Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COF-102 Hybrid Material

Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid materi...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal Vol. 18; no. 35; pp. 10848 - 10856
Main Authors: Kalidindi, Suresh Babu, Oh, Hyunchul, Hirscher, Michael, Esken, Daniel, Wiktor, Christian, Turner, Stuart, Van Tendeloo, Gustaaf, Fischer, Roland A.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 27.08.2012
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects:
ISSN:0947-6539, 1521-3765, 1521-3765
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. In the frame: Pd@COF‐102 hybrid material (COF=covalent organic framework; see figure) is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution, cavity size matching, and an absence of larger agglomerates even at high loadings (30 wt %). Hydrogen storage studies showed that the H2 capacities were enhanced by a factor of 2–3 as a result of Pd impregnation on COF‐102 at room temperature and 20 bar.
AbstractList Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η 3 ‐C 3 H 5 )(η 5 ‐C 5 H 5 )]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H 2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.
Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3-C3H5)(η5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5)nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30wt%). Two samples with moderate Pd content (3.5 and 9.5wt%) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η3‐C3H5)(η5‐C5H5)]@COF‐102 inclusion compound (synthesized by a gas‐phase infiltration method) led to the formation of the Pd@COF‐102 hybrid material. Advanced electron microscopy techniques (including high‐angle annular dark‐field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF‐102 framework. The Pd@COF‐102 hybrid material is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal‐decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal–organic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2–3 through Pd impregnation on COF‐102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. In the frame: Pd@COF‐102 hybrid material (COF=covalent organic framework; see figure) is a rare example of a metal‐nanoparticle‐loaded porous crystalline material with a very narrow size distribution, cavity size matching, and an absence of larger agglomerates even at high loadings (30 wt %). Hydrogen storage studies showed that the H2 capacities were enhanced by a factor of 2–3 as a result of Pd impregnation on COF‐102 at room temperature and 20 bar.
Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η(3)-C(3) H(5))(η(5)-C(5)H(5))]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H(2) capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η(3)-C(3) H(5))(η(5)-C(5)H(5))]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H(2) capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.
Author Oh, Hyunchul
Van Tendeloo, Gustaaf
Fischer, Roland A.
Wiktor, Christian
Kalidindi, Suresh Babu
Esken, Daniel
Hirscher, Michael
Turner, Stuart
Author_xml – sequence: 1
  givenname: Suresh Babu
  surname: Kalidindi
  fullname: Kalidindi, Suresh Babu
  organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174
– sequence: 2
  givenname: Hyunchul
  surname: Oh
  fullname: Oh, Hyunchul
  organization: Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany)
– sequence: 3
  givenname: Michael
  surname: Hirscher
  fullname: Hirscher, Michael
  email: hirscher@mf.mpg.de
  organization: Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany)
– sequence: 4
  givenname: Daniel
  surname: Esken
  fullname: Esken, Daniel
  organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174
– sequence: 5
  givenname: Christian
  surname: Wiktor
  fullname: Wiktor, Christian
  organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174
– sequence: 6
  givenname: Stuart
  surname: Turner
  fullname: Turner, Stuart
  organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
– sequence: 7
  givenname: Gustaaf
  surname: Van Tendeloo
  fullname: Van Tendeloo, Gustaaf
  organization: EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
– sequence: 8
  givenname: Roland A.
  surname: Fischer
  fullname: Fischer, Roland A.
  email: roland.fischer@rub.de
  organization: Inorganic Chemistry II-Organometallics & Materials, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum (Germany), Fax: (+49) 234 32-14174
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22886887$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFr2zAYhsXoWNNu1x2HYJddnMmSJdk7rZimKTRNxzo6ehGfZTlTa1ue5KzLL-jfnkLaMgpjIBBIz_N-Qu8B2utdbxB6m5JpSgj9qH-YbkpJGhfLyAs0STlNEyYF30MTUmQyEZwV--gghBtCSCEYe4X2Kc1zkedygu4XZoT2c7mchU-4dL-gNf2Il34FvdV45qEzd87fBgwBX5puaGE0ATfO44san0PvBvCj1W08hL7G803t3cr0-OvoPKwMvvBuMJGI966JznZSkhIaycrbGi9inrfQvkYvG2iDefOwH6Jvs-PLcp6cLU9Oy6OzRHOekYQDNNAQWlVc17wgujK5bKSoRJXnFa1plsu0yUBqbhrGClLXJqNa8ByqShLGDtGHXe7g3c-1CaPqbNCmbaE3bh1USlhGCZGURvT9M_TGrX0fX6dSKYQUqSQiUu8eqHXVmVoN3nbgN-rxiyOQ7QDtXQjeNErbEUbr-tGDbeNEtW1SbZtUT01GbfpMe0z-p1DshDvbms1_aFXOjxd_u8nOtWE0v59c8LdKSCa5ujo_Uddcfp9ffxHqiv0B9Ym_cw
CODEN CEUJED
CitedBy_id crossref_primary_10_1016_j_chphma_2023_08_003
crossref_primary_10_1002_cplu_201700342
crossref_primary_10_1016_j_seppur_2025_133349
crossref_primary_10_1016_j_ijhydene_2023_06_244
crossref_primary_10_3390_molecules201018661
crossref_primary_10_1002_adfm_201907625
crossref_primary_10_1016_j_micromeso_2015_09_027
crossref_primary_10_1039_C2CC37183A
crossref_primary_10_1016_j_ijhydene_2017_04_173
crossref_primary_10_1002_bmc_6008
crossref_primary_10_1016_j_molstruc_2024_138475
crossref_primary_10_1016_j_bios_2025_117461
crossref_primary_10_1002_cctc_201402291
crossref_primary_10_1016_j_jcis_2022_08_026
crossref_primary_10_1016_j_micromeso_2017_05_014
crossref_primary_10_1002_adfm_201705553
crossref_primary_10_1007_s11051_020_05002_6
crossref_primary_10_1016_j_poly_2018_08_002
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1039_C9NR09112B
crossref_primary_10_1016_j_chempr_2020_08_021
crossref_primary_10_1002_cphc_201300976
crossref_primary_10_1016_j_trechm_2019_12_001
crossref_primary_10_1016_j_mtsust_2025_101192
crossref_primary_10_1016_j_chroma_2019_460741
crossref_primary_10_1002_adsu_202200276
crossref_primary_10_1002_cphc_202100508
crossref_primary_10_1016_j_jclepro_2020_123360
crossref_primary_10_1016_j_jtice_2025_106005
crossref_primary_10_1007_s42114_024_01016_z
crossref_primary_10_1016_j_micromeso_2013_04_020
crossref_primary_10_3390_catal11010137
crossref_primary_10_1016_j_catcom_2023_106620
crossref_primary_10_1016_j_micromeso_2022_111701
crossref_primary_10_1002_cctc_201800400
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1016_j_mcat_2024_114061
crossref_primary_10_1002_anie_202009710
crossref_primary_10_1016_j_jallcom_2019_153548
crossref_primary_10_1016_j_ijhydene_2020_03_078
crossref_primary_10_1016_j_cej_2021_130872
crossref_primary_10_1002_asia_202400365
crossref_primary_10_1039_c2cp44007e
crossref_primary_10_1016_j_dyepig_2019_107862
crossref_primary_10_1016_j_jpowsour_2024_234505
crossref_primary_10_1038_natrevmats_2016_59
crossref_primary_10_1016_j_jhazmat_2017_10_013
crossref_primary_10_1016_j_seppur_2019_01_064
crossref_primary_10_1016_j_ijhydene_2024_03_223
crossref_primary_10_1088_2053_1591_ab637c
crossref_primary_10_1016_j_ijhydene_2024_09_319
crossref_primary_10_1016_j_apcatb_2016_02_067
crossref_primary_10_1002_pssb_201248477
crossref_primary_10_1016_j_jssc_2022_123614
crossref_primary_10_1002_cssc_201700120
crossref_primary_10_1016_j_jcat_2024_115399
crossref_primary_10_1039_C8EE01085D
crossref_primary_10_1002_cphc_201801147
crossref_primary_10_1038_s41929_018_0030_8
crossref_primary_10_1039_C8NR10086A
crossref_primary_10_1016_j_apcata_2015_11_033
crossref_primary_10_1002_slct_202102435
crossref_primary_10_1039_C2CS35320B
crossref_primary_10_1016_j_electacta_2017_05_039
crossref_primary_10_1088_1674_1056_26_2_027302
crossref_primary_10_1016_j_ijhydene_2016_04_025
crossref_primary_10_1002_cphc_201801092
crossref_primary_10_1039_D2SC04223A
crossref_primary_10_1021_jacs_7b07918
crossref_primary_10_1002_ange_202009710
crossref_primary_10_1002_cctc_201400060
crossref_primary_10_1016_j_ijhydene_2015_05_199
crossref_primary_10_1016_j_cej_2020_127136
crossref_primary_10_1016_j_ccr_2023_215603
crossref_primary_10_1002_smtd_202100945
crossref_primary_10_1002_aoc_5677
crossref_primary_10_1016_j_ijhydene_2020_05_097
crossref_primary_10_1002_anie_201710190
crossref_primary_10_1007_s11356_022_21971_8
crossref_primary_10_1016_j_cej_2019_123471
crossref_primary_10_1016_j_rser_2018_04_028
crossref_primary_10_1002_chem_201302809
crossref_primary_10_1002_aoc_5398
crossref_primary_10_1016_j_jtice_2020_10_028
crossref_primary_10_1016_j_ijhydene_2022_01_003
crossref_primary_10_1002_cctc_201500747
crossref_primary_10_1016_j_mattod_2015_08_002
crossref_primary_10_1016_j_ijbiomac_2023_129104
crossref_primary_10_1002_anie_202305212
crossref_primary_10_1038_srep01882
crossref_primary_10_1039_D0QI00073F
crossref_primary_10_1002_ppsc_201500252
crossref_primary_10_1016_j_est_2024_113519
crossref_primary_10_1002_cctc_201301071
crossref_primary_10_1002_cssc_201600090
crossref_primary_10_1039_C3CC49176E
crossref_primary_10_1002_ange_201710190
crossref_primary_10_1016_j_micromeso_2015_03_008
crossref_primary_10_1016_j_pmatsci_2025_101538
crossref_primary_10_3390_molecules25225404
crossref_primary_10_1039_c3cp54898h
crossref_primary_10_1021_jacs_5b02716
crossref_primary_10_1016_j_trac_2024_117604
crossref_primary_10_1002_celc_201701132
crossref_primary_10_1002_ange_202305212
crossref_primary_10_1016_j_tet_2014_04_049
crossref_primary_10_1002_ejoc_202000396
Cites_doi 10.1021/ja061681m
10.1063/1.2912525
10.1002/cphc.200800463
10.1002/ange.200900960
10.1016/j.ijhydene.2010.02.118
10.1126/science.1120411
10.1021/la101377u
10.1007/3-540-36408-0_3
10.1016/j.micromeso.2009.06.005
10.1038/35104634
10.1021/jp710447j
10.1021/j100339a048
10.1038/nchem.548
10.1016/j.micromeso.2012.06.014
10.1021/jp103643e
10.1103/PhysRevB.78.245408
10.1002/cvde.200506390
10.1149/1.2096989
10.1016/j.synthmet.2005.07.296
10.1021/cm201140r
10.1021/jp994082t
10.1021/jp711326g
10.1103/PhysRevB.48.84
10.1021/ja206846p
10.1016/S0039-6028(03)00989-0
10.1021/ja00264a016
10.1039/b902024a
10.1002/1616-3028(20020201)12:2<143::AID-ADFM143>3.0.CO;2-A
10.1021/ja9015765
10.1021/la9020383
10.1021/ja7102372
10.1088/0960-1317/1/1/008
10.1039/c1jm10207a
10.1016/j.micromeso.2010.07.015
10.1039/b815977g
10.1002/ange.200352124
10.1021/j100043a055
10.1002/anie.200352124
10.1016/j.ijhydene.2008.10.080
10.1016/j.jallcom.2004.06.105
10.1021/ja9084995
10.1021/jp075382a
10.1016/j.micromeso.2006.03.014
10.1002/cphc.200900289
10.1002/ange.200805494
10.1002/ange.201006913
10.1016/j.jcat.2004.02.020
10.1002/anie.201005919
10.1002/cphc.201000523
10.1021/cm990406e
10.1002/anie.200805494
10.1002/ange.200803826
10.1016/j.micromeso.2010.07.018
10.1002/chem.200800980
10.1002/anie.200803826
10.1021/jp111800c
10.1002/anie.201006913
10.1126/science.1139915
10.1021/ja803247y
10.1021/cm102529c
10.1039/c1cc11450f
10.1039/c0cp00037j
10.1002/ange.201005919
10.1021/cm801165s
10.1002/ejic.201000473
10.1002/adfm.200600535
10.1021/ja078231u
10.1021/cm020822q
10.1002/anie.200900960
10.1103/PhysRevLett.73.557
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201201340
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10856
ExternalDocumentID 3957844091
22886887
10_1002_chem_201201340
CHEM201201340
ark_67375_WNG_Z57XHZQ6_W
Genre article
Journal Article
GrantInformation_xml – fundername: DFG
– fundername: ERC grant COUNTATOMS
– fundername: Alexander von Humboldt Foundation
– fundername: Fund for Scientific Research Flanders
– fundername: German Research Foundation
– fundername: IMPRS‐AM
– fundername: Hercules Foundation
– fundername: International Max Planck Research School for Advanced Materials
– fundername: European Union
  funderid: 262348 ESMI
– fundername: FWO
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5540-5aafaf02bb5cd590cbe87f76b6b88b2d24871f4a7c5ef3390dde42c658abb7033
IEDL.DBID DRFUL
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307782800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Oct 02 12:11:16 EDT 2025
Wed Oct 29 07:55:33 EDT 2025
Wed Feb 19 01:51:42 EST 2025
Sat Nov 29 07:13:32 EST 2025
Tue Nov 18 20:39:54 EST 2025
Wed Jan 22 16:39:15 EST 2025
Sun Sep 21 06:19:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5540-5aafaf02bb5cd590cbe87f76b6b88b2d24871f4a7c5ef3390dde42c658abb7033
Notes German Research Foundation
ERC grant COUNTATOMS
ArticleID:CHEM201201340
DFG
International Max Planck Research School for Advanced Materials
istex:374C5D0D83DE70CCF7B18975E286E95730D2E243
IMPRS-AM
ark:/67375/WNG-Z57XHZQ6-W
Fund for Scientific Research Flanders
Alexander von Humboldt Foundation
European Union - No. 262348 ESMI
FWO
Hercules Foundation
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://zenodo.org/record/3409319
PMID 22886887
PQID 1766761706
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_1034200722
proquest_journals_1766761706
pubmed_primary_22886887
crossref_citationtrail_10_1002_chem_201201340
crossref_primary_10_1002_chem_201201340
wiley_primary_10_1002_chem_201201340_CHEM201201340
istex_primary_ark_67375_WNG_Z57XHZQ6_W
PublicationCentury 2000
PublicationDate August 27, 2012
PublicationDateYYYYMMDD 2012-08-27
PublicationDate_xml – month: 08
  year: 2012
  text: August 27, 2012
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References D. P. Cao, J. H. Lan, W. C. Wang, B. Smit, Angew. Chem. 2009, 121, 4824-4827
S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094-4097
M. Yamauchi, H. Kitagawa, Synth. Met. 2005, 153, 353-356
C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Ferey, M. Latroche, J. Am. Chem. Soc. 2010, 132, 2991-2997
M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem. 2010, 3701-3714
D. Stacchiola, L. Burkholder, W. T. Tysoe, Surf. Sci. 2003, 542, 129-141
M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 2008, 112, 3294-3299
E. Klontzas, E. Tylianakis, G. E. Froudakis, J. Phys. Chem. C 2008, 112, 9095-9098
A. M. Doyle, S. K. Shaikhutdinov, H. J. Freund, J. Catal. 2004, 223, 444-453
J. C. Hierso, R. Feurer, P. Kalck, Chem. Mater. 2000, 12, 390-399.
C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235-238
X. L. Zou, G. Zhou, W. H. Duan, K. Choi, J. Ihm, J. Phys. Chem. C 2010, 114, 13402-13407
S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822.
S. Turner, O. I. Lebedev, F. Schroder, D. Esken, R. A. Fischer, G. Van Tendeloo, Chem. Mater. 2008, 20, 5622-5627.
C. M. Yang, H. S. Sheu, K. J. Chao, Adv. Funct. Mater. 2002, 12, 143-148
R. Campesi, F. Cuevas, M. Latroche, M. Hirscher, Phys. Chem. Chem. Phys. 2010, 12, 10457-10459
T.-H. Phan, R. E. Schaak, Chem. Commun. 2009, 3026-3028
R. R. Thomas, J. M. Park, J. Electrochem. Soc. 1989, 136, 1661-1666
L. Schlapbach, A. Zuttel, Nature 2001, 414, 353-358.
L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793-4799.
L. Vradman, L. Titelman, M. Herskowitz, Microporous Mesoporous Mater. 2006, 93, 313-317
J. A. Eastman, L. J. Thompson, B. J. Kestel, Phys. Rev. B 1993, 48, 84-92.
S. M. Luzan, A. V. Talyzin, Microporous Mesoporous Mater. 2010, 135, 201-205
M. Vaarkamp, B. L. Mojet, M. J. Kappers, J. T. Miller, D. C. Koningsbergert, J. Phys. Chem. 1995, 99, 16067-16075.
A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166-1170
Angew. Chem. Int. Ed. 2011, 50, 1289-1293
S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580-11581
C. K. Tsung, W. Hong, Q. Shi, X. Kou, M. H. Yeung, J. Wang, G. D. Stucky, Adv. Funct. Mater. 2006, 16, 2225-2230
R. J. Wolf, M. W. Lee, J. R. Ray, Phys. Rev. Lett. 1994, 73, 557
S. B. Kalidindi, K. Yusenko, R. A. Fischer, Chem. Commun. 2011, 47, 8506-8508.
M. Hirscher, Angew. Chem. 2011, 123, 605-606
M. Hirscher, B. Panella, B. Schmitz, Microporous Mesoporous Mater. 2010, 129, 335-339.
N. R. Stuckert, L. F. Wang, R. T. Yang, Langmuir 2010, 26, 11963-11971
A. M. Doyle, S. K. Shaikhutdinov, S. D. Jackson, H. J. Freund, Angew. Chem. 2003, 115, 5398-5401
D. Esken, X. Zhang, O. I. Lebedev, F. Schroder, R. A. Fischer, J. Mater. Chem. 2009, 19, 1314-1319
H. Kobayashi, M. Yarnauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 2008, 130, 1828
D. G. Narehood, S. Kishore, H. Goto, J. H. Adair, J. A. Nelson, H. R. Gutiérrez, P. C. Eklund, Int. J. Hydrogen Energy 2009, 34, 952-960
J. Lan, D. Cao, W. Wang, Langmuir 2010, 26, 220-226.
Q.-H. Wu, M. Gunia, T. Strunskus, G. Witte, M. Muhler, C. Wöll, Chem. Vapor Depos. 2005, 11, 355-361
B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, M. P. Ryan, Phys. Rev. B 2008, 78, 245408
G. T. Stauf, P. A. Dowben, K. Emrich, S. Barfuss, W. Hirschwald, N. M. Boag, J. Phys. Chem. 1989, 93, 749-753
C. O. Areán, S. Chavan, C. P. Cabello, E. Garrone, G. T. Palomino, ChemPhysChem 2010, 11, 3237-3242.
Y. E. Cheon, M. P. Suh, Angew. Chem. 2009, 121, 2943-2947
H. M. El-Kaderi, O. M. Yaghi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, Science 2007, 316, 268-272.
M. Hirscher, Microporous Mesoporous Mater. 2010, 135, 209-210
S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. 2008, 120, 8958-8962
Angew. Chem. Int. Ed. 2009, 48, 4730-4733
J. Saha, A. Dandapat, G. De, J. Mater. Chem. 2011, 21, 11482-11485.
T. P. Beebe, Jr., J. T. Yates, Jr., J. Am. Chem. Soc. 1986, 108, 663-671
C. Wiktor, S. Turner, D. Zacher, R. A. Fischer, G. Van Tendeloo, Microporous Mesoporous Mater. 2012, 162, 131-135.
B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 2008, 9, 2181-2184
Y. G. Kim, S. Bialy, G. T. Stauf, R. W. Miller, J. T. Spencer, P. A. Dowben, S. Datta, J. Micromech. Microeng. 1991, 1, 42-45
C. Yang, P. Liu, Y. Ho, C. Chiu, K. Chao, Chem. Mater. 2003, 15, 275-280
Angew. Chem. Int. Ed. 2009, 48, 2899-2903.
S. Kishore, J. A. Nelson, J. H. Adair, P. C. Eklund, J. Alloys Compd. 2005, 389, 234-242
Y. J. Choi, J. W. Lee, J. H. Choi, J. K. Kang, Appl. Phys. Lett. 2008, 92, 173102
M. Yamauchi, H. Kobayashi, H. Kitagawa, ChemPhysChem 2009, 10, 2566-2576
D. Esken, S. Turner, O. I. Lebedev, G. V. Tendeloo, R. A. Fischer, Chem. Mater. 2010, 22, 6393-6401.
Y. W. Li, F. H. Yang, R. T. Yang, J. Phys. Chem. C 2008, 112, 3155-3156
Angew. Chem. Int. Ed. 2011, 50, 581-582.
Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137.
M. Neurock, R. A. van Santen, J. Phys. Chem. B 2000, 104, 11127-11145.
H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875-8883
L. M. Bronstein, Top. Curr. Chem. 2003, 226, 55-89
T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460
Angew. Chem. Int. Ed. 2003, 42, 5240-5243
X. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. Jiang, Angew. Chem. 2011, 123, 1325-1329
Angew. Chem. Int. Ed. 2008, 47, 8826-8830
V. A. Vons, H. Leegwater, W. J. Legerstee, S. W. H. Eijt, A. Schmidt-Ott, Int. J. Hydrogen Energy 2010, 35, 5479-5489
F. Schröder, D. Esken, M. Cokoja, M. W. E. van den Berg, O. I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkovsky, H.-H. Limbach, B. Chaudret, R. A. Fischer, J. Am. Chem. Soc. 2008, 130, 6119-6130.
2010; 12
2010; 11
2011; 115
2012; 162
2002; 12
2008; 9
2003; 15
2008; 78
2011 2011; 123 50
2010; 22
1986; 108
2010; 26
2009; 10
2000; 12
2010; 114
2005; 389
2011; 21
2011; 23
2008; 20
2008; 112
2010; 2
2009; 19
2006; 128
1994; 73
2001; 414
1993; 48
2006; 93
1991; 1
2010; 35
2005; 153
2004; 223
2010; 129
2005; 310
2010
1989; 136
2006; 16
1995; 99
2009
2008; 14
2009; 131
2008; 92
2011; 133
2009 2009; 121 48
2009; 34
1989; 93
2007; 316
2003 2003; 115 42
2003; 226
2000; 104
2010; 135
2010; 132
2011; 47
2003; 542
2008 2008; 120 47
2008; 130
2005; 11
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_74_3
e_1_2_6_53_2
e_1_2_6_74_2
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_3
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_24_3
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – reference: A. M. Doyle, S. K. Shaikhutdinov, H. J. Freund, J. Catal. 2004, 223, 444-453;
– reference: B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, ChemPhysChem 2008, 9, 2181-2184;
– reference: S. Wan, F. Gándara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23, 4094-4097;
– reference: X. L. Zou, G. Zhou, W. H. Duan, K. Choi, J. Ihm, J. Phys. Chem. C 2010, 114, 13402-13407;
– reference: T.-H. Phan, R. E. Schaak, Chem. Commun. 2009, 3026-3028;
– reference: J. A. Eastman, L. J. Thompson, B. J. Kestel, Phys. Rev. B 1993, 48, 84-92.
– reference: M. Yamauchi, H. Kitagawa, Synth. Met. 2005, 153, 353-356;
– reference: Q.-H. Wu, M. Gunia, T. Strunskus, G. Witte, M. Muhler, C. Wöll, Chem. Vapor Depos. 2005, 11, 355-361;
– reference: S. M. Luzan, A. V. Talyzin, Microporous Mesoporous Mater. 2010, 135, 201-205;
– reference: R. R. Thomas, J. M. Park, J. Electrochem. Soc. 1989, 136, 1661-1666;
– reference: S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580-11581;
– reference: C. M. Yang, H. S. Sheu, K. J. Chao, Adv. Funct. Mater. 2002, 12, 143-148;
– reference: H. Kobayashi, M. Yarnauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 2008, 130, 1828;
– reference: J. C. Hierso, R. Feurer, P. Kalck, Chem. Mater. 2000, 12, 390-399.
– reference: D. Esken, X. Zhang, O. I. Lebedev, F. Schroder, R. A. Fischer, J. Mater. Chem. 2009, 19, 1314-1319;
– reference: M. Yamauchi, H. Kobayashi, H. Kitagawa, ChemPhysChem 2009, 10, 2566-2576;
– reference: C. K. Tsung, W. Hong, Q. Shi, X. Kou, M. H. Yeung, J. Wang, G. D. Stucky, Adv. Funct. Mater. 2006, 16, 2225-2230;
– reference: Angew. Chem. Int. Ed. 2009, 48, 2899-2903.
– reference: R. Campesi, F. Cuevas, M. Latroche, M. Hirscher, Phys. Chem. Chem. Phys. 2010, 12, 10457-10459;
– reference: N. R. Stuckert, L. F. Wang, R. T. Yang, Langmuir 2010, 26, 11963-11971;
– reference: M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendeloo, R. A. Fischer, Eur. J. Inorg. Chem. 2010, 3701-3714;
– reference: A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166-1170;
– reference: M. Hirscher, Angew. Chem. 2011, 123, 605-606;
– reference: T. P. Beebe, Jr., J. T. Yates, Jr., J. Am. Chem. Soc. 1986, 108, 663-671;
– reference: C. Wiktor, S. Turner, D. Zacher, R. A. Fischer, G. Van Tendeloo, Microporous Mesoporous Mater. 2012, 162, 131-135.
– reference: Angew. Chem. Int. Ed. 2003, 42, 5240-5243;
– reference: T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 2008, 14, 8456-8460;
– reference: Angew. Chem. Int. Ed. 2008, 47, 8826-8830;
– reference: V. A. Vons, H. Leegwater, W. J. Legerstee, S. W. H. Eijt, A. Schmidt-Ott, Int. J. Hydrogen Energy 2010, 35, 5479-5489;
– reference: M. Neurock, R. A. van Santen, J. Phys. Chem. B 2000, 104, 11127-11145.
– reference: A. M. Doyle, S. K. Shaikhutdinov, S. D. Jackson, H. J. Freund, Angew. Chem. 2003, 115, 5398-5401;
– reference: H. M. El-Kaderi, O. M. Yaghi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, Science 2007, 316, 268-272.
– reference: S. Kishore, J. A. Nelson, J. H. Adair, P. C. Eklund, J. Alloys Compd. 2005, 389, 234-242;
– reference: R. J. Wolf, M. W. Lee, J. R. Ray, Phys. Rev. Lett. 1994, 73, 557;
– reference: D. P. Cao, J. H. Lan, W. C. Wang, B. Smit, Angew. Chem. 2009, 121, 4824-4827;
– reference: B. Ingham, M. F. Toney, S. C. Hendy, T. Cox, D. D. Fong, J. A. Eastman, P. H. Fuoss, K. J. Stevens, A. Lassesson, S. A. Brown, M. P. Ryan, Phys. Rev. B 2008, 78, 245408;
– reference: C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235-238;
– reference: Angew. Chem. Int. Ed. 2011, 50, 581-582.
– reference: F. Schröder, D. Esken, M. Cokoja, M. W. E. van den Berg, O. I. Lebedev, G. Van Tendeloo, B. Walaszek, G. Buntkovsky, H.-H. Limbach, B. Chaudret, R. A. Fischer, J. Am. Chem. Soc. 2008, 130, 6119-6130.
– reference: D. Esken, S. Turner, O. I. Lebedev, G. V. Tendeloo, R. A. Fischer, Chem. Mater. 2010, 22, 6393-6401.
– reference: Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137.
– reference: L. Vradman, L. Titelman, M. Herskowitz, Microporous Mesoporous Mater. 2006, 93, 313-317;
– reference: Y. J. Choi, J. W. Lee, J. H. Choi, J. K. Kang, Appl. Phys. Lett. 2008, 92, 173102;
– reference: X. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, D. Jiang, Angew. Chem. 2011, 123, 1325-1329;
– reference: M. Hirscher, B. Panella, B. Schmitz, Microporous Mesoporous Mater. 2010, 129, 335-339.
– reference: M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 2008, 112, 3294-3299;
– reference: Angew. Chem. Int. Ed. 2011, 50, 1289-1293;
– reference: Y. E. Cheon, M. P. Suh, Angew. Chem. 2009, 121, 2943-2947;
– reference: M. Hirscher, Microporous Mesoporous Mater. 2010, 135, 209-210;
– reference: L. Wang, N. R. Stuckert, H. Chen, R. T. Yang, J. Phys. Chem. C 2011, 115, 4793-4799.
– reference: S. B. Kalidindi, K. Yusenko, R. A. Fischer, Chem. Commun. 2011, 47, 8506-8508.
– reference: D. G. Narehood, S. Kishore, H. Goto, J. H. Adair, J. A. Nelson, H. R. Gutiérrez, P. C. Eklund, Int. J. Hydrogen Energy 2009, 34, 952-960;
– reference: S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. 2008, 120, 8958-8962;
– reference: Y. W. Li, F. H. Yang, R. T. Yang, J. Phys. Chem. C 2008, 112, 3155-3156;
– reference: L. Schlapbach, A. Zuttel, Nature 2001, 414, 353-358.
– reference: S. Turner, O. I. Lebedev, F. Schroder, D. Esken, R. A. Fischer, G. Van Tendeloo, Chem. Mater. 2008, 20, 5622-5627.
– reference: G. T. Stauf, P. A. Dowben, K. Emrich, S. Barfuss, W. Hirschwald, N. M. Boag, J. Phys. Chem. 1989, 93, 749-753;
– reference: H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875-8883;
– reference: Angew. Chem. Int. Ed. 2009, 48, 4730-4733;
– reference: C. Yang, P. Liu, Y. Ho, C. Chiu, K. Chao, Chem. Mater. 2003, 15, 275-280;
– reference: J. Saha, A. Dandapat, G. De, J. Mater. Chem. 2011, 21, 11482-11485.
– reference: C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Ferey, M. Latroche, J. Am. Chem. Soc. 2010, 132, 2991-2997;
– reference: M. Vaarkamp, B. L. Mojet, M. J. Kappers, J. T. Miller, D. C. Koningsbergert, J. Phys. Chem. 1995, 99, 16067-16075.
– reference: J. Lan, D. Cao, W. Wang, Langmuir 2010, 26, 220-226.
– reference: C. O. Areán, S. Chavan, C. P. Cabello, E. Garrone, G. T. Palomino, ChemPhysChem 2010, 11, 3237-3242.
– reference: L. M. Bronstein, Top. Curr. Chem. 2003, 226, 55-89;
– reference: E. Klontzas, E. Tylianakis, G. E. Froudakis, J. Phys. Chem. C 2008, 112, 9095-9098;
– reference: S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822.
– reference: D. Stacchiola, L. Burkholder, W. T. Tysoe, Surf. Sci. 2003, 542, 129-141;
– reference: Y. G. Kim, S. Bialy, G. T. Stauf, R. W. Miller, J. T. Spencer, P. A. Dowben, S. Datta, J. Micromech. Microeng. 1991, 1, 42-45;
– volume: 23
  start-page: 4094
  year: 2011
  end-page: 4097
  publication-title: Chem. Mater.
– volume: 9
  start-page: 2181
  year: 2008
  end-page: 2184
  publication-title: ChemPhysChem
– volume: 132
  start-page: 2991
  year: 2010
  end-page: 2997
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 6119
  year: 2008
  end-page: 6130
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 220
  year: 2010
  end-page: 226
  publication-title: Langmuir
– volume: 130
  start-page: 11580
  year: 2008
  end-page: 11581
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 6393
  year: 2010
  end-page: 6401
  publication-title: Chem. Mater.
– volume: 93
  start-page: 313
  year: 2006
  end-page: 317
  publication-title: Microporous Mesoporous Mater.
– volume: 11
  start-page: 3237
  year: 2010
  end-page: 3242
  publication-title: ChemPhysChem
– volume: 226
  start-page: 55
  year: 2003
  end-page: 89
  publication-title: Top. Curr. Chem.
– volume: 12
  start-page: 143
  year: 2002
  end-page: 148
  publication-title: Adv. Funct. Mater.
– volume: 123 50
  start-page: 1325 1289
  year: 2011 2011
  end-page: 1329 1293
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 26
  start-page: 11963
  year: 2010
  end-page: 11971
  publication-title: Langmuir
– volume: 115
  start-page: 4793
  year: 2011
  end-page: 4799
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 2225
  year: 2006
  end-page: 2230
  publication-title: Adv. Funct. Mater.
– volume: 115 42
  start-page: 5398 5240
  year: 2003 2003
  end-page: 5401 5243
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 120 47
  start-page: 8958 8826
  year: 2008 2008
  end-page: 8962 8830
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 35
  start-page: 5479
  year: 2010
  end-page: 5489
  publication-title: Int. J. Hydrogen Energy
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 8456
  year: 2008
  end-page: 8460
  publication-title: Chem. Eur. J.
– volume: 128
  start-page: 8136
  year: 2006
  end-page: 8137
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 3155
  year: 2008
  end-page: 3156
  publication-title: J. Phys. Chem. C
– volume: 78
  start-page: 245408
  year: 2008
  publication-title: Phys. Rev. B
– volume: 104
  start-page: 11127
  year: 2000
  end-page: 11145
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: 13402
  year: 2010
  end-page: 13407
  publication-title: J. Phys. Chem. C
– volume: 162
  start-page: 131
  year: 2012
  end-page: 135
  publication-title: Microporous Mesoporous Mater.
– volume: 99
  start-page: 16067
  year: 1995
  end-page: 16075
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 42
  year: 1991
  end-page: 45
  publication-title: J. Micromech. Microeng.
– volume: 389
  start-page: 234
  year: 2005
  end-page: 242
  publication-title: J. Alloys Compd.
– volume: 112
  start-page: 9095
  year: 2008
  end-page: 9098
  publication-title: J. Phys. Chem. C
– volume: 121 48
  start-page: 2943 2899
  year: 2009 2009
  end-page: 2947 2903
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 542
  start-page: 129
  year: 2003
  end-page: 141
  publication-title: Surf. Sci.
– volume: 121 48
  start-page: 4824 4730
  year: 2009 2009
  end-page: 4827 4733
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 12
  start-page: 10457
  year: 2010
  end-page: 10459
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 1661
  year: 1989
  end-page: 1666
  publication-title: J. Electrochem. Soc.
– volume: 92
  start-page: 173102
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 5622
  year: 2008
  end-page: 5627
  publication-title: Chem. Mater.
– volume: 73
  start-page: 557
  year: 1994
  publication-title: Phys. Rev. Lett.
– volume: 112
  start-page: 3294
  year: 2008
  end-page: 3299
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 235
  year: 2010
  end-page: 238
  publication-title: Nat. Chem.
– volume: 130
  start-page: 1828
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– start-page: 3701
  year: 2010
  end-page: 3714
  publication-title: Eur. J. Inorg. Chem.
– volume: 123 50
  start-page: 605 581
  year: 2011 2011
  end-page: 606 582
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 129
  start-page: 335
  year: 2010
  end-page: 339
  publication-title: Microporous Mesoporous Mater.
– volume: 153
  start-page: 353
  year: 2005
  end-page: 356
  publication-title: Synth. Met.
– volume: 135
  start-page: 201
  year: 2010
  end-page: 205
  publication-title: Microporous Mesoporous Mater.
– volume: 93
  start-page: 749
  year: 1989
  end-page: 753
  publication-title: J. Phys. Chem.
– volume: 15
  start-page: 275
  year: 2003
  end-page: 280
  publication-title: Chem. Mater.
– volume: 12
  start-page: 390
  year: 2000
  end-page: 399
  publication-title: Chem. Mater.
– volume: 34
  start-page: 952
  year: 2009
  end-page: 960
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 11482
  year: 2011
  end-page: 11485
  publication-title: J. Mater. Chem.
– volume: 135
  start-page: 209
  year: 2010
  end-page: 210
  publication-title: Microporous Mesoporous Mater.
– volume: 414
  start-page: 353
  year: 2001
  end-page: 358
  publication-title: Nature
– volume: 19
  start-page: 1314
  year: 2009
  end-page: 1319
  publication-title: J. Mater. Chem.
– volume: 223
  start-page: 444
  year: 2004
  end-page: 453
  publication-title: J. Catal.
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  publication-title: Science
– volume: 11
  start-page: 355
  year: 2005
  end-page: 361
  publication-title: Chem. Vapor Depos.
– volume: 10
  start-page: 2566
  year: 2009
  end-page: 2576
  publication-title: ChemPhysChem
– volume: 48
  start-page: 84
  year: 1993
  end-page: 92
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 8506
  year: 2011
  end-page: 8508
  publication-title: Chem. Commun.
– start-page: 3026
  year: 2009
  end-page: 3028
  publication-title: Chem. Commun.
– volume: 108
  start-page: 663
  year: 1986
  end-page: 671
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_19_2
– ident: e_1_2_6_47_2
  doi: 10.1021/ja061681m
– ident: e_1_2_6_25_2
  doi: 10.1063/1.2912525
– ident: e_1_2_6_44_2
– ident: e_1_2_6_41_2
  doi: 10.1002/cphc.200800463
– ident: e_1_2_6_24_2
  doi: 10.1002/ange.200900960
– ident: e_1_2_6_56_2
  doi: 10.1016/j.ijhydene.2010.02.118
– ident: e_1_2_6_2_2
  doi: 10.1126/science.1120411
– ident: e_1_2_6_53_2
  doi: 10.1021/la101377u
– ident: e_1_2_6_13_2
  doi: 10.1007/3-540-36408-0_3
– ident: e_1_2_6_42_2
  doi: 10.1016/j.micromeso.2009.06.005
– ident: e_1_2_6_22_2
  doi: 10.1038/35104634
– ident: e_1_2_6_58_2
  doi: 10.1021/jp710447j
– ident: e_1_2_6_66_2
  doi: 10.1021/j100339a048
– ident: e_1_2_6_6_2
  doi: 10.1038/nchem.548
– ident: e_1_2_6_76_2
  doi: 10.1016/j.micromeso.2012.06.014
– ident: e_1_2_6_12_2
– ident: e_1_2_6_27_2
  doi: 10.1021/jp103643e
– ident: e_1_2_6_60_2
  doi: 10.1103/PhysRevB.78.245408
– ident: e_1_2_6_70_2
– ident: e_1_2_6_68_2
  doi: 10.1002/cvde.200506390
– ident: e_1_2_6_67_2
  doi: 10.1149/1.2096989
– ident: e_1_2_6_61_2
  doi: 10.1016/j.synthmet.2005.07.296
– ident: e_1_2_6_10_2
  doi: 10.1021/cm201140r
– ident: e_1_2_6_75_2
  doi: 10.1021/jp994082t
– ident: e_1_2_6_26_2
  doi: 10.1021/jp711326g
– ident: e_1_2_6_62_2
  doi: 10.1103/PhysRevB.48.84
– ident: e_1_2_6_11_2
  doi: 10.1021/ja206846p
– ident: e_1_2_6_71_2
  doi: 10.1016/S0039-6028(03)00989-0
– ident: e_1_2_6_73_2
  doi: 10.1021/ja00264a016
– ident: e_1_2_6_31_2
  doi: 10.1039/b902024a
– ident: e_1_2_6_16_2
  doi: 10.1002/1616-3028(20020201)12:2<143::AID-ADFM143>3.0.CO;2-A
– ident: e_1_2_6_8_2
  doi: 10.1021/ja9015765
– ident: e_1_2_6_28_2
  doi: 10.1021/la9020383
– ident: e_1_2_6_30_2
  doi: 10.1021/ja7102372
– ident: e_1_2_6_36_2
– ident: e_1_2_6_65_2
  doi: 10.1088/0960-1317/1/1/008
– ident: e_1_2_6_34_2
  doi: 10.1039/c1jm10207a
– ident: e_1_2_6_51_2
  doi: 10.1016/j.micromeso.2010.07.015
– ident: e_1_2_6_38_2
  doi: 10.1039/b815977g
– ident: e_1_2_6_74_2
  doi: 10.1002/ange.200352124
– ident: e_1_2_6_55_2
– ident: e_1_2_6_18_2
  doi: 10.1021/j100043a055
– ident: e_1_2_6_74_3
  doi: 10.1002/anie.200352124
– ident: e_1_2_6_59_2
  doi: 10.1016/j.ijhydene.2008.10.080
– ident: e_1_2_6_32_2
  doi: 10.1016/j.jallcom.2004.06.105
– ident: e_1_2_6_45_2
  doi: 10.1021/ja9084995
– ident: e_1_2_6_52_2
  doi: 10.1021/jp075382a
– ident: e_1_2_6_15_2
  doi: 10.1016/j.micromeso.2006.03.014
– ident: e_1_2_6_57_2
  doi: 10.1002/cphc.200900289
– ident: e_1_2_6_46_2
  doi: 10.1002/ange.200805494
– ident: e_1_2_6_23_2
– ident: e_1_2_6_40_2
  doi: 10.1002/ange.201006913
– ident: e_1_2_6_72_2
  doi: 10.1016/j.jcat.2004.02.020
– ident: e_1_2_6_5_3
  doi: 10.1002/anie.201005919
– ident: e_1_2_6_43_2
  doi: 10.1002/cphc.201000523
– ident: e_1_2_6_69_2
  doi: 10.1021/cm990406e
– ident: e_1_2_6_46_3
  doi: 10.1002/anie.200805494
– ident: e_1_2_6_48_2
– ident: e_1_2_6_9_2
  doi: 10.1002/ange.200803826
– ident: e_1_2_6_50_2
  doi: 10.1016/j.micromeso.2010.07.018
– ident: e_1_2_6_29_2
– ident: e_1_2_6_37_2
  doi: 10.1002/chem.200800980
– ident: e_1_2_6_9_3
  doi: 10.1002/anie.200803826
– ident: e_1_2_6_54_2
  doi: 10.1021/jp111800c
– ident: e_1_2_6_40_3
  doi: 10.1002/anie.201006913
– ident: e_1_2_6_3_2
  doi: 10.1126/science.1139915
– ident: e_1_2_6_7_2
  doi: 10.1021/ja803247y
– ident: e_1_2_6_21_2
  doi: 10.1021/cm102529c
– ident: e_1_2_6_35_2
  doi: 10.1039/c1cc11450f
– ident: e_1_2_6_49_2
  doi: 10.1039/c0cp00037j
– ident: e_1_2_6_5_2
  doi: 10.1002/ange.201005919
– ident: e_1_2_6_39_2
  doi: 10.1021/cm801165s
– ident: e_1_2_6_64_2
– ident: e_1_2_6_14_2
  doi: 10.1002/ejic.201000473
– ident: e_1_2_6_20_2
  doi: 10.1002/adfm.200600535
– ident: e_1_2_6_4_2
– ident: e_1_2_6_1_2
– ident: e_1_2_6_63_2
  doi: 10.1021/ja078231u
– ident: e_1_2_6_17_2
  doi: 10.1021/cm020822q
– ident: e_1_2_6_24_3
  doi: 10.1002/anie.200900960
– ident: e_1_2_6_33_2
  doi: 10.1103/PhysRevLett.73.557
SSID ssj0009633
Score 2.4639695
Snippet Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the...
Three‐dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η 3 ‐C...
Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10848
SubjectTerms Chemistry
covalent organic frameworks
Hydrogen
hydrogen storage
Metals
Nanoparticles
Organic compounds
organic-inorganic hybrid composites
palladium
Storage capacity
Transmission electron microscopy
Title Metal@COFs: Covalent Organic Frameworks as Templates for Pd Nanoparticles and Hydrogen Storage Properties of Pd@COF-102 Hybrid Material
URI https://api.istex.fr/ark:/67375/WNG-Z57XHZQ6-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201201340
https://www.ncbi.nlm.nih.gov/pubmed/22886887
https://www.proquest.com/docview/1766761706
https://www.proquest.com/docview/1034200722
Volume 18
WOSCitedRecordID wos000307782800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BFwkuvB-BUhkJwSlq4sRxwgm0EPbQLgu0dNWLZTuJhNomVbJFcOPKjd_IL2Emr7ISCAmkHBJl8rLn8Y3j-QzwOJTWUqB1TR6Hbmi05xrNhYvdH2eeRYTcsn1-2JHzebxcJotfqvg7fohxwI0so_XXZODaNNvnpKH4TVRJ7uMWhJi0T6iyCtOvyct36f7OOfFu1C8nH0qXaFgH4kaPb6_fYS0wTaiNP_8Oda6D2DYKpdf-__2vw9UegbIXncrcgAt5eRMuT4eF327Bt90cEfnz6Zu0ecamFaoiBibWFW1alg6zuRqmG7aXn5weE1xlCH7ZImPorTEN72fbMV1mbPYlqytUU_Ye03v0XmxB4_81EbmyqsBr6Ek_vn5HDIKyVEDGdvWqNYzbsJ--2pvO3H7FBtcKmmEhtC504XFjhM1E4lnUAFnIyEQmjg3POKZHfhFqaUVeBEHioXMNuUUUpI1B3xPcgY2yKvN7wAIEntbPhESp0GaJMX6GobRAvOT7Se474A7dpWxPZ06rahyrjoiZK2pgNTawA09H-dOOyOOPkk_a3h_FdH1E09-kUAfz1-pQyOXs8G2kDhzYHNRD9ZbfKCLclMRyHznwaDyNPUg_YnSZV2coQ7yLxNnOHbjbqdX4MM7jOELP7wBvtecvL6uIOWM8uv8vFz2AK7RPA-VcbsLGqj7LH8Il-2n1sam34KJcxlu9Vf0EUbYfvA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFmm58GYJLGAkBKdoE-fhhBOoEIpoS4EuW-3Fsp1EQizJKukiuHHlxm_klzCT16oSCAkh5ZJknMT2PD47488AD3xhDAVaW2eRb_taObZWPLCx-6PUMYiQG7bP9zOxWETrdbzssglpLUzLDzFMuJFlNP6aDJwmpPfPWEOxUrSU3MXD83HUPvZDT0QjGD97mxzMzph3w24_eV_YxMPaMzc6fH_7CVuRaUyN_OV3sHMbxTZhKLn0HypwGS52GJQ9bZXmCpzLiquwM-m3frsG3-cZYvInk9dJ_ZhNSlRGDE2sXbZpWNLnc9VM1WyVfTo5JsDKEP6yZcrQX-NAvMu3Y6pI2fRrWpWoqOwdDvDRf7El_QGoiMqVlTmWoTf9_PYDUQjK0hIyNlebxjSuw0HyfDWZ2t2eDbYJKMciUCpXucO1DkwaxI5BHRC5CHWoo0jzlOMAyc19JUyQ5Z4XO-hefW4QBymt0ft4N2BUlEV2E5iH0NO4aSBQyjdprLWbYjDNETG5bpy5Fth9f0nTEZrTvhrHsqVi5pIaWA4NbMGjQf6kpfL4o-TDpvsHMVV9pAQ4EcjDxQt5FIj19OhNKA8t2Ov1Q3a2X0ui3BTEcx9acH-4jT1Iv2JUkZWnKEPMi8Tazi3YbfVqeBnnURSi77eAN-rzl4-VxJ0xnN36l0L3YGe6ms_k7OXi1W24QNdp2pyLPRhtqtPsDpw3nzcf6upuZ1y_AMXhIsQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQLgIuvKGBAkZCcIqaOHGccAJtCYvYLgu0dNWL5UciVZRklWwR3Lhy4zfyS5jJq1oJhISQckkyjmN7Hp-T8WdCHoXCGAy0rs7i0A218lytGHdh-GPrGUDIDdvnh5mYz-PlMll02YS4Fqblhxg-uKFlNP4aDTxb2XznjDUUGoVLyX04ghBm7eOQJzwckfHuu_Rgdsa8G3X7yYfCRR7WnrnRYzubT9iITGPs5C-_g52bKLYJQ-mV_9CAq-Ryh0Hp81ZprpFzWXGdXJz0W7_dIN_3MsDkzyZv0vopnZSgjBCaaLts09C0z-eqqarpfvZpdYKAlQL8pQtLwV_DRLzLt6OqsHT61VYlKCp9DxN88F90gX8AKqRypWUOZbCmn99-AAoBWVxCRvfUujGNm-QgfbE_mbrdng2u4ZhjwZXKVe4xrbmxPPEM6IDIRaQjHceaWQYTJD8PlTA8y4Mg8cC9hswADlJag_cJbpFRURbZFqEBQE_jWy5AKjQ20dq3EExzQEy-n2S-Q9x-vKTpCM1xX40T2VIxM4kdLIcOdsiTQX7VUnn8UfJxM_yDmKo-YgKc4PJw_lIecbGcHr2N5KFDtnv9kJ3t1xIpNwXy3EcOeTjchhHEXzGqyMpTkEHmRWRtZw653erVUBljcRyB73cIa9TnLy8rkTtjOLvzL4UekAuL3VTOXs1f3yWX8DJ-NWdim4zW1Wl2j5w3n9fHdXW_s61fHG4iPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%40COFs%3A+Covalent+Organic+Frameworks+as+Templates+for+Pd+Nanoparticles+and+Hydrogen+Storage+Properties+of+Pd%40COF-102+Hybrid+Material&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Kalidindi%2C+Suresh+Babu&rft.au=Oh%2C+Hyunchul&rft.au=Hirscher%2C+Michael&rft.au=Esken%2C+Daniel&rft.date=2012-08-27&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=18&rft.issue=35&rft.spage=10848&rft.epage=10856&rft_id=info:doi/10.1002%2Fchem.201201340&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_Z57XHZQ6_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon