Dynamical genetic programming in XCSF

A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifie...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary computation Vol. 21; no. 3; p. 361
Main Authors: Preen, Richard J, Bull, Larry
Format: Journal Article
Language:English
Published: United States 01.09.2013
Subjects:
ISSN:1530-9304, 1530-9304
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.
AbstractList A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.
A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.
Author Preen, Richard J
Bull, Larry
Author_xml – sequence: 1
  givenname: Richard J
  surname: Preen
  fullname: Preen, Richard J
  email: richard.preen@live.uwe.ac.uk
  organization: Department of Computer Science and Creative Technologies, University of the West of England, Bristol, BS16 1QY, United Kingdom richard.preen@live.uwe.ac.uk
– sequence: 2
  givenname: Larry
  surname: Bull
  fullname: Bull, Larry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22564070$$D View this record in MEDLINE/PubMed
BookMark eNpNT0lLw0AYHaRiF715llwEL9Fv9vQoaatCoQcXvIXJLGEkM62Z5NB_b8AKvst7h8db5mgS99EidI3hHmNBHtYf5a5SFQAUcIZmmFPIlxTY5J-eonlKXwCYEsAXaEoIFwwkzNDt6hhV8Fq1WWOj7b3ODt2-6VQIPjaZj9ln-bq5ROdOtclenXiB3jfrt_I53-6eXsrHba45Z31OlNa11kbisYY5O8KJwoFQgmvuqAWsJACnhGBppCyEM8ouazBgWFFQskB3v7njhu_Bpr4KPmnbtira_ZAqzDDhRGAgo_XmZB3qYE116HxQ3bH6u0Z-AGZHUBk
CitedBy_id crossref_primary_10_1007_s00500_013_1044_4
crossref_primary_10_1007_s12065_015_0125_y
crossref_primary_10_1109_TEVC_2021_3079320
crossref_primary_10_1007_s10710_021_09418_4
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/EVCO_a_00080
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 22564070
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
ZWS
7X8
ID FETCH-LOGICAL-c554t-2accbccd712014feeeef68f06a65c5f3e01a700532217d7786fdae9b0d0d48832
IEDL.DBID 7X8
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330360000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Thu Sep 04 15:56:03 EDT 2025
Mon Jul 21 05:54:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-2accbccd712014feeeef68f06a65c5f3e01a700532217d7786fdae9b0d0d48832
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22564070
PQID 1412526102
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1412526102
pubmed_primary_22564070
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2013
SSID ssj0013201
Score 2.049064
Snippet A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 361
SubjectTerms Algorithms
Computational Biology - methods
Models, Genetic
Models, Theoretical
Multivariate Analysis
Neural Networks (Computer)
Normal Distribution
Programming Languages
Regression Analysis
Reproducibility of Results
Title Dynamical genetic programming in XCSF
URI https://www.ncbi.nlm.nih.gov/pubmed/22564070
https://www.proquest.com/docview/1412526102
Volume 21
WOSCitedRecordID wos000330360000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UetCD1fqqLyLocelmm2yyJ5Ha4sVa8EFuYbsP6MGk2urvdzbZYC-CYA65hIUwmZn9ZmfyfQBXgjMsuWhKFOWCRDbhJBVKE2ZDriPH6BbLSmwiGY_TLBMTf-C28GOVTU6sErUulTsj74URbsUI9ym7mb8TpxrluqteQmMdWn2EMs6rk2y1i0A9XyolAuv2ZvCds97wdfCYy7xCTL-Dy2qTGbX_-3q7sOPhZXBb-8MerJmiA-1GuiHwkdyB7RUewn24vqt16XEl-pP7rTHwc1tv-DyYFUE2eBodwMto-Dy4J14_gSgECUvCpFJTpXQSoh0ia_CyPLWUSx6r2PYNDWXiopBhXaIdkZzV0ogp1VRjXPfZIWwUZWGOIWAi5XqqpFHMRDphkurUYmmSGDRmaOIuXDZmydE_XdNBFqb8XOQ_hunCUW3bfF4TaeSYS1wfkZ78YfUpbLFKicKNd51By2J0mnPYVF_L2eLjovrweB9PHr4B7pu2Aw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+genetic+programming+in+XCSF&rft.jtitle=Evolutionary+computation&rft.au=Preen%2C+Richard+J&rft.au=Bull%2C+Larry&rft.date=2013-09-01&rft.eissn=1530-9304&rft.volume=21&rft.issue=3&rft.spage=361&rft_id=info:doi/10.1162%2FEVCO_a_00080&rft_id=info%3Apmid%2F22564070&rft_id=info%3Apmid%2F22564070&rft.externalDocID=22564070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon