Functional Enhancers Shape Extrachromosomal Oncogene Amplifications

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-ampli...

Full description

Saved in:
Bibliographic Details
Published in:Cell Vol. 179; no. 6; p. 1330
Main Authors: Morton, Andrew R, Dogan-Artun, Nergiz, Faber, Zachary J, MacLeod, Graham, Bartels, Cynthia F, Piazza, Megan S, Allan, Kevin C, Mack, Stephen C, Wang, Xiuxing, Gimple, Ryan C, Wu, Qiulian, Rubin, Brian P, Shetty, Shashirekha, Angers, Stephane, Dirks, Peter B, Sallari, Richard C, Lupien, Mathieu, Rich, Jeremy N, Scacheri, Peter C
Format: Journal Article
Language:English
Published: United States 27.11.2019
Subjects:
ISSN:1097-4172, 1097-4172
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1097-4172
1097-4172
DOI:10.1016/j.cell.2019.10.039