Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on riv...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 23; S. 9601 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
04.06.2013
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. |
|---|---|
| AbstractList | Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. |
| Author | McGrath, David G Stickler, Claudia M Costa, Marcos H Soares-Filho, Britaldo S Dias, Livia C P Coe, Michael T Rodrigues, Hermann O Nepstad, Daniel C |
| Author_xml | – sequence: 1 givenname: Claudia M surname: Stickler fullname: Stickler, Claudia M email: cstickler@ipam.org.br organization: International Program, Amazon Environmental Research Institute, San Francisco, CA 94110, USA. cstickler@ipam.org.br – sequence: 2 givenname: Michael T surname: Coe fullname: Coe, Michael T – sequence: 3 givenname: Marcos H surname: Costa fullname: Costa, Marcos H – sequence: 4 givenname: Daniel C surname: Nepstad fullname: Nepstad, Daniel C – sequence: 5 givenname: David G surname: McGrath fullname: McGrath, David G – sequence: 6 givenname: Livia C P surname: Dias fullname: Dias, Livia C P – sequence: 7 givenname: Hermann O surname: Rodrigues fullname: Rodrigues, Hermann O – sequence: 8 givenname: Britaldo S surname: Soares-Filho fullname: Soares-Filho, Britaldo S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23671098$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLxDAQxoOsuA89e5McvXTNpE2bHtf1CQte9Fym7XS30iY16SLrX2_EFYQPvpnfPBhmzibGGmLsEsQSRBbfDAb9EiSoOAYAccJmIHKI0iQXk3_xlM29fxdC5EqLMzaVcZqFop6x5o4GMjWZirht-O5QOzvYT3KcDLntgW9_HMfWGh7UWEd-9Lw1fNwRX_X4Fegt-gBw5J2tsONoau5oG0ZC4gMhf85OG-w8XRx9wd4e7l_XT9Hm5fF5vdpElVLJGCUgG8wSobVSqkzLOstANbqUic4aCRUCJErFqDLSmOVSirLCUkPSYF1iinLBrn_3Ds5-7MOpRd_6iroODdm9LyBOlQIhgxbs6ti6L3uqi8G1PbpD8fcb-Q2Yf2iR |
| CitedBy_id | crossref_primary_10_1016_j_ympev_2018_07_009 crossref_primary_10_1111_btp_12610 crossref_primary_10_1080_00045608_2015_1052337 crossref_primary_10_3390_en15207698 crossref_primary_10_1111_cuag_12055 crossref_primary_10_1111_gcb_13314 crossref_primary_10_1038_s41598_017_00128_5 crossref_primary_10_1016_j_jclepro_2020_122057 crossref_primary_10_1016_j_eneco_2023_107205 crossref_primary_10_3390_su151813534 crossref_primary_10_1590_1809_4422asoc0157r3vu18l1ao crossref_primary_10_1016_j_rser_2016_07_048 crossref_primary_10_3233_JIFS_181604 crossref_primary_10_1073_pnas_1504788112 crossref_primary_10_1111_1365_2664_12665 crossref_primary_10_1186_s13705_018_0172_1 crossref_primary_10_3389_ffgc_2021_618401 crossref_primary_10_1016_j_gloenvcha_2021_102383 crossref_primary_10_1016_j_envdev_2023_100885 crossref_primary_10_1016_j_jhydrol_2020_125385 crossref_primary_10_1007_s12229_014_9149_8 crossref_primary_10_1002_sd_1997 crossref_primary_10_3390_su12219209 crossref_primary_10_1016_j_wace_2021_100306 crossref_primary_10_1111_cobi_70043 crossref_primary_10_1007_s10584_020_02736_z crossref_primary_10_3390_su9020225 crossref_primary_10_1016_j_jeem_2015_08_003 crossref_primary_10_1088_1748_9326_10_10_104015 crossref_primary_10_1088_1748_9326_ad560c crossref_primary_10_1002_2013JG002516 crossref_primary_10_1016_j_ecolind_2020_107047 crossref_primary_10_1038_s41893_018_0175_0 crossref_primary_10_5194_hess_29_3315_2025 crossref_primary_10_1016_j_jenvman_2020_110128 crossref_primary_10_1016_j_rser_2020_110082 crossref_primary_10_3390_su13020942 crossref_primary_10_5194_hess_21_1455_2017 crossref_primary_10_12952_journal_elementa_000125 crossref_primary_10_62142_hjs6a555 crossref_primary_10_1049_rpg2_12944 crossref_primary_10_1371_journal_pone_0245991 crossref_primary_10_1002_2017GL076526 crossref_primary_10_1038_s43247_024_01738_4 crossref_primary_10_3390_en15041413 crossref_primary_10_1007_s10531_016_1072_3 crossref_primary_10_1002_2013GL058454 crossref_primary_10_1007_s11027_013_9516_5 crossref_primary_10_1002_aqc_3046 crossref_primary_10_1016_j_envdev_2020_100527 crossref_primary_10_1016_j_jclepro_2014_02_049 crossref_primary_10_1016_j_jclepro_2022_135700 crossref_primary_10_1016_j_jdeveco_2025_103559 crossref_primary_10_1038_s41586_022_05690_1 crossref_primary_10_1016_j_gloenvcha_2017_01_002 crossref_primary_10_1016_j_jclepro_2023_138575 crossref_primary_10_1111_gcb_13173 crossref_primary_10_3390_su15118969 crossref_primary_10_1016_j_jhydrol_2015_02_018 crossref_primary_10_1038_s41467_025_57891_7 crossref_primary_10_1111_fme_12535 crossref_primary_10_1007_s40710_021_00516_0 crossref_primary_10_1088_1748_9326_ac8236 crossref_primary_10_1016_j_ecoser_2019_101003 crossref_primary_10_3390_hydrology7030054 crossref_primary_10_1038_509418a crossref_primary_10_1007_s00382_016_3449_0 crossref_primary_10_1029_2020RG000728 crossref_primary_10_14201_reb2019611123138 crossref_primary_10_1038_sdata_2016_71 crossref_primary_10_1002_rra_4105 crossref_primary_10_1080_00220388_2023_2197545 crossref_primary_10_1108_FS_09_2013_0050 crossref_primary_10_1016_j_gloplacha_2015_02_009 crossref_primary_10_1007_s10113_019_01549_w crossref_primary_10_1016_j_scitotenv_2021_150527 crossref_primary_10_1590_0034_76121601 crossref_primary_10_1002_aqc_3558 crossref_primary_10_1029_2025AV001670 crossref_primary_10_1016_j_rsase_2021_100573 crossref_primary_10_1126_science_1246663 crossref_primary_10_1080_21681376_2022_2081598 crossref_primary_10_1016_j_jhydrol_2024_131739 crossref_primary_10_1038_s43247_025_02408_9 crossref_primary_10_3389_fenvs_2019_00050 crossref_primary_10_3390_cli11100201 crossref_primary_10_1016_j_jenvman_2018_03_115 crossref_primary_10_1016_j_jenvman_2022_116664 crossref_primary_10_1080_10549811_2017_1416477 crossref_primary_10_5194_sd_20_21_2015 crossref_primary_10_1016_j_foreco_2023_120909 crossref_primary_10_1186_s13705_021_00297_2 crossref_primary_10_1002_hyp_11517 crossref_primary_10_3390_su132414048 crossref_primary_10_1016_j_scitotenv_2020_140981 crossref_primary_10_3390_w17050660 crossref_primary_10_5194_hess_20_3343_2016 crossref_primary_10_1007_s10113_018_1321_y crossref_primary_10_1002_sd_1725 crossref_primary_10_1139_er_2018_0064 crossref_primary_10_1016_j_ecohyd_2020_09_002 crossref_primary_10_3390_w13121693 crossref_primary_10_1016_j_jhydrol_2023_130082 crossref_primary_10_1016_j_jclepro_2019_02_021 crossref_primary_10_1016_j_renene_2015_06_010 crossref_primary_10_1175_JHM_D_16_0133_1 crossref_primary_10_1007_s11676_019_00894_0 crossref_primary_10_3390_su17157099 crossref_primary_10_1016_j_biocon_2018_04_002 crossref_primary_10_1016_j_scitotenv_2017_06_143 crossref_primary_10_1111_ele_13283 crossref_primary_10_1177_0309133317751843 crossref_primary_10_3390_d15020257 crossref_primary_10_1002_aqc_3775 crossref_primary_10_1177_1940082917720671 crossref_primary_10_1177_1940082917720672 crossref_primary_10_1088_1748_9326_ac0210 crossref_primary_10_1007_s10113_018_1396_5 crossref_primary_10_1016_j_enpol_2016_02_051 crossref_primary_10_1038_nature22333 crossref_primary_10_5194_hess_20_2179_2016 crossref_primary_10_7717_peerj_4228 crossref_primary_10_1088_1748_9326_acc95f crossref_primary_10_1029_2019EF001198 crossref_primary_10_1088_1748_9326_aaafd8 crossref_primary_10_5194_hess_22_1735_2018 crossref_primary_10_1029_2018JD029534 crossref_primary_10_3390_en7096063 crossref_primary_10_1029_2018WR022753 crossref_primary_10_1177_19400829211045788 crossref_primary_10_1016_j_ijsrc_2021_04_002 crossref_primary_10_1111_ruso_12419 crossref_primary_10_1016_j_ejrh_2025_102680 crossref_primary_10_1016_j_jenvman_2016_10_046 crossref_primary_10_2166_wp_2019_007 crossref_primary_10_3389_fenvs_2020_00120 crossref_primary_10_1073_pnas_1809426115 crossref_primary_10_5194_nhess_25_1071_2025 crossref_primary_10_1007_s10745_018_9992_z crossref_primary_10_1029_2021WR031020 crossref_primary_10_1080_00139157_2021_1842711 crossref_primary_10_1016_j_cosust_2019_06_004 crossref_primary_10_5194_hess_22_4311_2018 crossref_primary_10_1371_journal_pone_0074170 crossref_primary_10_1371_journal_pbio_2000266 crossref_primary_10_1002_joc_4886 crossref_primary_10_1016_j_rser_2015_09_050 crossref_primary_10_1038_s44221_024_00291_w crossref_primary_10_1051_e3sconf_202126801031 crossref_primary_10_1016_j_wasec_2022_100115 crossref_primary_10_1038_s41893_020_0492_y crossref_primary_10_1016_j_renene_2017_10_030 crossref_primary_10_5194_acp_15_10723_2015 crossref_primary_10_1038_s41893_021_00786_4 crossref_primary_10_1002_2015GL066063 crossref_primary_10_1016_j_pecon_2024_05_001 crossref_primary_10_1029_2021RG000757 crossref_primary_10_1016_j_scitotenv_2019_04_377 crossref_primary_10_1016_j_worlddev_2023_106285 crossref_primary_10_3390_w10040349 crossref_primary_10_1126_science_1248525 crossref_primary_10_1002_hyp_15066 crossref_primary_10_5327_Z2176_94781658 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1215331110 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 23671098 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c554t-412fa74088555b6bd7715f8b2487f21ca114553a57e8a79220bcab814fadba6a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 181 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320503000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 09:17:02 EDT 2025 Thu Apr 03 07:06:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | forest policy electricity land-use planning climate policy climate change |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c554t-412fa74088555b6bd7715f8b2487f21ca114553a57e8a79220bcab814fadba6a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/110/23/9601.full.pdf |
| PMID | 23671098 |
| PQID | 1365510210 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1365510210 pubmed_primary_23671098 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-06-04 |
| PublicationDateYYYYMMDD | 2013-06-04 |
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2013 |
| References | 18267906 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1873-80 18048654 - Science. 2008 Jan 11;319(5860):169-72 21292971 - Science. 2011 Feb 4;331(6017):554 16554817 - Nature. 2006 Mar 23;440(7083):520-3 19965742 - Science. 2009 Dec 4;326(5958):1350-1 16738820 - Environ Manage. 2006 Jul;38(1):16-27 22951966 - Nature. 2012 Sep 13;489(7415):282-5 22232692 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1341-6 16373572 - Science. 2005 Dec 23;310(5756):1944-7 19008036 - J Environ Manage. 2009 Jul;90 Suppl 3:S249-57 15831757 - Science. 2005 Apr 15;308(5720):405-8 16990982 - Environ Manage. 2006 Nov;38(5):705-16 10884705 - Trends Ecol Evol. 2000 Aug;15(8):332-337 23610166 - Philos Trans R Soc Lond B Biol Sci. 2013 Jun 5;368(1619):20120155 11809955 - Science. 2002 Jan 25;295(5555):629-31 18267897 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1737-46 |
| References_xml | – reference: 18267906 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1873-80 – reference: 16373572 - Science. 2005 Dec 23;310(5756):1944-7 – reference: 10884705 - Trends Ecol Evol. 2000 Aug;15(8):332-337 – reference: 22232692 - Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1341-6 – reference: 16554817 - Nature. 2006 Mar 23;440(7083):520-3 – reference: 22951966 - Nature. 2012 Sep 13;489(7415):282-5 – reference: 18267897 - Philos Trans R Soc Lond B Biol Sci. 2008 May 27;363(1498):1737-46 – reference: 23610166 - Philos Trans R Soc Lond B Biol Sci. 2013 Jun 5;368(1619):20120155 – reference: 16738820 - Environ Manage. 2006 Jul;38(1):16-27 – reference: 16990982 - Environ Manage. 2006 Nov;38(5):705-16 – reference: 11809955 - Science. 2002 Jan 25;295(5555):629-31 – reference: 15831757 - Science. 2005 Apr 15;308(5720):405-8 – reference: 19965742 - Science. 2009 Dec 4;326(5958):1350-1 – reference: 18048654 - Science. 2008 Jan 11;319(5860):169-72 – reference: 19008036 - J Environ Manage. 2009 Jul;90 Suppl 3:S249-57 – reference: 21292971 - Science. 2011 Feb 4;331(6017):554 |
| SSID | ssj0009580 |
| Score | 2.5077157 |
| Snippet | Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 9601 |
| SubjectTerms | Brazil Climate Change Computer Simulation Conservation of Natural Resources - statistics & numerical data Models, Theoretical Public Policy Rain Renewable Energy - statistics & numerical data Rivers Seasons Trees |
| Title | Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23671098 https://www.proquest.com/docview/1365510210 |
| Volume | 110 |
| WOSCitedRecordID | wos000320503000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDFZjx46TCfGqWKg6gNStOjsOMJAWXEDw6zknqWBBQkKKMliJZNm-83e-8_cRciQ4JE6ZjGkBhknhBIOQLjRZyMLlVkCSV2ITut9Ph8Ns0By4-aascuYTK0edj204I--GciwVdKij08kzC6pRIbvaSGjMk1aMUCaUdOlh-oN0N63ZCDLOEplFM2ofHXcnJfiKWSGO0dqj3_Fltc_0Vv7bw1Wy3CBMelYviTaZc-UaaTc27OlxQzR9sk6Ky0YB1zo6LujDRx4kE97dC3XVjUB6X30apo7ig_AWO-PpY0kRNdKzJ_jE1nPw2ABTWu2KFMqcBrGHAPCpxxbnN8hd7-r24po1ugvMIriYMslFAVqi_1FKmcTkWnNVpEZgcFMIboEHdvMYlHYp6EyIyFgwKZcF5AYSEJtkoRyXbpvQWCYqxygMFEaSUtrUxVoDd5wbBcBthxzOxnKE6zokK6B041c_-h7NDtmqJ2Q0qQk4RoF1Dic13fnD37tkSdQKFiySe6RVoFW7fbJo36aP_uWgWjD47g9uvgAROso2 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+hydropower+energy+generation+on+forests+in+the+Amazon+Basin+at+local+and+regional+scales&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Stickler%2C+Claudia+M&rft.au=Coe%2C+Michael+T&rft.au=Costa%2C+Marcos+H&rft.au=Nepstad%2C+Daniel+C&rft.date=2013-06-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=110&rft.issue=23&rft.spage=9601&rft_id=info:doi/10.1073%2Fpnas.1215331110&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |