary_10_1111_tme_12729
crossref_primary_10_1002_jmv_26926
crossref_primary_10_1002_bies_202000315
crossref_primary_10_1002_bit_27673
crossref_primary_10_1016_j_bios_2021_113390
crossref_primary_10_1007_s40820_022_00888_4
crossref_primary_10_1016_j_jviromet_2024_115001
crossref_primary_10_1002_jbt_23113
crossref_primary_10_1038_s41467_022_29440_z
crossref_primary_10_1186_s12951_022_01470_1
crossref_primary_10_3390_bios12030154
crossref_primary_10_3390_jpm11010042
crossref_primary_10_1186_s12967_021_02741_5
crossref_primary_10_1016_j_jpha_2021_11_003
crossref_primary_10_1172_JCI177241
crossref_primary_10_3390_bios14030135
crossref_primary_10_1016_j_snb_2021_130411
crossref_primary_10_1016_j_micpath_2022_105498
crossref_primary_10_1007_s00216_020_02958_1
crossref_primary_10_1016_j_crmeth_2022_100173
crossref_primary_10_1016_j_virusres_2020_198282
crossref_primary_10_1002_14651858_CD015618
crossref_primary_10_1016_j_talanta_2020_121986
crossref_primary_10_1080_07388551_2021_1983757
crossref_primary_10_1016_j_bios_2021_112969
crossref_primary_10_1002_biot_202100040
crossref_primary_10_1016_j_bios_2021_113134
crossref_primary_10_1016_j_trac_2024_118131
crossref_primary_10_1016_j_talanta_2023_125413
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_1080_14737159_2022_2107425
crossref_primary_10_1002_smll_202200854
crossref_primary_10_3389_fmicb_2022_1011399
crossref_primary_10_1016_j_bios_2022_114109
crossref_primary_10_1016_j_bios_2021_113649
crossref_primary_10_1016_j_cej_2021_132472
crossref_primary_10_3390_life11111210
crossref_primary_10_1007_s12161_023_02500_w
crossref_primary_10_1016_j_aca_2021_339207
crossref_primary_10_1039_D2SC06665C
crossref_primary_10_3389_fmicb_2022_957977
crossref_primary_10_1002_jgm_3303
crossref_primary_10_1007_s11274_024_04246_x
crossref_primary_10_1016_j_aca_2021_338478
crossref_primary_10_1016_j_compbiomed_2022_106070
crossref_primary_10_3390_s22010133
crossref_primary_10_1016_j_matt_2020_09_027
crossref_primary_10_1109_JSEN_2021_3085084
crossref_primary_10_1002_bmb_21771
crossref_primary_10_3390_diagnostics13091644
crossref_primary_10_1080_10408363_2020_1849010
crossref_primary_10_3390_v13010040
crossref_primary_10_1016_j_biopha_2021_112353
crossref_primary_10_1038_s41565_021_00939_8
crossref_primary_10_3390_bios11060167
crossref_primary_10_1016_j_microc_2025_113523
crossref_primary_10_3390_mi13081349
crossref_primary_10_1109_RBME_2022_3212038
crossref_primary_10_1016_j_snb_2022_131517
crossref_primary_10_3788_CJL241196
crossref_primary_10_3390_diagnostics12061434
crossref_primary_10_1080_22221751_2022_2038020
crossref_primary_10_1016_j_bios_2021_113074
crossref_primary_10_1016_j_snb_2023_134299
crossref_primary_10_1164_rccm_202303_0401OC
crossref_primary_10_3389_fmicb_2022_1070940
crossref_primary_10_1007_s10895_023_03307_y
crossref_primary_10_1016_j_heliyon_2022_e10858
crossref_primary_10_1016_j_cej_2025_161578
crossref_primary_10_3390_bioengineering8020023
crossref_primary_10_3390_diagnostics11071270
crossref_primary_10_3390_s21041485
crossref_primary_10_1039_D0SC03920A
crossref_primary_10_1016_j_aca_2021_338330
crossref_primary_10_1016_j_leukres_2021_106582
crossref_primary_10_1016_j_fm_2025_104844
crossref_primary_10_3390_cells11071182
crossref_primary_10_1007_s12033_022_00570_5
crossref_primary_10_1007_s40097_022_00472_7
crossref_primary_10_1016_j_talanta_2022_123409
crossref_primary_10_1016_j_trac_2021_116452
crossref_primary_10_1016_j_plabm_2025_e00497
crossref_primary_10_1098_rstb_2020_0228
crossref_primary_10_1007_s11033_022_07752_z
crossref_primary_10_1186_s12917_024_04116_6
crossref_primary_10_1007_s41204_021_00109_0
crossref_primary_10_1016_j_crfs_2025_101072
crossref_primary_10_1007_s41664_021_00198_5
crossref_primary_10_3390_s20226591
crossref_primary_10_1002_VIW_20210005
crossref_primary_10_3390_v13030420
crossref_primary_10_1002_bit_27813
crossref_primary_10_1128_Spectrum_01017_21
crossref_primary_10_3390_ijtm2020017
crossref_primary_10_1016_j_aca_2024_343593
crossref_primary_10_1093_jaoacint_qsac101
crossref_primary_10_3390_bios12010011
crossref_primary_10_1002_advs_202301697
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1007_s10462_021_10106_z
crossref_primary_10_1007_s00604_021_04985_w
crossref_primary_10_1038_s41374_021_00663_w
crossref_primary_10_1016_j_aca_2022_340079
crossref_primary_10_1080_22221751_2020_1793689
crossref_primary_10_3390_vaccines11020374
crossref_primary_10_3390_bios11100373
crossref_primary_10_1016_j_saa_2024_124066
crossref_primary_10_1002_jmv_27617
crossref_primary_10_1002_admt_202201344
crossref_primary_10_1016_j_matlet_2021_131540
crossref_primary_10_1016_j_aca_2021_338943
crossref_primary_10_1016_j_trac_2023_116999
crossref_primary_10_1016_j_tibtech_2022_06_002
crossref_primary_10_1089_fpd_2023_0119
crossref_primary_10_3390_life11121356
crossref_primary_10_1007_s00604_025_07094_0
crossref_primary_10_1002_advs_202204172
crossref_primary_10_1038_s41392_021_00731_z
crossref_primary_10_1007_s12033_021_00431_7
crossref_primary_10_3390_s21113829
crossref_primary_10_1021_acsnano_5c03474
crossref_primary_10_3390_bios15060360
crossref_primary_10_1016_j_diagmicrobio_2024_116252
crossref_primary_10_1016_j_addr_2021_113958
crossref_primary_10_3390_pathogens11090968
crossref_primary_10_1002_aic_17365
crossref_primary_10_1002_ps_8840
crossref_primary_10_7841_ksbbj_2023_38_2_77
crossref_primary_10_3390_bios15060379
crossref_primary_10_1038_s41598_021_95411_x
crossref_primary_10_1016_j_aca_2022_339749
crossref_primary_10_1016_j_cej_2022_136143
crossref_primary_10_1016_j_pathol_2021_08_001
crossref_primary_10_1016_j_trac_2023_117028
crossref_primary_10_1002_advs_202003564
crossref_primary_10_1016_j_trac_2020_116072
crossref_primary_10_1016_j_snb_2022_132746
crossref_primary_10_1038_s41409_020_0972_8
crossref_primary_10_3389_fcimb_2021_613304
crossref_primary_10_1016_j_aca_2021_339338
crossref_primary_10_1016_j_aca_2021_338248
crossref_primary_10_1016_j_nbt_2022_02_001
crossref_primary_10_1016_j_aca_2021_339336
crossref_primary_10_3390_pathogens13010051
crossref_primary_10_1007_s00216_021_03173_2
crossref_primary_10_1016_j_trac_2021_116377
crossref_primary_10_1016_j_aca_2021_339330
crossref_primary_10_1186_s12879_023_08492_6
Cites_doi 10.1016/j.jcv.2020.104410
10.1016/j.jcv.2020.104428
10.3390/jcm9020580
10.1093/jtm/taaa021
10.1038/s41421-018-0028-z
10.1016/j.tibtech.2019.04.005
10.1126/science.aar6245
10.4254/wjh.v6.i12.916
10.1056/NEJMoa2002032
10.1039/c2lc40100b
10.1021/acsnano.0c02624
10.1126/science.aam9321
10.1038/s41586-020-2012-7
10.1021/acsnano.6b02060
10.1056/NEJMc2001737
10.1016/B978-0-12-420037-1.00002-6
10.1016/j.tibtech.2018.12.005
10.1002/adma.201905311
10.1038/s41551-019-0371-x
10.1128/JCM.00798-20
10.2144/05391RV01
10.2807/1560-7917.ES.2020.25.10.2000180
10.1093/nar/28.12.e63
10.1016/S0140-6736(20)30251-8
10.1073/pnas.0730811100
10.1126/science.aaq0179
10.1016/j.cell.2016.04.059
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bios.2020.112316
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1873-4235
EndPage 112316
ExternalDocumentID PMC7245202
32553350
10_1016_j_bios_2020_112316
S0956566320303110
Genre Evaluation Study
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSK
SST
SSU
SSZ
T5K
TN5
XPP
Y6R
YK3
ZMT
~G-
~KM
.HR
53G
9DU
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AGRDE
AHHHB
AIGII
AIIUN
AJQLL
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLW
HMU
HVGLF
HZ~
R2-
SBG
SCB
SCH
SEW
WUQ
~HD
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c554t-7b53f6473e34913f74e6dae42346523324c71a4159b95960464bf3cf2c4ba5f13
ISICitedReferencesCount 272
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541155600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5663
1873-4235
IngestDate Tue Sep 30 16:52:32 EDT 2025
Sat Sep 27 21:15:17 EDT 2025
Sat Sep 27 19:15:09 EDT 2025
Wed Feb 19 02:29:43 EST 2025
Sat Nov 29 07:11:33 EST 2025
Tue Nov 18 21:28:32 EST 2025
Sun Apr 06 06:54:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Fluorescent detection
CRISPR
SARS-CoV-2
Molecular diagnosis
Highly sensitive
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c554t-7b53f6473e34913f74e6dae42346523324c71a4159b95960464bf3cf2c4ba5f13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7245202
PMID 32553350
PQID 2415294481
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7245202
proquest_miscellaneous_2439408916
proquest_miscellaneous_2415294481
pubmed_primary_32553350
crossref_citationtrail_10_1016_j_bios_2020_112316
crossref_primary_10_1016_j_bios_2020_112316
elsevier_sciencedirect_doi_10_1016_j_bios_2020_112316
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biosensors & bioelectronics
PublicationTitleAlternate Biosens Bioelectron
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vollmer (bib31) 2020
Li, Li, Wang, Liu (bib19) 2019; 37
Liu, Liu, Zhu, Zhu, Li, Gao, Zhou, Tang, Zhang, Yang, Wang (bib20) 2020
Wong, Medrano (bib32) 2005; 39
Kim, Garner, Ozcan, Di Carlo (bib16) 2016; 10
Zou, Ruan, Huang, Liang, Huang, Hong, Yu, Kang, Song, Xia, Guo, Song, He, Yen, Peiris, Wu (bib37) 2020; 382
Lucia, Federico, Alejandra (bib23) 2020
Li, Cheng, Wang, Li, Zhang, Gao, Cao, Zhao, Wang (bib18) 2018; 4
Pardee, Green, Takahashi, Braff, Lambert, Lee, Ferrante, Ma, Donghia, Fan, Daringer, Bosch, Dudley, O'Connor, Gehrke, Collins (bib26) 2016; 165
Bruch, Baaske, Chatelle, Meirich, Madlener, Weber, Dincer, Urban (bib4) 2019; 31
Broughton, Deng, Yu, Fasching, Servellita, Singh, Miao, Streithorst, Granados, Sotomayor-Gonzalez, Zorn, Gopez, Hsu, Gu, Miller, Pan, Guevara, Wadford, Chen, Chiu (bib3) 2020
Bachman (bib2) 2013; 530
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang, Liu, Chen, Shen, Wang, Zheng, Zhao, Chen, Deng, Liu, Yan, Zhan, Wang, Xiao, Shi (bib36) 2020; 579
Craw, Balachandran (bib8) 2012; 12
Harrington, Cox, Snowdon, Bakst, Ley, Grajales, Maggiore, Kahn (bib14) 2020
Udugama, Kadhiresan, Kozlowski, Malekjahani, Osborne, Li, Chen, Mubareka, Gubbay, Chan (bib29) 2020; 14
Guan, Ni, Hu, Liang, Ou, He, Liu, Shan, Lei, Hui, Du, Li, Zeng, Yuen, Chen, Tang, Wang, Chen, Xiang, Li, Wang, Liang, Peng, Wei, Liu, Hu, Peng, Wang, Liu, Chen, Li, Zheng, Qiu, Luo, Ye, Zhu, Zhong (bib12) 2020; 328
Mizumoto, Kagaya, Zarebski, Chowell (bib24) 2020; 25
Van Ness, Van Ness, Galas (bib30) 2003; 100
Yu, Wu, Hao, Li, Liu, Ye, Han, Dong, Li, Li (bib34) 2020
Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu, Zhou, Hu, Zhou, Zhao, Chen, Meng, Wang, Lin, Yuan, Xie, Ma, Liu, Wang, Xu, Holmes, Gao, Wu, Chen, Shi, Tan (bib22) 2020; 395
Gootenberg, Abudayyeh, Kellner, Joung, Collins, Zhang (bib10) 2018; 360
Notomi, Okayama, Masubuchi, Yonekawa, Watanabe, Amino, Hase (bib25) 2000; 28
Zaghloul, El-Shahat (bib35) 2014; 6
Chen, Ma, Harrington, Da Costa, Tian, Palefsky, Doudna (bib7) 2018; 360
CDC (bib6) 2020
Hogan, Sahoo, Huang, Garamani, Stevens, Zehnder, Pinsky (bib15) 2020; 128
Smithgall, Scherberkova, Whittier, Green (bib27) 2020; 128
Steven, Yen Ting, Chonggang, Ethan, Nick, Ruian (bib28) 2020; 26
Ding, Yin, Li, Liu (bib9) 2020
Liu, Gayle, Wilder-Smith, Rocklov (bib21) 2020; 27
Gootenberg, Abudayyeh, Lee, Essletzbichler, Dy, Joung, Verdine, Donghia, Daringer, Freije, Myhrvold, Bhattacharyya, Livny, Regev, Koonin, Hung, Sabeti, Collins, Zhang (bib11) 2017; 356
Bruch, Urban, Dincer (bib5) 2019; 37
Yinhua, Jin, Sun, Raphael, Wei, Tanner (bib33) 2020
Hajian, Balderston, Tran, deBoer, Etienne, Sandhu, Wauford, Chung, Nokes, Athaiya, Paredes, Peytavi, Goldsmith, Murthy, Conboy, Aran (bib13) 2019; 3
Kobayashi, Jung, Linton, Kinoshita, Hayashi, Miyama, Anzai, Yang, Yuan, Akhmetzhanov, Suzuki, Nishiura (bib17) 2020; 9
Ai, Yang, Hou, Zhan, Chen, Lv, Tao, Sun, Xia (bib1) 2020
Zaghloul (10.1016/j.bios.2020.112316_bib35) 2014; 6
Notomi (10.1016/j.bios.2020.112316_bib25) 2000; 28
Vollmer (10.1016/j.bios.2020.112316_bib31) 2020
Yinhua (10.1016/j.bios.2020.112316_bib33) 2020
Gootenberg (10.1016/j.bios.2020.112316_bib11) 2017; 356
Wong (10.1016/j.bios.2020.112316_bib32) 2005; 39
Chen (10.1016/j.bios.2020.112316_bib7) 2018; 360
Lucia (10.1016/j.bios.2020.112316_bib23) 2020
Craw (10.1016/j.bios.2020.112316_bib8) 2012; 12
Ai (10.1016/j.bios.2020.112316_bib1) 2020
Zhou (10.1016/j.bios.2020.112316_bib36) 2020; 579
Li (10.1016/j.bios.2020.112316_bib18) 2018; 4
Liu (10.1016/j.bios.2020.112316_bib20) 2020
Lu (10.1016/j.bios.2020.112316_bib22) 2020; 395
Mizumoto (10.1016/j.bios.2020.112316_bib24) 2020; 25
Kobayashi (10.1016/j.bios.2020.112316_bib17) 2020; 9
Udugama (10.1016/j.bios.2020.112316_bib29) 2020; 14
Bruch (10.1016/j.bios.2020.112316_bib5) 2019; 37
Guan (10.1016/j.bios.2020.112316_bib12) 2020; 328
Ding (10.1016/j.bios.2020.112316_bib9) 2020
Van Ness (10.1016/j.bios.2020.112316_bib30) 2003; 100
Smithgall (10.1016/j.bios.2020.112316_bib27) 2020; 128
Broughton (10.1016/j.bios.2020.112316_bib3) 2020
Gootenberg (10.1016/j.bios.2020.112316_bib10) 2018; 360
Zou (10.1016/j.bios.2020.112316_bib37) 2020; 382
Bachman (10.1016/j.bios.2020.112316_bib2) 2013; 530
Bruch (10.1016/j.bios.2020.112316_bib4) 2019; 31
Hogan (10.1016/j.bios.2020.112316_bib15) 2020; 128
CDC (10.1016/j.bios.2020.112316_bib6) 2020
Hajian (10.1016/j.bios.2020.112316_bib13) 2019; 3
Liu (10.1016/j.bios.2020.112316_bib21) 2020; 27
Kim (10.1016/j.bios.2020.112316_bib16) 2016; 10
Harrington (10.1016/j.bios.2020.112316_bib14) 2020
Li (10.1016/j.bios.2020.112316_bib19) 2019; 37
Steven (10.1016/j.bios.2020.112316_bib28) 2020; 26
Pardee (10.1016/j.bios.2020.112316_bib26) 2016; 165
Yu (10.1016/j.bios.2020.112316_bib34) 2020
References_xml – year: 2020
  ident: bib1
  article-title: Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases
– volume: 12
  start-page: 2469
  year: 2012
  end-page: 2486
  ident: bib8
  article-title: Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review
  publication-title: Lab Chip
– year: 2020
  ident: bib33
  article-title: Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP
  publication-title: medRxiv
– volume: 31
  start-page: 1905311
  year: 2019
  ident: bib4
  article-title: CRISPR/Cas13a-Powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics
  publication-title: Adv. Mater.
– volume: 360
  start-page: 439
  year: 2018
  end-page: 444
  ident: bib10
  article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
  publication-title: Science
– volume: 165
  start-page: 1255
  year: 2016
  end-page: 1266
  ident: bib26
  article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components
  publication-title: Cell
– year: 2020
  ident: bib20
  article-title: Assessing the Global Tendency of COVID-19 Outbreak
  publication-title: medRxiv
– volume: 100
  start-page: 4504
  year: 2003
  end-page: 4509
  ident: bib30
  article-title: Isothermal reactions for the amplification of oligonucleotides
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 356
  start-page: 438
  year: 2017
  end-page: 442
  ident: bib11
  article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2
  publication-title: Science
– year: 2020
  ident: bib9
  article-title: All-in-One dual CRISPR-cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus
  publication-title: bioRxiv
– volume: 14
  start-page: 3822
  year: 2020
  end-page: 3835
  ident: bib29
  article-title: Diagnosing COVID-19: the disease and tools for detection
  publication-title: ACS Nano
– year: 2020
  ident: bib14
  article-title: Comparison of Abbott ID Now and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients
  publication-title: J. Clin. Microbiol.
– volume: 28
  start-page: E63
  year: 2000
  ident: bib25
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
– year: 2020
  ident: bib31
  article-title: Average Detection Rate of SARS-CoV-2 Infections Is Estimated Around Six Percent University of Goettingen
– volume: 382
  start-page: 1177
  year: 2020
  end-page: 1179
  ident: bib37
  article-title: SARS-CoV-2 viral load in upper respiratory specimens of infected patients
  publication-title: N. Engl. J. Med.
– volume: 530
  start-page: 67
  year: 2013
  end-page: 74
  ident: bib2
  article-title: Reverse-transcription PCR (RT-PCR)
  publication-title: Methods Enzymol.
– volume: 360
  start-page: 436
  year: 2018
  end-page: 439
  ident: bib7
  article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
  publication-title: Science
– year: 2020
  ident: bib6
  article-title: CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel
– volume: 26
  year: 2020
  ident: bib28
  article-title: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2
  publication-title: Emerging Infectious Disease journal
– volume: 3
  start-page: 427
  year: 2019
  end-page: 437
  ident: bib13
  article-title: Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor
  publication-title: Nature Biomedical Engineering
– volume: 128
  year: 2020
  ident: bib27
  article-title: Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2
  publication-title: Journal of Clinical Virology
– year: 2020
  ident: bib23
  article-title: An Ultrasensitive, Rapid, and Portable Coronavirus SARS-CoV-2 Sequence Detection Method Based on CRISPR-Cas12
  publication-title: bioRxiv
– volume: 37
  start-page: 791
  year: 2019
  end-page: 792
  ident: bib5
  article-title: CRISPR/Cas powered multiplexed biosensing
  publication-title: Trends Biotechnol.
– volume: 128
  year: 2020
  ident: bib15
  article-title: Five-minute point-of-care testing for SARS-CoV-2: not there yet
  publication-title: J. Clin. Virol.
– year: 2020
  ident: bib34
  article-title: Rapid Colorimetric Detection of COVID-19 Coronavirus Using a Reverse Tran-Scriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Plat-form: iLACO
– volume: 39
  start-page: 75
  year: 2005
  end-page: 85
  ident: bib32
  article-title: Real-time PCR for mRNA quantitation
  publication-title: Biotechniques
– volume: 9
  year: 2020
  ident: bib17
  article-title: Communicating the risk of death from novel coronavirus disease (COVID-19)
  publication-title: J. Clin. Med.
– volume: 25
  year: 2020
  ident: bib24
  article-title: Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020
  publication-title: Euro Surveill.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib3
  article-title: CRISPR–Cas12-based detection of SARS-CoV-2
  publication-title: Nat. Biotechnol.
– volume: 27
  year: 2020
  ident: bib21
  article-title: The reproductive number of COVID-19 is higher compared to SARS coronavirus
  publication-title: J. Trav. Med.
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bib22
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib36
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 37
  start-page: 730
  year: 2019
  end-page: 743
  ident: bib19
  article-title: CRISPR/Cas systems towards next-generation biosensing
  publication-title: Trends Biotechnol.
– volume: 6
  start-page: 916
  year: 2014
  end-page: 922
  ident: bib35
  article-title: Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis
  publication-title: World J. Hepatol.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib18
  article-title: CRISPR-Cas12a-assisted nucleic acid detection
  publication-title: Cell Discov
– volume: 328
  start-page: 1708
  year: 2020
  end-page: 1720
  ident: bib12
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N. Engl. J. Med.
– volume: 10
  start-page: 7467
  year: 2016
  end-page: 7475
  ident: bib16
  article-title: Homogeneous entropy-driven amplified detection of biomolecular interactions
  publication-title: ACS Nano
– volume: 128
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib15
  article-title: Five-minute point-of-care testing for SARS-CoV-2: not there yet
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2020.104410
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib23
  article-title: An Ultrasensitive, Rapid, and Portable Coronavirus SARS-CoV-2 Sequence Detection Method Based on CRISPR-Cas12
  publication-title: bioRxiv
– volume: 128
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib27
  article-title: Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche Cobas for the Rapid Detection of SARS-CoV-2
  publication-title: Journal of Clinical Virology
  doi: 10.1016/j.jcv.2020.104428
– volume: 9
  issue: 2
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib17
  article-title: Communicating the risk of death from novel coronavirus disease (COVID-19)
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9020580
– volume: 27
  issue: 2
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib21
  article-title: The reproductive number of COVID-19 is higher compared to SARS coronavirus
  publication-title: J. Trav. Med.
  doi: 10.1093/jtm/taaa021
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib33
  article-title: Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP
  publication-title: medRxiv
– volume: 4
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bios.2020.112316_bib18
  article-title: CRISPR-Cas12a-assisted nucleic acid detection
  publication-title: Cell Discov
  doi: 10.1038/s41421-018-0028-z
– volume: 37
  start-page: 791
  issue: 8
  year: 2019
  ident: 10.1016/j.bios.2020.112316_bib5
  article-title: CRISPR/Cas powered multiplexed biosensing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.04.005
– volume: 360
  start-page: 436
  issue: 6387
  year: 2018
  ident: 10.1016/j.bios.2020.112316_bib7
  article-title: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
  publication-title: Science
  doi: 10.1126/science.aar6245
– volume: 6
  start-page: 916
  issue: 12
  year: 2014
  ident: 10.1016/j.bios.2020.112316_bib35
  article-title: Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v6.i12.916
– volume: 328
  start-page: 1708
  issue: 18
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib12
  article-title: Clinical characteristics of coronavirus disease 2019 in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2002032
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib1
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib34
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib31
– volume: 12
  start-page: 2469
  issue: 14
  year: 2012
  ident: 10.1016/j.bios.2020.112316_bib8
  article-title: Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review
  publication-title: Lab Chip
  doi: 10.1039/c2lc40100b
– volume: 14
  start-page: 3822
  issue: 4
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib29
  article-title: Diagnosing COVID-19: the disease and tools for detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02624
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib6
– volume: 356
  start-page: 438
  issue: 6336
  year: 2017
  ident: 10.1016/j.bios.2020.112316_bib11
  article-title: Nucleic acid detection with CRISPR-Cas13a/C2c2
  publication-title: Science
  doi: 10.1126/science.aam9321
– volume: 579
  start-page: 270
  issue: 7798
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib36
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 10
  start-page: 7467
  issue: 8
  year: 2016
  ident: 10.1016/j.bios.2020.112316_bib16
  article-title: Homogeneous entropy-driven amplified detection of biomolecular interactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02060
– volume: 382
  start-page: 1177
  issue: 12
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib37
  article-title: SARS-CoV-2 viral load in upper respiratory specimens of infected patients
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2001737
– volume: 530
  start-page: 67
  year: 2013
  ident: 10.1016/j.bios.2020.112316_bib2
  article-title: Reverse-transcription PCR (RT-PCR)
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-420037-1.00002-6
– volume: 37
  start-page: 730
  issue: 7
  year: 2019
  ident: 10.1016/j.bios.2020.112316_bib19
  article-title: CRISPR/Cas systems towards next-generation biosensing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.12.005
– volume: 31
  start-page: 1905311
  issue: 51
  year: 2019
  ident: 10.1016/j.bios.2020.112316_bib4
  article-title: CRISPR/Cas13a-Powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905311
– volume: 3
  start-page: 427
  issue: 6
  year: 2019
  ident: 10.1016/j.bios.2020.112316_bib13
  article-title: Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-019-0371-x
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib14
  article-title: Comparison of Abbott ID Now and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00798-20
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib9
  article-title: All-in-One dual CRISPR-cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus
  publication-title: bioRxiv
– volume: 39
  start-page: 75
  issue: 1
  year: 2005
  ident: 10.1016/j.bios.2020.112316_bib32
  article-title: Real-time PCR for mRNA quantitation
  publication-title: Biotechniques
  doi: 10.2144/05391RV01
– volume: 26
  issue: 7
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib28
  article-title: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2
  publication-title: Emerging Infectious Disease journal
– volume: 25
  issue: 10
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib24
  article-title: Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2020.25.10.2000180
– volume: 28
  start-page: E63
  issue: 12
  year: 2000
  ident: 10.1016/j.bios.2020.112316_bib25
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.12.e63
– start-page: 1
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib3
  article-title: CRISPR–Cas12-based detection of SARS-CoV-2
  publication-title: Nat. Biotechnol.
– year: 2020
  ident: 10.1016/j.bios.2020.112316_bib20
  article-title: Assessing the Global Tendency of COVID-19 Outbreak
  publication-title: medRxiv
– volume: 395
  start-page: 565
  issue: 10224
  year: 2020
  ident: 10.1016/j.bios.2020.112316_bib22
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 100
  start-page: 4504
  issue: 8
  year: 2003
  ident: 10.1016/j.bios.2020.112316_bib30
  article-title: Isothermal reactions for the amplification of oligonucleotides
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0730811100
– volume: 360
  start-page: 439
  issue: 6387
  year: 2018
  ident: 10.1016/j.bios.2020.112316_bib10
  article-title: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
  publication-title: Science
  doi: 10.1126/science.aaq0179
– volume: 165
  start-page: 1255
  issue: 5
  year: 2016
  ident: 10.1016/j.bios.2020.112316_bib26
  article-title: Rapid, low-cost detection of zika virus using programmable biomolecular components
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.059
SSID ssj0007190
Score 2.690702
Snippet Recent research suggests that SARS-CoV-2-infected individuals can be highly infectious while asymptomatic or pre-symptomatic, and that an infected person may...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112316
SubjectTerms Base Sequence
Betacoronavirus - genetics
Betacoronavirus - isolation & purification
Biosensing Techniques - methods
Biosensing Techniques - statistics & numerical data
biosensors
Coronavirus infections
Coronavirus Infections - diagnosis
Coronavirus Infections - virology
COVID-19
CRISPR
CRISPR-Cas Systems
detection limit
diagnostic techniques
fluorescence
Fluorescent detection
Fluorescent Dyes
gene editing
Genes, Viral
High-Throughput Nucleotide Sequencing - methods
High-Throughput Nucleotide Sequencing - statistics & numerical data
Highly sensitive
Humans
Molecular diagnosis
nose
Nucleic Acid Amplification Techniques - methods
Nucleic Acid Amplification Techniques - statistics & numerical data
Pandemics
Pneumonia, Viral - diagnosis
Pneumonia, Viral - virology
Predictive Value of Tests
quantitative polymerase chain reaction
recombinases
Reproducibility of Results
reverse transcriptase polymerase chain reaction
Reverse Transcriptase Polymerase Chain Reaction - methods
Reverse Transcriptase Polymerase Chain Reaction - statistics & numerical data
RNA, Viral - analysis
RNA, Viral - genetics
SARS-CoV-2
screening
Sensitivity and Specificity
Title Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis
URI https://dx.doi.org/10.1016/j.bios.2020.112316
https://www.ncbi.nlm.nih.gov/pubmed/32553350
https://www.proquest.com/docview/2415294481
https://www.proquest.com/docview/2439408916
https://pubmed.ncbi.nlm.nih.gov/PMC7245202
Volume 164
WOSCitedRecordID wos000541155600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4235
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007190
  issn: 0956-5663
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBmg8IBiwlY8pSLxVRkvsxPHj1G2iCEY1tqniJUpSR8tU0qpNp_En8F9zFzsfTUUFSLxElevLh3-_nM-X8x0h7xIAOU7GEY0cm1GuYp8CSxwauXbs80Qpr9hIe_VJnJ35o5Ecdjo_y70wtxORZf7dnZz9V6ihDcDGrbN_AXd1UmiA3wA6HAF2OP4R8JeTfB7SBQamF2FB6BnHpMTUlOSZLfNe_3zwdXhOZz2skYY-3i9Xg2NqS3TFYuRdulj52JtO8XRYlgeJEqXTunjOouaF8Tx_u1aN4F7tXz1Oq8CfdFlo_dDMmEVTtiJnfBCw4MQaCm7tGFvbHGM8jB4Fa1HrL6X1qy-AEY7OUFIpYI83VCgYgMz2GhNy3bCm7rXn4eY9PDimXneKHVGtzoDO7HuBNYPlE2M6z20ryfbwc1_gN2hMS7rtCFeCjt8-GpyMPlbTurC1w658KrMDSwcLtm9ghzwsr_Y7g2d9QdOOy20YOhdPyGOzQrGONLOeko7KdskDXbP0xy551Mhg-YyctthmAdusFtuskm2WZptVss2q2PacXJ6eXPQ_UFOag8Zgf-ZURC5LPC6YYlzaLBFceeNQAbLccx0GVnos7BCMQxlJF_P_eDxKWJw4MY9CN7HZC7KVTTO1TyweHboRCCXMSzjMKHIcuz7KAyAcRLvELscviE3eeiyfMgnKAMWbAIc_wOEP9PB3Sa-SmemsLRt7uyUsgbE7tT0ZAM82yr0tMQxAKeOXtjBT0yV0QrNYcu7bm_owyQ99iefZ07hX91pyp0vECiOqDpgUfvWfLL0uksMbGr_8Z8lXZKd-xV-TrXy-VG_I_fg2TxfzA3JPjPwD8278AkFo1oQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-sensitive+and+high-throughput+CRISPR-p+owered+COVID-19+diagnosis&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Huang%2C+Zhen&rft.au=Tian%2C+Di&rft.au=Liu%2C+Yang&rft.au=Lin%2C+Zhen&rft.date=2020-09-15&rft.pub=Elsevier+B.V&rft.issn=0956-5663&rft.eissn=1873-4235&rft.volume=164&rft.spage=112316&rft.epage=112316&rft_id=info:doi/10.1016%2Fj.bios.2020.112316&rft_id=info%3Apmid%2F32553350&rft.externalDocID=PMC7245202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon