Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on riv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 23; S. 9601
Hauptverfasser: Stickler, Claudia M, Coe, Michael T, Costa, Marcos H, Nepstad, Daniel C, McGrath, David G, Dias, Livia C P, Rodrigues, Hermann O, Soares-Filho, Britaldo S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 04.06.2013
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.
AbstractList Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.
Author McGrath, David G
Stickler, Claudia M
Costa, Marcos H
Soares-Filho, Britaldo S
Dias, Livia C P
Coe, Michael T
Rodrigues, Hermann O
Nepstad, Daniel C
Author_xml – sequence: 1
  givenname: Claudia M
  surname: Stickler
  fullname: Stickler, Claudia M
  email: cstickler@ipam.org.br
  organization: International Program, Amazon Environmental Research Institute, San Francisco, CA 94110, USA. cstickler@ipam.org.br
– sequence: 2
  givenname: Michael T
  surname: Coe
  fullname: Coe, Michael T
– sequence: 3
  givenname: Marcos H
  surname: Costa
  fullname: Costa, Marcos H
– sequence: 4
  givenname: Daniel C
  surname: Nepstad
  fullname: Nepstad, Daniel C
– sequence: 5
  givenname: David G
  surname: McGrath
  fullname: McGrath, David G
– sequence: 6
  givenname: Livia C P
  surname: Dias
  fullname: Dias, Livia C P
– sequence: 7
  givenname: Hermann O
  surname: Rodrigues
  fullname: Rodrigues, Hermann O
– sequence: 8
  givenname: Britaldo S
  surname: Soares-Filho
  fullname: Soares-Filho, Britaldo S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23671098$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLxDAQxoOsuA89e5McvXTNpE2bHtf1CQte9Fym7XS30iY16SLrX2_EFYQPvpnfPBhmzibGGmLsEsQSRBbfDAb9EiSoOAYAccJmIHKI0iQXk3_xlM29fxdC5EqLMzaVcZqFop6x5o4GMjWZirht-O5QOzvYT3KcDLntgW9_HMfWGh7UWEd-9Lw1fNwRX_X4Fegt-gBw5J2tsONoau5oG0ZC4gMhf85OG-w8XRx9wd4e7l_XT9Hm5fF5vdpElVLJGCUgG8wSobVSqkzLOstANbqUic4aCRUCJErFqDLSmOVSirLCUkPSYF1iinLBrn_3Ds5-7MOpRd_6iroODdm9LyBOlQIhgxbs6ti6L3uqi8G1PbpD8fcb-Q2Yf2iR
CitedBy_id crossref_primary_10_1016_j_ympev_2018_07_009
crossref_primary_10_1111_btp_12610
crossref_primary_10_1080_00045608_2015_1052337
crossref_primary_10_3390_en15207698
crossref_primary_10_1111_cuag_12055
crossref_primary_10_1111_gcb_13314
crossref_primary_10_1038_s41598_017_00128_5
crossref_primary_10_1016_j_jclepro_2020_122057
crossref_primary_10_1016_j_eneco_2023_107205
crossref_primary_10_3390_su151813534
crossref_primary_10_1590_1809_4422asoc0157r3vu18l1ao
crossref_primary_10_1016_j_rser_2016_07_048
crossref_primary_10_3233_JIFS_181604
crossref_primary_10_1073_pnas_1504788112
crossref_primary_10_1111_1365_2664_12665
crossref_primary_10_1186_s13705_018_0172_1
crossref_primary_10_3389_ffgc_2021_618401
crossref_primary_10_1016_j_gloenvcha_2021_102383
crossref_primary_10_1016_j_envdev_2023_100885
crossref_primary_10_1016_j_jhydrol_2020_125385
crossref_primary_10_1007_s12229_014_9149_8
crossref_primary_10_1002_sd_1997
crossref_primary_10_3390_su12219209
crossref_primary_10_1016_j_wace_2021_100306
crossref_primary_10_1111_cobi_70043
crossref_primary_10_1007_s10584_020_02736_z
crossref_primary_10_3390_su9020225
crossref_primary_10_1016_j_jeem_2015_08_003
crossref_primary_10_1088_1748_9326_10_10_104015
crossref_primary_10_1088_1748_9326_ad560c
crossref_primary_10_1002_2013JG002516
crossref_primary_10_1016_j_ecolind_2020_107047
crossref_primary_10_1038_s41893_018_0175_0
crossref_primary_10_5194_hess_29_3315_2025
crossref_primary_10_1016_j_jenvman_2020_110128
crossref_primary_10_1016_j_rser_2020_110082
crossref_primary_10_3390_su13020942
crossref_primary_10_5194_hess_21_1455_2017
crossref_primary_10_12952_journal_elementa_000125
crossref_primary_10_62142_hjs6a555
crossref_primary_10_1049_rpg2_12944
crossref_primary_10_1371_journal_pone_0245991
crossref_primary_10_1002_2017GL076526
crossref_primary_10_1038_s43247_024_01738_4
crossref_primary_10_3390_en15041413
crossref_primary_10_1007_s10531_016_1072_3
crossref_primary_10_1002_2013GL058454
crossref_primary_10_1007_s11027_013_9516_5
crossref_primary_10_1002_aqc_3046
crossref_primary_10_1016_j_envdev_2020_100527
crossref_primary_10_1016_j_jclepro_2014_02_049
crossref_primary_10_1016_j_jclepro_2022_135700
crossref_primary_10_1016_j_jdeveco_2025_103559
crossref_primary_10_1038_s41586_022_05690_1
crossref_primary_10_1016_j_gloenvcha_2017_01_002
crossref_primary_10_1016_j_jclepro_2023_138575
crossref_primary_10_1111_gcb_13173
crossref_primary_10_3390_su15118969
crossref_primary_10_1016_j_jhydrol_2015_02_018
crossref_primary_10_1038_s41467_025_57891_7
crossref_primary_10_1111_fme_12535
crossref_primary_10_1007_s40710_021_00516_0
crossref_primary_10_1088_1748_9326_ac8236
crossref_primary_10_1016_j_ecoser_2019_101003
crossref_primary_10_3390_hydrology7030054
crossref_primary_10_1038_509418a
crossref_primary_10_1007_s00382_016_3449_0
crossref_primary_10_1029_2020RG000728
crossref_primary_10_14201_reb2019611123138
crossref_primary_10_1038_sdata_2016_71
crossref_primary_10_1002_rra_4105
crossref_primary_10_1080_00220388_2023_2197545
crossref_primary_10_1108_FS_09_2013_0050
crossref_primary_10_1016_j_gloplacha_2015_02_009
crossref_primary_10_1007_s10113_019_01549_w
crossref_primary_10_1016_j_scitotenv_2021_150527
crossref_primary_10_1590_0034_76121601
crossref_primary_10_1002_aqc_3558
crossref_primary_10_1029_2025AV001670
crossref_primary_10_1016_j_rsase_2021_100573
crossref_primary_10_1126_science_1246663
crossref_primary_10_1080_21681376_2022_2081598
crossref_primary_10_1016_j_jhydrol_2024_131739
crossref_primary_10_1038_s43247_025_02408_9
crossref_primary_10_3389_fenvs_2019_00050
crossref_primary_10_3390_cli11100201
crossref_primary_10_1016_j_jenvman_2018_03_115
crossref_primary_10_1016_j_jenvman_2022_116664
crossref_primary_10_1080_10549811_2017_1416477
crossref_primary_10_5194_sd_20_21_2015
crossref_primary_10_1016_j_foreco_2023_120909
crossref_primary_10_1186_s13705_021_00297_2
crossref_primary_10_1002_hyp_11517
crossref_primary_10_3390_su132414048
crossref_primary_10_1016_j_scitotenv_2020_140981
crossref_primary_10_3390_w17050660
crossref_primary_10_5194_hess_20_3343_2016
crossref_primary_10_1007_s10113_018_1321_y
crossref_primary_10_1002_sd_1725
crossref_primary_10_1139_er_2018_0064
crossref_primary_10_1016_j_ecohyd_2020_09_002
crossref_primary_10_3390_w13121693
crossref_primary_10_1016_j_jhydrol_2023_130082
crossref_primary_10_1016_j_jclepro_2019_02_021
crossref_primary_10_1016_j_renene_2015_06_010
crossref_primary_10_1175_JHM_D_16_0133_1
crossref_primary_10_1007_s11676_019_00894_0
crossref_primary_10_3390_su17157099
crossref_primary_10_1016_j_biocon_2018_04_002
crossref_primary_10_1016_j_scitotenv_2017_06_143
crossref_primary_10_1111_ele_13283
crossref_primary_10_1177_0309133317751843
crossref_primary_10_3390_d15020257
crossref_primary_10_1002_aqc_3775
crossref_primary_10_1177_1940082917720671
crossref_primary_10_1177_1940082917720672
crossref_primary_10_1088_1748_9326_ac0210
crossref_primary_10_1007_s10113_018_1396_5
crossref_primary_10_1016_j_enpol_2016_02_051
crossref_primary_10_1038_nature22333
crossref_primary_10_5194_hess_20_2179_2016
crossref_primary_10_7717_peerj_4228
crossref_primary_10_1088_1748_9326_acc95f
crossref_primary_10_1029_2019EF001198
crossref_primary_10_1088_1748_9326_aaafd8
crossref_primary_10_5194_hess_22_1735_2018
crossref_primary_10_1029_2018JD029534
crossref_primary_10_3390_en7096063
crossref_primary_10_1029_2018WR022753
crossref_primary_10_1177_19400829211045788
crossref_primary_10_1016_j_ijsrc_2021_04_002
crossref_primary_10_1111_ruso_12419
crossref_primary_10_1016_j_ejrh_2025_102680
crossref_primary_10_1016_j_jenvman_2016_10_046
crossref_primary_10_2166_wp_2019_007
crossref_primary_10_3389_fenvs_2020_00120
crossref_primary_10_1073_pnas_1809426115
crossref_primary_10_5194_nhess_25_1071_2025
crossref_primary_10_1007_s10745_018_9992_z
crossref_primary_10_1029_2021WR031020
crossref_primary_10_1080_00139157_2021_1842711
crossref_primary_10_1016_j_cosust_2019_06_004
crossref_primary_10_5194_hess_22_4311_2018
crossref_primary_10_1371_journal_pone_0074170
crossref_primary_10_1371_journal_pbio_2000266
crossref_primary_10_1002_joc_4886
crossref_primary_10_1016_j_rser_2015_09_050
crossref_primary_10_1038_s44221_024_00291_w
crossref_primary_10_1051_e3sconf_202126801031
crossref_primary_10_1016_j_wasec_2022_100115
crossref_primary_10_1038_s41893_020_0492_y
crossref_primary_10_1016_j_renene_2017_10_030
crossref_primary_10_5194_acp_15_10723_2015
crossref_primary_10_1038_s41893_021_00786_4
crossref_primary_10_1002_2015GL066063
crossref_primary_10_1016_j_pecon_2024_05_001
crossref_primary_10_1029_2021RG000757
crossref_primary_10_1016_j_scitotenv_2019_04_377
crossref_primary_10_1016_j_worlddev_2023_106285
crossref_primary_10_3390_w10040349
crossref_primary_10_1126_science_1248525
crossref_primary_10_1002_hyp_15066
crossref_primary_10_5327_Z2176_94781658
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1215331110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 23671098
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c554t-412fa74088555b6bd7715f8b2487f21ca114553a57e8a79220bcab814fadba6a2
IEDL.DBID 7X8
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320503000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 09:17:02 EDT 2025
Thu Apr 03 07:06:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords forest policy
electricity
land-use planning
climate policy
climate change
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-412fa74088555b6bd7715f8b2487f21ca114553a57e8a79220bcab814fadba6a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/110/23/9601.full.pdf
PMID 23671098
PQID 1365510210
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1365510210
pubmed_primary_23671098
PublicationCentury 2000
PublicationDate 2013-06-04
PublicationDateYYYYMMDD 2013-06-04
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
References 18267906 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1873-80
18048654 - Science. 2008 Jan 11;319(5860):169-72
21292971 - Science. 2011 Feb 4;331(6017):554
16554817 - Nature. 2006 Mar 23;440(7083):520-3
19965742 - Science. 2009 Dec 4;326(5958):1350-1
16738820 - Environ Manage. 2006 Jul;38(1):16-27
22951966 - Nature. 2012 Sep 13;489(7415):282-5
22232692 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1341-6
16373572 - Science. 2005 Dec 23;310(5756):1944-7
19008036 - J Environ Manage. 2009 Jul;90 Suppl 3:S249-57
15831757 - Science. 2005 Apr 15;308(5720):405-8
16990982 - Environ Manage. 2006 Nov;38(5):705-16
10884705 - Trends Ecol Evol. 2000 Aug;15(8):332-337
23610166 - Philos Trans R Soc Lond B Biol Sci. 2013 Jun 5;368(1619):20120155
11809955 - Science. 2002 Jan 25;295(5555):629-31
18267897 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1737-46
References_xml – reference: 18267906 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1873-80
– reference: 16373572 - Science. 2005 Dec 23;310(5756):1944-7
– reference: 10884705 - Trends Ecol Evol. 2000 Aug;15(8):332-337
– reference: 22232692 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1341-6
– reference: 16554817 - Nature. 2006 Mar 23;440(7083):520-3
– reference: 22951966 - Nature. 2012 Sep 13;489(7415):282-5
– reference: 18267897 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1737-46
– reference: 23610166 - Philos Trans R Soc Lond B Biol Sci. 2013 Jun 5;368(1619):20120155
– reference: 16738820 - Environ Manage. 2006 Jul;38(1):16-27
– reference: 16990982 - Environ Manage. 2006 Nov;38(5):705-16
– reference: 11809955 - Science. 2002 Jan 25;295(5555):629-31
– reference: 15831757 - Science. 2005 Apr 15;308(5720):405-8
– reference: 19965742 - Science. 2009 Dec 4;326(5958):1350-1
– reference: 18048654 - Science. 2008 Jan 11;319(5860):169-72
– reference: 19008036 - J Environ Manage. 2009 Jul;90 Suppl 3:S249-57
– reference: 21292971 - Science. 2011 Feb 4;331(6017):554
SSID ssj0009580
Score 2.5077157
Snippet Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 9601
SubjectTerms Brazil
Climate Change
Computer Simulation
Conservation of Natural Resources - statistics & numerical data
Models, Theoretical
Public Policy
Rain
Renewable Energy - statistics & numerical data
Rivers
Seasons
Trees
Title Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales
URI https://www.ncbi.nlm.nih.gov/pubmed/23671098
https://www.proquest.com/docview/1365510210
Volume 110
WOSCitedRecordID wos000320503000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDFZjx46TCfGqWKg6gNStOjsOMJAWXEDw6zknqWBBQkKKMliJZNm-83e-8_cRciQ4JE6ZjGkBhknhBIOQLjRZyMLlVkCSV2ITut9Ph8Ns0By4-aascuYTK0edj204I--GciwVdKij08kzC6pRIbvaSGjMk1aMUCaUdOlh-oN0N63ZCDLOEplFM2ofHXcnJfiKWSGO0dqj3_Fltc_0Vv7bw1Wy3CBMelYviTaZc-UaaTc27OlxQzR9sk6Ky0YB1zo6LujDRx4kE97dC3XVjUB6X30apo7ig_AWO-PpY0kRNdKzJ_jE1nPw2ABTWu2KFMqcBrGHAPCpxxbnN8hd7-r24po1ugvMIriYMslFAVqi_1FKmcTkWnNVpEZgcFMIboEHdvMYlHYp6EyIyFgwKZcF5AYSEJtkoRyXbpvQWCYqxygMFEaSUtrUxVoDd5wbBcBthxzOxnKE6zokK6B041c_-h7NDtmqJ2Q0qQk4RoF1Dic13fnD37tkSdQKFiySe6RVoFW7fbJo36aP_uWgWjD47g9uvgAROso2
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+hydropower+energy+generation+on+forests+in+the+Amazon+Basin+at+local+and+regional+scales&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stickler%2C+Claudia+M&rft.au=Coe%2C+Michael+T&rft.au=Costa%2C+Marcos+H&rft.au=Nepstad%2C+Daniel+C&rft.date=2013-06-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=110&rft.issue=23&rft.spage=9601&rft_id=info:doi/10.1073%2Fpnas.1215331110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon