Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COF-102 Hybrid Material
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid materi...
Saved in:
| Published in: | Chemistry : a European journal Vol. 18; no. 35; pp. 10848 - 10856 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
27.08.2012
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.
In the frame: Pd@COF‐102 hybrid material (COF=covalent organic framework; see figure) is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution, cavity size matching, and an absence of larger agglomerates even at high loadings (30 wt %). Hydrogen storage studies showed that the H2 capacities were enhanced by a factor of 2–3 as a result of Pd impregnation on COF‐102 at room temperature and 20 bar. |
|---|---|
| AbstractList | Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η 3 ‐C 3 H 5 )(η 5 ‐C 5 H 5 )]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H 2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3-C3H5)(η5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5)nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30wt%). Two samples with moderate Pd content (3.5 and 9.5wt%) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. In the frame: Pd@COF‐102 hybrid material (COF=covalent organic framework; see figure) is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution, cavity size matching, and an absence of larger agglomerates even at high loadings (30 wt %). Hydrogen storage studies showed that the H2 capacities were enhanced by a factor of 2–3 as a result of Pd impregnation on COF‐102 at room temperature and 20 bar. Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η(3)-C(3) H(5))(η(5)-C(5)H(5))]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H(2) capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η(3)-C(3) H(5))(η(5)-C(5)H(5))]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H(2) capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. |
| Author | Oh, Hyunchul Van Tendeloo, Gustaaf Fischer, Roland A. Wiktor, Christian Kalidindi, Suresh Babu Esken, Daniel Hirscher, Michael Turner, Stuart |
| Author_xml | – sequence: 1 givenname: Suresh Babu surname: Kalidindi fullname: Kalidindi, Suresh Babu organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174 – sequence: 2 givenname: Hyunchul surname: Oh fullname: Oh, Hyunchul organization: Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany) – sequence: 3 givenname: Michael surname: Hirscher fullname: Hirscher, Michael email: hirscher@mf.mpg.de organization: Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany) – sequence: 4 givenname: Daniel surname: Esken fullname: Esken, Daniel organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174 – sequence: 5 givenname: Christian surname: Wiktor fullname: Wiktor, Christian organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174 – sequence: 6 givenname: Stuart surname: Turner fullname: Turner, Stuart organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium) – sequence: 7 givenname: Gustaaf surname: Van Tendeloo fullname: Van Tendeloo, Gustaaf organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium) – sequence: 8 givenname: Roland A. surname: Fischer fullname: Fischer, Roland A. email: roland.fischer@rub.de organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22886887$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUFr2zAYhsXoWNNu1x2HYJddnMmSJdk7rZimKTRNxzo6ehGfZTlTa1ue5KzLL-jfnkLaMgpjIBBIz_N-Qu8B2utdbxB6m5JpSgj9qH-YbkpJGhfLyAs0STlNEyYF30MTUmQyEZwV--gghBtCSCEYe4X2Kc1zkedygu4XZoT2c7mchU-4dL-gNf2Il34FvdV45qEzd87fBgwBX5puaGE0ATfO44san0PvBvCj1W08hL7G803t3cr0-OvoPKwMvvBuMJGI966JznZSkhIaycrbGi9inrfQvkYvG2iDefOwH6Jvs-PLcp6cLU9Oy6OzRHOekYQDNNAQWlVc17wgujK5bKSoRJXnFa1plsu0yUBqbhrGClLXJqNa8ByqShLGDtGHXe7g3c-1CaPqbNCmbaE3bh1USlhGCZGURvT9M_TGrX0fX6dSKYQUqSQiUu8eqHXVmVoN3nbgN-rxiyOQ7QDtXQjeNErbEUbr-tGDbeNEtW1SbZtUT01GbfpMe0z-p1DshDvbms1_aFXOjxd_u8nOtWE0v59c8LdKSCa5ujo_Uddcfp9ffxHqiv0B9Ym_cw |
| CODEN | CEUJED |
| CitedBy_id | crossref_primary_10_1016_j_chphma_2023_08_003 crossref_primary_10_1002_cplu_201700342 crossref_primary_10_1016_j_seppur_2025_133349 crossref_primary_10_1016_j_ijhydene_2023_06_244 crossref_primary_10_3390_molecules201018661 crossref_primary_10_1002_adfm_201907625 crossref_primary_10_1016_j_micromeso_2015_09_027 crossref_primary_10_1039_C2CC37183A crossref_primary_10_1016_j_ijhydene_2017_04_173 crossref_primary_10_1002_bmc_6008 crossref_primary_10_1016_j_molstruc_2024_138475 crossref_primary_10_1016_j_bios_2025_117461 crossref_primary_10_1002_cctc_201402291 crossref_primary_10_1016_j_jcis_2022_08_026 crossref_primary_10_1016_j_micromeso_2017_05_014 crossref_primary_10_1002_adfm_201705553 crossref_primary_10_1007_s11051_020_05002_6 crossref_primary_10_1016_j_poly_2018_08_002 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1039_C9NR09112B crossref_primary_10_1016_j_chempr_2020_08_021 crossref_primary_10_1002_cphc_201300976 crossref_primary_10_1016_j_trechm_2019_12_001 crossref_primary_10_1016_j_mtsust_2025_101192 crossref_primary_10_1016_j_chroma_2019_460741 crossref_primary_10_1002_adsu_202200276 crossref_primary_10_1002_cphc_202100508 crossref_primary_10_1016_j_jclepro_2020_123360 crossref_primary_10_1016_j_jtice_2025_106005 crossref_primary_10_1007_s42114_024_01016_z crossref_primary_10_1016_j_micromeso_2013_04_020 crossref_primary_10_3390_catal11010137 crossref_primary_10_1016_j_catcom_2023_106620 crossref_primary_10_1016_j_micromeso_2022_111701 crossref_primary_10_1002_cctc_201800400 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1016_j_mcat_2024_114061 crossref_primary_10_1002_anie_202009710 crossref_primary_10_1016_j_jallcom_2019_153548 crossref_primary_10_1016_j_ijhydene_2020_03_078 crossref_primary_10_1016_j_cej_2021_130872 crossref_primary_10_1002_asia_202400365 crossref_primary_10_1039_c2cp44007e crossref_primary_10_1016_j_dyepig_2019_107862 crossref_primary_10_1016_j_jpowsour_2024_234505 crossref_primary_10_1038_natrevmats_2016_59 crossref_primary_10_1016_j_jhazmat_2017_10_013 crossref_primary_10_1016_j_seppur_2019_01_064 crossref_primary_10_1016_j_ijhydene_2024_03_223 crossref_primary_10_1088_2053_1591_ab637c crossref_primary_10_1016_j_ijhydene_2024_09_319 crossref_primary_10_1016_j_apcatb_2016_02_067 crossref_primary_10_1002_pssb_201248477 crossref_primary_10_1016_j_jssc_2022_123614 crossref_primary_10_1002_cssc_201700120 crossref_primary_10_1016_j_jcat_2024_115399 crossref_primary_10_1039_C8EE01085D crossref_primary_10_1002_cphc_201801147 crossref_primary_10_1038_s41929_018_0030_8 crossref_primary_10_1039_C8NR10086A crossref_primary_10_1016_j_apcata_2015_11_033 crossref_primary_10_1002_slct_202102435 crossref_primary_10_1039_C2CS35320B crossref_primary_10_1016_j_electacta_2017_05_039 crossref_primary_10_1088_1674_1056_26_2_027302 crossref_primary_10_1016_j_ijhydene_2016_04_025 crossref_primary_10_1002_cphc_201801092 crossref_primary_10_1039_D2SC04223A crossref_primary_10_1021_jacs_7b07918 crossref_primary_10_1002_ange_202009710 crossref_primary_10_1002_cctc_201400060 crossref_primary_10_1016_j_ijhydene_2015_05_199 crossref_primary_10_1016_j_cej_2020_127136 crossref_primary_10_1016_j_ccr_2023_215603 crossref_primary_10_1002_smtd_202100945 crossref_primary_10_1002_aoc_5677 crossref_primary_10_1016_j_ijhydene_2020_05_097 crossref_primary_10_1002_anie_201710190 crossref_primary_10_1007_s11356_022_21971_8 crossref_primary_10_1016_j_cej_2019_123471 crossref_primary_10_1016_j_rser_2018_04_028 crossref_primary_10_1002_chem_201302809 crossref_primary_10_1002_aoc_5398 crossref_primary_10_1016_j_jtice_2020_10_028 crossref_primary_10_1016_j_ijhydene_2022_01_003 crossref_primary_10_1002_cctc_201500747 crossref_primary_10_1016_j_mattod_2015_08_002 crossref_primary_10_1016_j_ijbiomac_2023_129104 crossref_primary_10_1002_anie_202305212 crossref_primary_10_1038_srep01882 crossref_primary_10_1039_D0QI00073F crossref_primary_10_1002_ppsc_201500252 crossref_primary_10_1016_j_est_2024_113519 crossref_primary_10_1002_cctc_201301071 crossref_primary_10_1002_cssc_201600090 crossref_primary_10_1039_C3CC49176E crossref_primary_10_1002_ange_201710190 crossref_primary_10_1016_j_micromeso_2015_03_008 crossref_primary_10_1016_j_pmatsci_2025_101538 crossref_primary_10_3390_molecules25225404 crossref_primary_10_1039_c3cp54898h crossref_primary_10_1021_jacs_5b02716 crossref_primary_10_1016_j_trac_2024_117604 crossref_primary_10_1002_celc_201701132 crossref_primary_10_1002_ange_202305212 crossref_primary_10_1016_j_tet_2014_04_049 crossref_primary_10_1002_ejoc_202000396 |
| Cites_doi | 10.1021/ja061681m 10.1063/1.2912525 10.1002/cphc.200800463 10.1002/ange.200900960 10.1016/j.ijhydene.2010.02.118 10.1126/science.1120411 10.1021/la101377u 10.1007/3-540-36408-0_3 10.1016/j.micromeso.2009.06.005 10.1038/35104634 10.1021/jp710447j 10.1021/j100339a048 10.1038/nchem.548 10.1016/j.micromeso.2012.06.014 10.1021/jp103643e 10.1103/PhysRevB.78.245408 10.1002/cvde.200506390 10.1149/1.2096989 10.1016/j.synthmet.2005.07.296 10.1021/cm201140r 10.1021/jp994082t 10.1021/jp711326g 10.1103/PhysRevB.48.84 10.1021/ja206846p 10.1016/S0039-6028(03)00989-0 10.1021/ja00264a016 10.1039/b902024a 10.1002/1616-3028(20020201)12:2<143::AID-ADFM143>3.0.CO;2-A 10.1021/ja9015765 10.1021/la9020383 10.1021/ja7102372 10.1088/0960-1317/1/1/008 10.1039/c1jm10207a 10.1016/j.micromeso.2010.07.015 10.1039/b815977g 10.1002/ange.200352124 10.1021/j100043a055 10.1002/anie.200352124 10.1016/j.ijhydene.2008.10.080 10.1016/j.jallcom.2004.06.105 10.1021/ja9084995 10.1021/jp075382a 10.1016/j.micromeso.2006.03.014 10.1002/cphc.200900289 10.1002/ange.200805494 10.1002/ange.201006913 10.1016/j.jcat.2004.02.020 10.1002/anie.201005919 10.1002/cphc.201000523 10.1021/cm990406e 10.1002/anie.200805494 10.1002/ange.200803826 10.1016/j.micromeso.2010.07.018 10.1002/chem.200800980 10.1002/anie.200803826 10.1021/jp111800c 10.1002/anie.201006913 10.1126/science.1139915 10.1021/ja803247y 10.1021/cm102529c 10.1039/c1cc11450f 10.1039/c0cp00037j 10.1002/ange.201005919 10.1021/cm801165s 10.1002/ejic.201000473 10.1002/adfm.200600535 10.1021/ja078231u 10.1021/cm020822q 10.1002/anie.200900960 10.1103/PhysRevLett.73.557 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.201201340 |
| DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 10856 |
| ExternalDocumentID | 3957844091 22886887 10_1002_chem_201201340 CHEM201201340 ark_67375_WNG_Z57XHZQ6_W |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: DFG – fundername: ERC grant COUNTATOMS – fundername: Alexander von Humboldt Foundation – fundername: Fund for Scientific Research Flanders – fundername: German Research Foundation – fundername: IMPRS‐AM – fundername: Hercules Foundation – fundername: International Max Planck Research School for Advanced Materials – fundername: European Union funderid: 262348 ESMI – fundername: FWO |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c5540-5aafaf02bb5cd590cbe87f76b6b88b2d24871f4a7c5ef3390dde42c658abb7033 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307782800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Oct 02 12:11:16 EDT 2025 Wed Oct 29 07:55:33 EDT 2025 Wed Feb 19 01:51:42 EST 2025 Sat Nov 29 07:13:32 EST 2025 Tue Nov 18 20:39:54 EST 2025 Wed Jan 22 16:39:15 EST 2025 Sun Sep 21 06:19:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 35 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5540-5aafaf02bb5cd590cbe87f76b6b88b2d24871f4a7c5ef3390dde42c658abb7033 |
| Notes | German Research Foundation ERC grant COUNTATOMS ArticleID:CHEM201201340 DFG International Max Planck Research School for Advanced Materials istex:374C5D0D83DE70CCF7B18975E286E95730D2E243 IMPRS-AM ark:/67375/WNG-Z57XHZQ6-W Fund for Scientific Research Flanders Alexander von Humboldt Foundation European Union - No. 262348 ESMI FWO Hercules Foundation These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://zenodo.org/record/3409319 |
| PMID | 22886887 |
| PQID | 1766761706 |
| PQPubID | 986340 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1034200722 proquest_journals_1766761706 pubmed_primary_22886887 crossref_citationtrail_10_1002_chem_201201340 crossref_primary_10_1002_chem_201201340 wiley_primary_10_1002_chem_201201340_CHEM201201340 istex_primary_ark_67375_WNG_Z57XHZQ6_W |
| PublicationCentury | 2000 |
| PublicationDate | August 27, 2012 |
| PublicationDateYYYYMMDD | 2012-08-27 |
| PublicationDate_xml | – month: 08 year: 2012 text: August 27, 2012 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chem. Eur. J |
| PublicationYear | 2012 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | D. P. Cao, J. H. Lan, W. C. Wang, B. Smit, Angew. Chem. 2009, 121, 4824-4827 S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094-4097 M. Yamauchi, H. Kitagawa, Synth. Met. 2005, 153, 353-356 C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Ferey, M. Latroche, J. Am. Chem. Soc. 2010, 132, 2991-2997 M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem. 2010, 3701-3714 D. Stacchiola, L. Burkholder, W. T. Tysoe, Surf. Sci. 2003, 542, 129-141 M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 2008, 112, 3294-3299 E. Klontzas, E. Tylianakis, G. E. Froudakis, J. Phys. Chem. C 2008, 112, 9095-9098 A. M. Doyle, S. K. Shaikhutdinov, H. J. Freund, J. Catal. 2004, 223, 444-453 J. C. Hierso, R. Feurer, P. Kalck, Chem. Mater. 2000, 12, 390-399. C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235-238 X. L. Zou, G. Zhou, W. H. Duan, K. Choi, J. Ihm, J. Phys. Chem. C 2010, 114, 13402-13407 S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822. S. Turner, O. I. Lebedev, F. Schroder, D. Esken, R. A. Fischer, G. Van Tendeloo, Chem. Mater. 2008, 20, 5622-5627. C. M. Yang, H. S. Sheu, K. J. Chao, Adv. Funct. Mater. 2002, 12, 143-148 R. Campesi, F. Cuevas, M. Latroche, M. Hirscher, Phys. Chem. Chem. Phys. 2010, 12, 10457-10459 T.-H. Phan, R. E. Schaak, Chem. Commun. 2009, 3026-3028 R. R. Thomas, J. M. Park, J. Electrochem. Soc. 1989, 136, 1661-1666 L. Schlapbach, A. Zuttel, Nature 2001, 414, 353-358. L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793-4799. L. Vradman, L. Titelman, M. Herskowitz, Microporous Mesoporous Mater. 2006, 93, 313-317 J. A. Eastman, L. J. Thompson, B. J. Kestel, Phys. Rev. B 1993, 48, 84-92. S. M. Luzan, A. V. Talyzin, Microporous Mesoporous Mater. 2010, 135, 201-205 M. Vaarkamp, B. L. Mojet, M. J. Kappers, J. T. Miller, D. C. Koningsbergert, J. Phys. Chem. 1995, 99, 16067-16075. A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166-1170 Angew. Chem. Int. Ed. 2011, 50, 1289-1293 S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580-11581 C. K. Tsung, W. Hong, Q. Shi, X. Kou, M. H. Yeung, J. Wang, G. D. Stucky, Adv. Funct. Mater. 2006, 16, 2225-2230 R. J. Wolf, M. W. Lee, J. R. Ray, Phys. Rev. Lett. 1994, 73, 557 S. B. Kalidindi, K. Yusenko, R. A. Fischer, Chem. Commun. 2011, 47, 8506-8508. M. Hirscher, Angew. Chem. 2011, 123, 605-606 M. Hirscher, B. Panella, B. Schmitz, Microporous Mesoporous Mater. 2010, 129, 335-339. N. R. Stuckert, L. F. Wang, R. T. Yang, Langmuir 2010, 26, 11963-11971 A. M. Doyle, S. K. Shaikhutdinov, S. D. Jackson, H. J. Freund, Angew. Chem. 2003, 115, 5398-5401 D. Esken, X. Zhang, O. I. Lebedev, F. Schroder, R. A. Fischer, J. Mater. Chem. 2009, 19, 1314-1319 H. Kobayashi, M. Yarnauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 2008, 130, 1828 D. G. Narehood, S. Kishore, H. Goto, J. H. Adair, J. A. Nelson, H. R. Gutiérrez, P. C. Eklund, Int. J. Hydrogen Energy 2009, 34, 952-960 J. Lan, D. Cao, W. Wang, Langmuir 2010, 26, 220-226. Q.-H. Wu, M. Gunia, T. Strunskus, G. Witte, M. Muhler, C. Wöll, Chem. Vapor Depos. 2005, 11, 355-361 B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, M. P. Ryan, Phys. Rev. B 2008, 78, 245408 G. T. Stauf, P. A. Dowben, K. Emrich, S. Barfuss, W. Hirschwald, N. M. Boag, J. Phys. Chem. 1989, 93, 749-753 C. O. Areán, S. Chavan, C. P. Cabello, E. Garrone, G. T. Palomino, ChemPhysChem 2010, 11, 3237-3242. Y. E. Cheon, M. P. Suh, Angew. Chem. 2009, 121, 2943-2947 H. M. El-Kaderi, O. M. Yaghi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, Science 2007, 316, 268-272. M. Hirscher, Microporous Mesoporous Mater. 2010, 135, 209-210 S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. 2008, 120, 8958-8962 Angew. Chem. Int. Ed. 2009, 48, 4730-4733 J. Saha, A. Dandapat, G. De, J. Mater. Chem. 2011, 21, 11482-11485. T. P. Beebe, Jr., J. T. Yates, Jr., J. Am. Chem. Soc. 1986, 108, 663-671 C. Wiktor, S. Turner, D. Zacher, R. A. Fischer, G. Van Tendeloo, Microporous Mesoporous Mater. 2012, 162, 131-135. B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 2008, 9, 2181-2184 Y. G. Kim, S. Bialy, G. T. Stauf, R. W. Miller, J. T. Spencer, P. A. Dowben, S. Datta, J. Micromech. Microeng. 1991, 1, 42-45 C. Yang, P. Liu, Y. Ho, C. Chiu, K. Chao, Chem. Mater. 2003, 15, 275-280 Angew. Chem. Int. Ed. 2009, 48, 2899-2903. S. Kishore, J. A. Nelson, J. H. Adair, P. C. Eklund, J. Alloys Compd. 2005, 389, 234-242 Y. J. Choi, J. W. Lee, J. H. Choi, J. K. Kang, Appl. Phys. Lett. 2008, 92, 173102 M. Yamauchi, H. Kobayashi, H. Kitagawa, ChemPhysChem 2009, 10, 2566-2576 D. Esken, S. Turner, O. I. Lebedev, G. V. Tendeloo, R. A. Fischer, Chem. Mater. 2010, 22, 6393-6401. Y. W. Li, F. H. Yang, R. T. Yang, J. Phys. Chem. C 2008, 112, 3155-3156 Angew. Chem. Int. Ed. 2011, 50, 581-582. Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137. M. Neurock, R. A. van Santen, J. Phys. Chem. B 2000, 104, 11127-11145. H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875-8883 L. M. Bronstein, Top. Curr. Chem. 2003, 226, 55-89 T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460 Angew. Chem. Int. Ed. 2003, 42, 5240-5243 X. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. Jiang, Angew. Chem. 2011, 123, 1325-1329 Angew. Chem. Int. Ed. 2008, 47, 8826-8830 V. A. Vons, H. Leegwater, W. J. Legerstee, S. W. H. Eijt, A. Schmidt-Ott, Int. J. Hydrogen Energy 2010, 35, 5479-5489 F. Schröder, D. Esken, M. Cokoja, M. W. E. van den Berg, O. I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkovsky, H.-H. Limbach, B. Chaudret, R. A. Fischer, J. Am. Chem. Soc. 2008, 130, 6119-6130. 2010; 12 2010; 11 2011; 115 2012; 162 2002; 12 2008; 9 2003; 15 2008; 78 2011 2011; 123 50 2010; 22 1986; 108 2010; 26 2009; 10 2000; 12 2010; 114 2005; 389 2011; 21 2011; 23 2008; 20 2008; 112 2010; 2 2009; 19 2006; 128 1994; 73 2001; 414 1993; 48 2006; 93 1991; 1 2010; 35 2005; 153 2004; 223 2010; 129 2005; 310 2010 1989; 136 2006; 16 1995; 99 2009 2008; 14 2009; 131 2008; 92 2011; 133 2009 2009; 121 48 2009; 34 1989; 93 2007; 316 2003 2003; 115 42 2003; 226 2000; 104 2010; 135 2010; 132 2011; 47 2003; 542 2008 2008; 120 47 2008; 130 2005; 11 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_74_3 e_1_2_6_53_2 e_1_2_6_74_2 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_3 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_24_3 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_31_2 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_3 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 |
| References_xml | – reference: A. M. Doyle, S. K. Shaikhutdinov, H. J. Freund, J. Catal. 2004, 223, 444-453; – reference: B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 2008, 9, 2181-2184; – reference: S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094-4097; – reference: X. L. Zou, G. Zhou, W. H. Duan, K. Choi, J. Ihm, J. Phys. Chem. C 2010, 114, 13402-13407; – reference: T.-H. Phan, R. E. Schaak, Chem. Commun. 2009, 3026-3028; – reference: J. A. Eastman, L. J. Thompson, B. J. Kestel, Phys. Rev. B 1993, 48, 84-92. – reference: M. Yamauchi, H. Kitagawa, Synth. Met. 2005, 153, 353-356; – reference: Q.-H. Wu, M. Gunia, T. Strunskus, G. Witte, M. Muhler, C. Wöll, Chem. Vapor Depos. 2005, 11, 355-361; – reference: S. M. Luzan, A. V. Talyzin, Microporous Mesoporous Mater. 2010, 135, 201-205; – reference: R. R. Thomas, J. M. Park, J. Electrochem. Soc. 1989, 136, 1661-1666; – reference: S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580-11581; – reference: C. M. Yang, H. S. Sheu, K. J. Chao, Adv. Funct. Mater. 2002, 12, 143-148; – reference: H. Kobayashi, M. Yarnauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 2008, 130, 1828; – reference: J. C. Hierso, R. Feurer, P. Kalck, Chem. Mater. 2000, 12, 390-399. – reference: D. Esken, X. Zhang, O. I. Lebedev, F. Schroder, R. A. Fischer, J. Mater. Chem. 2009, 19, 1314-1319; – reference: M. Yamauchi, H. Kobayashi, H. Kitagawa, ChemPhysChem 2009, 10, 2566-2576; – reference: C. K. Tsung, W. Hong, Q. Shi, X. Kou, M. H. Yeung, J. Wang, G. D. Stucky, Adv. Funct. Mater. 2006, 16, 2225-2230; – reference: Angew. Chem. Int. Ed. 2009, 48, 2899-2903. – reference: R. Campesi, F. Cuevas, M. Latroche, M. Hirscher, Phys. Chem. Chem. Phys. 2010, 12, 10457-10459; – reference: N. R. Stuckert, L. F. Wang, R. T. Yang, Langmuir 2010, 26, 11963-11971; – reference: M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem. 2010, 3701-3714; – reference: A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166-1170; – reference: M. Hirscher, Angew. Chem. 2011, 123, 605-606; – reference: T. P. Beebe, Jr., J. T. Yates, Jr., J. Am. Chem. Soc. 1986, 108, 663-671; – reference: C. Wiktor, S. Turner, D. Zacher, R. A. Fischer, G. Van Tendeloo, Microporous Mesoporous Mater. 2012, 162, 131-135. – reference: Angew. Chem. Int. Ed. 2003, 42, 5240-5243; – reference: T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460; – reference: Angew. Chem. Int. Ed. 2008, 47, 8826-8830; – reference: V. A. Vons, H. Leegwater, W. J. Legerstee, S. W. H. Eijt, A. Schmidt-Ott, Int. J. Hydrogen Energy 2010, 35, 5479-5489; – reference: M. Neurock, R. A. van Santen, J. Phys. Chem. B 2000, 104, 11127-11145. – reference: A. M. Doyle, S. K. Shaikhutdinov, S. D. Jackson, H. J. Freund, Angew. Chem. 2003, 115, 5398-5401; – reference: H. M. El-Kaderi, O. M. Yaghi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, Science 2007, 316, 268-272. – reference: S. Kishore, J. A. Nelson, J. H. Adair, P. C. Eklund, J. Alloys Compd. 2005, 389, 234-242; – reference: R. J. Wolf, M. W. Lee, J. R. Ray, Phys. Rev. Lett. 1994, 73, 557; – reference: D. P. Cao, J. H. Lan, W. C. Wang, B. Smit, Angew. Chem. 2009, 121, 4824-4827; – reference: B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, M. P. Ryan, Phys. Rev. B 2008, 78, 245408; – reference: C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235-238; – reference: Angew. Chem. Int. Ed. 2011, 50, 581-582. – reference: F. Schröder, D. Esken, M. Cokoja, M. W. E. van den Berg, O. I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkovsky, H.-H. Limbach, B. Chaudret, R. A. Fischer, J. Am. Chem. Soc. 2008, 130, 6119-6130. – reference: D. Esken, S. Turner, O. I. Lebedev, G. V. Tendeloo, R. A. Fischer, Chem. Mater. 2010, 22, 6393-6401. – reference: Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137. – reference: L. Vradman, L. Titelman, M. Herskowitz, Microporous Mesoporous Mater. 2006, 93, 313-317; – reference: Y. J. Choi, J. W. Lee, J. H. Choi, J. K. Kang, Appl. Phys. Lett. 2008, 92, 173102; – reference: X. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. Jiang, Angew. Chem. 2011, 123, 1325-1329; – reference: M. Hirscher, B. Panella, B. Schmitz, Microporous Mesoporous Mater. 2010, 129, 335-339. – reference: M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 2008, 112, 3294-3299; – reference: Angew. Chem. Int. Ed. 2011, 50, 1289-1293; – reference: Y. E. Cheon, M. P. Suh, Angew. Chem. 2009, 121, 2943-2947; – reference: M. Hirscher, Microporous Mesoporous Mater. 2010, 135, 209-210; – reference: L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793-4799. – reference: S. B. Kalidindi, K. Yusenko, R. A. Fischer, Chem. Commun. 2011, 47, 8506-8508. – reference: D. G. Narehood, S. Kishore, H. Goto, J. H. Adair, J. A. Nelson, H. R. Gutiérrez, P. C. Eklund, Int. J. Hydrogen Energy 2009, 34, 952-960; – reference: S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. 2008, 120, 8958-8962; – reference: Y. W. Li, F. H. Yang, R. T. Yang, J. Phys. Chem. C 2008, 112, 3155-3156; – reference: L. Schlapbach, A. Zuttel, Nature 2001, 414, 353-358. – reference: S. Turner, O. I. Lebedev, F. Schroder, D. Esken, R. A. Fischer, G. Van Tendeloo, Chem. Mater. 2008, 20, 5622-5627. – reference: G. T. Stauf, P. A. Dowben, K. Emrich, S. Barfuss, W. Hirschwald, N. M. Boag, J. Phys. Chem. 1989, 93, 749-753; – reference: H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875-8883; – reference: Angew. Chem. Int. Ed. 2009, 48, 4730-4733; – reference: C. Yang, P. Liu, Y. Ho, C. Chiu, K. Chao, Chem. Mater. 2003, 15, 275-280; – reference: J. Saha, A. Dandapat, G. De, J. Mater. Chem. 2011, 21, 11482-11485. – reference: C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Ferey, M. Latroche, J. Am. Chem. Soc. 2010, 132, 2991-2997; – reference: M. Vaarkamp, B. L. Mojet, M. J. Kappers, J. T. Miller, D. C. Koningsbergert, J. Phys. Chem. 1995, 99, 16067-16075. – reference: J. Lan, D. Cao, W. Wang, Langmuir 2010, 26, 220-226. – reference: C. O. Areán, S. Chavan, C. P. Cabello, E. Garrone, G. T. Palomino, ChemPhysChem 2010, 11, 3237-3242. – reference: L. M. Bronstein, Top. Curr. Chem. 2003, 226, 55-89; – reference: E. Klontzas, E. Tylianakis, G. E. Froudakis, J. Phys. Chem. C 2008, 112, 9095-9098; – reference: S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822. – reference: D. Stacchiola, L. Burkholder, W. T. Tysoe, Surf. Sci. 2003, 542, 129-141; – reference: Y. G. Kim, S. Bialy, G. T. Stauf, R. W. Miller, J. T. Spencer, P. A. Dowben, S. Datta, J. Micromech. Microeng. 1991, 1, 42-45; – volume: 23 start-page: 4094 year: 2011 end-page: 4097 publication-title: Chem. Mater. – volume: 9 start-page: 2181 year: 2008 end-page: 2184 publication-title: ChemPhysChem – volume: 132 start-page: 2991 year: 2010 end-page: 2997 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 8875 year: 2009 end-page: 8883 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 6119 year: 2008 end-page: 6130 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 220 year: 2010 end-page: 226 publication-title: Langmuir – volume: 130 start-page: 11580 year: 2008 end-page: 11581 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 6393 year: 2010 end-page: 6401 publication-title: Chem. Mater. – volume: 93 start-page: 313 year: 2006 end-page: 317 publication-title: Microporous Mesoporous Mater. – volume: 11 start-page: 3237 year: 2010 end-page: 3242 publication-title: ChemPhysChem – volume: 226 start-page: 55 year: 2003 end-page: 89 publication-title: Top. Curr. Chem. – volume: 12 start-page: 143 year: 2002 end-page: 148 publication-title: Adv. Funct. Mater. – volume: 123 50 start-page: 1325 1289 year: 2011 2011 end-page: 1329 1293 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 26 start-page: 11963 year: 2010 end-page: 11971 publication-title: Langmuir – volume: 115 start-page: 4793 year: 2011 end-page: 4799 publication-title: J. Phys. Chem. C – volume: 16 start-page: 2225 year: 2006 end-page: 2230 publication-title: Adv. Funct. Mater. – volume: 115 42 start-page: 5398 5240 year: 2003 2003 end-page: 5401 5243 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 120 47 start-page: 8958 8826 year: 2008 2008 end-page: 8962 8830 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 35 start-page: 5479 year: 2010 end-page: 5489 publication-title: Int. J. Hydrogen Energy – volume: 133 start-page: 19816 year: 2011 end-page: 19822 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 8456 year: 2008 end-page: 8460 publication-title: Chem. Eur. J. – volume: 128 start-page: 8136 year: 2006 end-page: 8137 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 3155 year: 2008 end-page: 3156 publication-title: J. Phys. Chem. C – volume: 78 start-page: 245408 year: 2008 publication-title: Phys. Rev. B – volume: 104 start-page: 11127 year: 2000 end-page: 11145 publication-title: J. Phys. Chem. B – volume: 114 start-page: 13402 year: 2010 end-page: 13407 publication-title: J. Phys. Chem. C – volume: 162 start-page: 131 year: 2012 end-page: 135 publication-title: Microporous Mesoporous Mater. – volume: 99 start-page: 16067 year: 1995 end-page: 16075 publication-title: J. Phys. Chem. – volume: 1 start-page: 42 year: 1991 end-page: 45 publication-title: J. Micromech. Microeng. – volume: 389 start-page: 234 year: 2005 end-page: 242 publication-title: J. Alloys Compd. – volume: 112 start-page: 9095 year: 2008 end-page: 9098 publication-title: J. Phys. Chem. C – volume: 121 48 start-page: 2943 2899 year: 2009 2009 end-page: 2947 2903 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 542 start-page: 129 year: 2003 end-page: 141 publication-title: Surf. Sci. – volume: 121 48 start-page: 4824 4730 year: 2009 2009 end-page: 4827 4733 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 12 start-page: 10457 year: 2010 end-page: 10459 publication-title: Phys. Chem. Chem. Phys. – volume: 136 start-page: 1661 year: 1989 end-page: 1666 publication-title: J. Electrochem. Soc. – volume: 92 start-page: 173102 year: 2008 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 5622 year: 2008 end-page: 5627 publication-title: Chem. Mater. – volume: 73 start-page: 557 year: 1994 publication-title: Phys. Rev. Lett. – volume: 112 start-page: 3294 year: 2008 end-page: 3299 publication-title: J. Phys. Chem. C – volume: 2 start-page: 235 year: 2010 end-page: 238 publication-title: Nat. Chem. – volume: 130 start-page: 1828 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – start-page: 3701 year: 2010 end-page: 3714 publication-title: Eur. J. Inorg. Chem. – volume: 123 50 start-page: 605 581 year: 2011 2011 end-page: 606 582 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 129 start-page: 335 year: 2010 end-page: 339 publication-title: Microporous Mesoporous Mater. – volume: 153 start-page: 353 year: 2005 end-page: 356 publication-title: Synth. Met. – volume: 135 start-page: 201 year: 2010 end-page: 205 publication-title: Microporous Mesoporous Mater. – volume: 93 start-page: 749 year: 1989 end-page: 753 publication-title: J. Phys. Chem. – volume: 15 start-page: 275 year: 2003 end-page: 280 publication-title: Chem. Mater. – volume: 12 start-page: 390 year: 2000 end-page: 399 publication-title: Chem. Mater. – volume: 34 start-page: 952 year: 2009 end-page: 960 publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 11482 year: 2011 end-page: 11485 publication-title: J. Mater. Chem. – volume: 135 start-page: 209 year: 2010 end-page: 210 publication-title: Microporous Mesoporous Mater. – volume: 414 start-page: 353 year: 2001 end-page: 358 publication-title: Nature – volume: 19 start-page: 1314 year: 2009 end-page: 1319 publication-title: J. Mater. Chem. – volume: 223 start-page: 444 year: 2004 end-page: 453 publication-title: J. Catal. – volume: 316 start-page: 268 year: 2007 end-page: 272 publication-title: Science – volume: 11 start-page: 355 year: 2005 end-page: 361 publication-title: Chem. Vapor Depos. – volume: 10 start-page: 2566 year: 2009 end-page: 2576 publication-title: ChemPhysChem – volume: 48 start-page: 84 year: 1993 end-page: 92 publication-title: Phys. Rev. B – volume: 47 start-page: 8506 year: 2011 end-page: 8508 publication-title: Chem. Commun. – start-page: 3026 year: 2009 end-page: 3028 publication-title: Chem. Commun. – volume: 108 start-page: 663 year: 1986 end-page: 671 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_19_2 – ident: e_1_2_6_47_2 doi: 10.1021/ja061681m – ident: e_1_2_6_25_2 doi: 10.1063/1.2912525 – ident: e_1_2_6_44_2 – ident: e_1_2_6_41_2 doi: 10.1002/cphc.200800463 – ident: e_1_2_6_24_2 doi: 10.1002/ange.200900960 – ident: e_1_2_6_56_2 doi: 10.1016/j.ijhydene.2010.02.118 – ident: e_1_2_6_2_2 doi: 10.1126/science.1120411 – ident: e_1_2_6_53_2 doi: 10.1021/la101377u – ident: e_1_2_6_13_2 doi: 10.1007/3-540-36408-0_3 – ident: e_1_2_6_42_2 doi: 10.1016/j.micromeso.2009.06.005 – ident: e_1_2_6_22_2 doi: 10.1038/35104634 – ident: e_1_2_6_58_2 doi: 10.1021/jp710447j – ident: e_1_2_6_66_2 doi: 10.1021/j100339a048 – ident: e_1_2_6_6_2 doi: 10.1038/nchem.548 – ident: e_1_2_6_76_2 doi: 10.1016/j.micromeso.2012.06.014 – ident: e_1_2_6_12_2 – ident: e_1_2_6_27_2 doi: 10.1021/jp103643e – ident: e_1_2_6_60_2 doi: 10.1103/PhysRevB.78.245408 – ident: e_1_2_6_70_2 – ident: e_1_2_6_68_2 doi: 10.1002/cvde.200506390 – ident: e_1_2_6_67_2 doi: 10.1149/1.2096989 – ident: e_1_2_6_61_2 doi: 10.1016/j.synthmet.2005.07.296 – ident: e_1_2_6_10_2 doi: 10.1021/cm201140r – ident: e_1_2_6_75_2 doi: 10.1021/jp994082t – ident: e_1_2_6_26_2 doi: 10.1021/jp711326g – ident: e_1_2_6_62_2 doi: 10.1103/PhysRevB.48.84 – ident: e_1_2_6_11_2 doi: 10.1021/ja206846p – ident: e_1_2_6_71_2 doi: 10.1016/S0039-6028(03)00989-0 – ident: e_1_2_6_73_2 doi: 10.1021/ja00264a016 – ident: e_1_2_6_31_2 doi: 10.1039/b902024a – ident: e_1_2_6_16_2 doi: 10.1002/1616-3028(20020201)12:2<143::AID-ADFM143>3.0.CO;2-A – ident: e_1_2_6_8_2 doi: 10.1021/ja9015765 – ident: e_1_2_6_28_2 doi: 10.1021/la9020383 – ident: e_1_2_6_30_2 doi: 10.1021/ja7102372 – ident: e_1_2_6_36_2 – ident: e_1_2_6_65_2 doi: 10.1088/0960-1317/1/1/008 – ident: e_1_2_6_34_2 doi: 10.1039/c1jm10207a – ident: e_1_2_6_51_2 doi: 10.1016/j.micromeso.2010.07.015 – ident: e_1_2_6_38_2 doi: 10.1039/b815977g – ident: e_1_2_6_74_2 doi: 10.1002/ange.200352124 – ident: e_1_2_6_55_2 – ident: e_1_2_6_18_2 doi: 10.1021/j100043a055 – ident: e_1_2_6_74_3 doi: 10.1002/anie.200352124 – ident: e_1_2_6_59_2 doi: 10.1016/j.ijhydene.2008.10.080 – ident: e_1_2_6_32_2 doi: 10.1016/j.jallcom.2004.06.105 – ident: e_1_2_6_45_2 doi: 10.1021/ja9084995 – ident: e_1_2_6_52_2 doi: 10.1021/jp075382a – ident: e_1_2_6_15_2 doi: 10.1016/j.micromeso.2006.03.014 – ident: e_1_2_6_57_2 doi: 10.1002/cphc.200900289 – ident: e_1_2_6_46_2 doi: 10.1002/ange.200805494 – ident: e_1_2_6_23_2 – ident: e_1_2_6_40_2 doi: 10.1002/ange.201006913 – ident: e_1_2_6_72_2 doi: 10.1016/j.jcat.2004.02.020 – ident: e_1_2_6_5_3 doi: 10.1002/anie.201005919 – ident: e_1_2_6_43_2 doi: 10.1002/cphc.201000523 – ident: e_1_2_6_69_2 doi: 10.1021/cm990406e – ident: e_1_2_6_46_3 doi: 10.1002/anie.200805494 – ident: e_1_2_6_48_2 – ident: e_1_2_6_9_2 doi: 10.1002/ange.200803826 – ident: e_1_2_6_50_2 doi: 10.1016/j.micromeso.2010.07.018 – ident: e_1_2_6_29_2 – ident: e_1_2_6_37_2 doi: 10.1002/chem.200800980 – ident: e_1_2_6_9_3 doi: 10.1002/anie.200803826 – ident: e_1_2_6_54_2 doi: 10.1021/jp111800c – ident: e_1_2_6_40_3 doi: 10.1002/anie.201006913 – ident: e_1_2_6_3_2 doi: 10.1126/science.1139915 – ident: e_1_2_6_7_2 doi: 10.1021/ja803247y – ident: e_1_2_6_21_2 doi: 10.1021/cm102529c – ident: e_1_2_6_35_2 doi: 10.1039/c1cc11450f – ident: e_1_2_6_49_2 doi: 10.1039/c0cp00037j – ident: e_1_2_6_5_2 doi: 10.1002/ange.201005919 – ident: e_1_2_6_39_2 doi: 10.1021/cm801165s – ident: e_1_2_6_64_2 – ident: e_1_2_6_14_2 doi: 10.1002/ejic.201000473 – ident: e_1_2_6_20_2 doi: 10.1002/adfm.200600535 – ident: e_1_2_6_4_2 – ident: e_1_2_6_1_2 – ident: e_1_2_6_63_2 doi: 10.1021/ja078231u – ident: e_1_2_6_17_2 doi: 10.1021/cm020822q – ident: e_1_2_6_24_3 doi: 10.1002/anie.200900960 – ident: e_1_2_6_33_2 doi: 10.1103/PhysRevLett.73.557 |
| SSID | ssj0009633 |
| Score | 2.4639695 |
| Snippet | Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the... Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η 3 ‐C... Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10848 |
| SubjectTerms | Chemistry covalent organic frameworks Hydrogen hydrogen storage Metals Nanoparticles Organic compounds organic-inorganic hybrid composites palladium Storage capacity Transmission electron microscopy |
| Title | Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COF-102 Hybrid Material |
| URI | https://api.istex.fr/ark:/67375/WNG-Z57XHZQ6-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201201340 https://www.ncbi.nlm.nih.gov/pubmed/22886887 https://www.proquest.com/docview/1766761706 https://www.proquest.com/docview/1034200722 |
| Volume | 18 |
| WOSCitedRecordID | wos000307782800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFwkuvB-BUhkJwSlq4sRxwgm0EPbQLgu0dNWLZTuJhNomVbJFcOPKjd_IL2Emr7ISCAmkHBJl8rLn8Y3j-QzwOJTWUqB1TR6Hbmi05xrNhYvdH2eeRYTcsn1-2JHzebxcJotfqvg7fohxwI0so_XXZODaNNvnpKH4TVRJ7uMWhJi0T6iyCtOvyct36f7OOfFu1C8nH0qXaFgH4kaPb6_fYS0wTaiNP_8Oda6D2DYKpdf-__2vw9UegbIXncrcgAt5eRMuT4eF327Bt90cEfnz6Zu0ecamFaoiBibWFW1alg6zuRqmG7aXn5weE1xlCH7ZImPorTEN72fbMV1mbPYlqytUU_Ye03v0XmxB4_81EbmyqsBr6Ek_vn5HDIKyVEDGdvWqNYzbsJ--2pvO3H7FBtcKmmEhtC504XFjhM1E4lnUAFnIyEQmjg3POKZHfhFqaUVeBEHioXMNuUUUpI1B3xPcgY2yKvN7wAIEntbPhESp0GaJMX6GobRAvOT7Se474A7dpWxPZ06rahyrjoiZK2pgNTawA09H-dOOyOOPkk_a3h_FdH1E09-kUAfz1-pQyOXs8G2kDhzYHNRD9ZbfKCLclMRyHznwaDyNPUg_YnSZV2coQ7yLxNnOHbjbqdX4MM7jOELP7wBvtecvL6uIOWM8uv8vFz2AK7RPA-VcbsLGqj7LH8Il-2n1sam34KJcxlu9Vf0EUbYfvA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFmm58GYJLGAkBKdoE-fhhBOoEIpoS4EuW-3Fsp1EQizJKukiuHHlxm_klzCT16oSCAkh5ZJknMT2PD47488AD3xhDAVaW2eRb_taObZWPLCx-6PUMYiQG7bP9zOxWETrdbzssglpLUzLDzFMuJFlNP6aDJwmpPfPWEOxUrSU3MXD83HUPvZDT0QjGD97mxzMzph3w24_eV_YxMPaMzc6fH_7CVuRaUyN_OV3sHMbxTZhKLn0HypwGS52GJQ9bZXmCpzLiquwM-m3frsG3-cZYvInk9dJ_ZhNSlRGDE2sXbZpWNLnc9VM1WyVfTo5JsDKEP6yZcrQX-NAvMu3Y6pI2fRrWpWoqOwdDvDRf7El_QGoiMqVlTmWoTf9_PYDUQjK0hIyNlebxjSuw0HyfDWZ2t2eDbYJKMciUCpXucO1DkwaxI5BHRC5CHWoo0jzlOMAyc19JUyQ5Z4XO-hefW4QBymt0ft4N2BUlEV2E5iH0NO4aSBQyjdprLWbYjDNETG5bpy5Fth9f0nTEZrTvhrHsqVi5pIaWA4NbMGjQf6kpfL4o-TDpvsHMVV9pAQ4EcjDxQt5FIj19OhNKA8t2Ov1Q3a2X0ui3BTEcx9acH-4jT1Iv2JUkZWnKEPMi8Tazi3YbfVqeBnnURSi77eAN-rzl4-VxJ0xnN36l0L3YGe6ms_k7OXi1W24QNdp2pyLPRhtqtPsDpw3nzcf6upuZ1y_AMXhIsQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQLgIuvKGBAkZCcIqaOHGccAJtCYvYLgu0dNWL5UciVZRklWwR3Lhy4zfyS5jJq1oJhISQckkyjmN7Hp-T8WdCHoXCGAy0rs7i0A218lytGHdh-GPrGUDIDdvnh5mYz-PlMll02YS4Fqblhxg-uKFlNP4aDTxb2XznjDUUGoVLyX04ghBm7eOQJzwckfHuu_Rgdsa8G3X7yYfCRR7WnrnRYzubT9iITGPs5C-_g52bKLYJQ-mV_9CAq-Ryh0Hp81ZprpFzWXGdXJz0W7_dIN_3MsDkzyZv0vopnZSgjBCaaLts09C0z-eqqarpfvZpdYKAlQL8pQtLwV_DRLzLt6OqsHT61VYlKCp9DxN88F90gX8AKqRypWUOZbCmn99-AAoBWVxCRvfUujGNm-QgfbE_mbrdng2u4ZhjwZXKVe4xrbmxPPEM6IDIRaQjHceaWQYTJD8PlTA8y4Mg8cC9hswADlJag_cJbpFRURbZFqEBQE_jWy5AKjQ20dq3EExzQEy-n2S-Q9x-vKTpCM1xX40T2VIxM4kdLIcOdsiTQX7VUnn8UfJxM_yDmKo-YgKc4PJw_lIecbGcHr2N5KFDtnv9kJ3t1xIpNwXy3EcOeTjchhHEXzGqyMpTkEHmRWRtZw653erVUBljcRyB73cIa9TnLy8rkTtjOLvzL4UekAuL3VTOXs1f3yWX8DJ-NWdim4zW1Wl2j5w3n9fHdXW_s61fHG4iPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%40COFs%3A+Covalent+Organic+Frameworks+as+Templates+for+Pd+Nanoparticles+and+Hydrogen+Storage+Properties+of+Pd%40COF-102+Hybrid+Material&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Kalidindi%2C+Suresh+Babu&rft.au=Oh%2C+Hyunchul&rft.au=Hirscher%2C+Michael&rft.au=Esken%2C+Daniel&rft.date=2012-08-27&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=18&rft.issue=35&rft.spage=10848&rft.epage=10856&rft_id=info:doi/10.1002%2Fchem.201201340&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Z57XHZQ6_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |