A structural enriched functional network: An application to predict brain cognitive performance

•A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional bra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 71; S. 102026
Hauptverfasser: Kim, Mansu, Bao, Jingxuan, Liu, Kefei, Park, Bo-yong, Park, Hyunjin, Baik, Jae Young, Shen, Li
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.07.2021
Elsevier BV
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional brain networks.•Extensive experiments demonstrate the promise of the proposed structural enriched functional brain networks on predicting interesting behavioral outcomes. The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models. [Display omitted]
AbstractList The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.
•A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional brain networks.•Extensive experiments demonstrate the promise of the proposed structural enriched functional brain networks on predicting interesting behavioral outcomes. The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models. [Display omitted]
The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.
ArticleNumber 102026
Author Liu, Kefei
Kim, Mansu
Park, Hyunjin
Bao, Jingxuan
Shen, Li
Baik, Jae Young
Park, Bo-yong
AuthorAffiliation 2 School of Arts and Sciences, University of Pennsylvania, PA, USA
1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
4 School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
5 Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
3 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
AuthorAffiliation_xml – name: 5 Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
– name: 4 School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
– name: 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
– name: 3 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
– name: 2 School of Arts and Sciences, University of Pennsylvania, PA, USA
Author_xml – sequence: 1
  givenname: Mansu
  orcidid: 0000-0002-0785-4514
  surname: Kim
  fullname: Kim, Mansu
  organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
– sequence: 2
  givenname: Jingxuan
  orcidid: 0000-0001-7127-3258
  surname: Bao
  fullname: Bao, Jingxuan
  organization: School of Arts and Sciences, University of Pennsylvania, PA, USA
– sequence: 3
  givenname: Kefei
  surname: Liu
  fullname: Liu, Kefei
  organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
– sequence: 4
  givenname: Bo-yong
  orcidid: 0000-0001-7096-337X
  surname: Park
  fullname: Park, Bo-yong
  organization: McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
– sequence: 5
  givenname: Hyunjin
  surname: Park
  fullname: Park, Hyunjin
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
– sequence: 6
  givenname: Jae Young
  orcidid: 0000-0001-8431-5277
  surname: Baik
  fullname: Baik, Jae Young
  organization: School of Arts and Sciences, University of Pennsylvania, PA, USA
– sequence: 7
  givenname: Li
  orcidid: 0000-0002-5443-0503
  surname: Shen
  fullname: Shen, Li
  email: Li.Shen@pennmedicine.upenn.edu
  organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33848962$$D View this record in MEDLINE/PubMed
BookMark eNqFkVuLFDEQhYOsuBf9BYIEfPFlxlx70oILw-INFnzR55Curt7N2JO0SXrEf29mZx10H_SpQuqcQ1V95-QkxICEPOdsyRlvXm-WW-y9WwomeP2ppXlEzrhs-MIoIU-Ob65PyXnOG8bYSin2hJxKaZRpG3FG7JrmkmYoc3IjxZA83GJPhzlA8THUv4DlR0zf3tB1oG6aRg9u36El0inVAaDQLjkfKMSb4IvfIZ0wDTFtXQB8Sh4Pbsz47L5ekK_v3325-ri4_vzh09X6egFay7JAZ1qUCI0zfT-wrmNCa8cEwsBXfQuqGUS3Qoeg65rGCd0ODfbdoBygAyMvyOUhd5q7ehbAUOpCdkp-69JPG523f3eCv7U3cWcNN0q3uga8ug9I8fuMuditz4Dj6ALGOVuhuVhJqYSq0pcPpJs4p3qrvaqRytQ8XlUv_pzoOMrv21eBPAggxZwTDkcJZ3ZP2G7sHWG7J2wPhKurfeACX-6I1LX8-B_v24MXK4mdx2QzeKyUep8Qiu2j_6f_F2SixT4
CitedBy_id crossref_primary_10_1093_bib_bbad073
crossref_primary_10_1093_cercor_bhaf002
crossref_primary_10_1002_hbm_25883
crossref_primary_10_1016_j_media_2022_102679
crossref_primary_10_3389_fnins_2023_1288882
crossref_primary_10_1016_j_media_2024_103120
crossref_primary_10_3389_fnins_2024_1411797
crossref_primary_10_1111_cns_70205
crossref_primary_10_1002_hbm_70166
crossref_primary_10_1016_j_ymeth_2023_07_007
crossref_primary_10_1093_cercor_bhac432
crossref_primary_10_1016_j_media_2021_102297
crossref_primary_10_3389_fnins_2024_1337976
Cites_doi 10.1002/hbm.20737
10.1371/journal.pbio.0060159
10.1109/TMI.2019.2918839
10.1523/JNEUROSCI.4611-09.2010
10.1371/journal.pone.0013701
10.1073/pnas.1608282113
10.3390/bs8040039
10.1523/JNEUROSCI.0357-05.2005
10.1093/scan/nsy002
10.1073/pnas.1912034117
10.1016/j.neuroimage.2012.12.062
10.1016/j.conb.2016.05.003
10.1016/j.compbiomed.2014.02.003
10.1093/biostatistics/kxm045
10.1002/hbm.20623
10.1038/s41467-018-04920-3
10.1002/mrm.10609
10.1016/j.neuroimage.2013.04.127
10.1093/cercor/bhl149
10.1016/j.neuroimage.2018.10.006
10.1523/JNEUROSCI.3259-08.2008
10.1371/journal.pone.0111048
10.1016/j.nicl.2014.07.003
10.1016/j.neuroimage.2015.05.011
10.1016/j.neuroimage.2013.05.041
10.1093/cercor/bhn059
10.1038/nmeth.1635
10.1038/nature18933
10.1016/j.neuroimage.2009.10.003
10.1371/journal.pcbi.1002707
10.1038/s41467-019-08944-1
10.1111/j.1469-8986.2007.00621.x
10.1093/cercor/bhj127
10.1016/j.neuroimage.2014.08.003
10.1007/s00429-018-1651-z
10.1016/j.neuroimage.2019.116370
10.1038/nn.4135
10.1038/nn.4179
10.1016/j.neuropsychologia.2005.11.019
10.1016/j.cogbrainres.2003.09.003
10.1038/nrn.2017.112
10.1093/bioinformatics/btw033
10.1523/JNEUROSCI.4184-08.2009
10.1038/nn758
10.1002/mrm.24204
10.1093/brain/121.6.1013
10.1073/pnas.1713532115
10.1016/j.neuroimage.2013.11.046
10.1038/nrn1201
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2021.102026
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 102026
ExternalDocumentID PMC8184595
33848962
10_1016_j_media_2021_102026
S1361841521000724
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM013463
– fundername: NIA NIH HHS
  grantid: U01 AG068057
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c553t-ea89e3ec6a8ddf0bb0255a02ecf17d9c46f2b7eaec50268a259f6edbf4aceac83
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663615600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:45:33 EDT 2025
Wed Oct 01 14:38:47 EDT 2025
Tue Oct 07 06:58:08 EDT 2025
Mon Jul 21 05:33:50 EDT 2025
Sat Nov 29 07:02:26 EST 2025
Tue Nov 18 22:37:56 EST 2025
Fri Feb 23 02:41:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structure-function coupling
Graph-constrained elastic net
Simplex regression
Functional network
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c553t-ea89e3ec6a8ddf0bb0255a02ecf17d9c46f2b7eaec50268a259f6edbf4aceac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Credit Author Statement
Author Contribution Statement
Li Shen: Conceptualization, Supervision, Methodology, Writing - Review & Editing; Mansu Kim: Conceptualization, Writing - Original Draft, Methodology, Formal analysis, Investigation; Jingxuan Bao: Formal analysis; Kefei Liu: Methodology, Validation; Bo-yong Park: Investigation; Jae Young Baik: Visualization; Hyunjin Park: Writing - Review & Editing.
ORCID 0000-0001-7127-3258
0000-0002-0785-4514
0000-0001-7096-337X
0000-0001-8431-5277
0000-0002-5443-0503
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S1361841521000724
PMID 33848962
PQID 2563485951
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184595
proquest_miscellaneous_2512733424
proquest_journals_2563485951
pubmed_primary_33848962
crossref_primary_10_1016_j_media_2021_102026
crossref_citationtrail_10_1016_j_media_2021_102026
elsevier_sciencedirect_doi_10_1016_j_media_2021_102026
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bib0006) 2003; 50
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0056) 2013; 80
Andersson, Xu, Yacoub, Auerbach, Moeller, Ugurbil (bib0001) 2012
Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bib0029) 2012; 68
Yarkoni, Poldrack, Nichols, Van Essen, Wager (bib0059) 2011; 8
van Wijk, Stam, Daffertshofer (bib0057) 2010; 5
Huang, Yan, Nie, Huang, Cai, Saykin, Shen (bib0027) 2013
Dryburgh, McKenna, Rekik (bib0012) 2019
Greene, Gao, Scheinost, Constable (bib0019) 2018; 9
He, Chen, Evans (bib0023) 2007; 17
Friedman, Hastie, Tibshirani (bib0015) 2008; 9
Wang, Wang, Zang, Yang, Tang, Gong, Chen, Zhu, He (bib0058) 2009; 30
Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet, Sochat, Nichols, Poldrack, Poline (bib0018) 2015; 9
Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (bib0010) 2014; 5
Mesulam (bib0036) 1998; 121
Ji, Spronk, Kulkarni, Repovš, Anticevic, Cole (bib0030) 2019; 185
Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib0037) 2014; 9
Du, Huang, Yan, Kim, Risacher, Inlow, Moore, Saykin, Shen (bib0013) 2016; 32
Grosenick, Klingenberg, Katovich, Knutson, Taylor (bib0021) 2013; 72
Park, Yang, Seo, Choi, Lee, Lee (bib0043) 2014; 47
Kim, Won, Youn, Park (bib0032) 2020; 39
Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib0053) 2001; 4
Baum, Cui, Roalf, Ciric, Betzel, Larsen, Cieslak, Cook, Xia, Moore (bib0004) 2020; 117
Huang, Nie, Huang (bib0028) 2015
Olesen, Nagy, Westerberg, Klingberg (bib0040) 2003; 18
Klingberg (bib0033) 2006; 44
Hsieh, Sustik, Dhillon, Ravikumar (bib0025) 2014; 15
Snyder, Bauer (bib0050) 2019; 4
Stam, Jones, Nolte, Breakspear, Scheltens (bib0051) 2007; 17
Poldrack, Mumford, Schonberg, Kalar, Barman, Yarkoni (bib0044) 2012; 8
Hsu, Rosenberg, Scheinost, Constable, Chun (bib0026) 2018; 13
Mechelli, Friston, Frackowiak, Price (bib0035) 2005; 25
Greicius, Supekar, Menon, Dougherty (bib0020) 2009; 19
Baddeley (bib0002) 2003; 4
Batista-Garc\’\ia-Ramó, Fernández-Verdecia (bib0003) 2018; 8
Boyd, Boyd, Vandenberghe (bib0007) 2004
Park, Friston (bib0042) 2013
Drakesmith, Caeyenberghs, Dutt, Lewis, David, Jones (bib0011) 2015; 118
Takeuchi, Sekiguchi, Taki, Yokoyama, Yomogida, Komuro, Yamanouchi, Suzuki, Kawashima (bib0052) 2010; 30
Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib0022) 2008; 6
Chiang, Barysheva, Shattuck, Lee, Madsen, Avedissian, Klunder, Toga, McMahon, De Zubicaray (bib0008) 2009; 29
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0049) 2014; 90
Beaty, Kenett, Christensen, Rosenberg, Benedek, Chen, Fink, Qiu, Kwapil, Kane (bib0005) 2018; 115
Hong, De Wael, Bethlehem, Lariviere, Paquola, Valk, Milham, Di Martino, Margulies, Smallwood (bib0024) 2019; 10
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0014) 2015; 18
Nostro, Müller, Varikuti, Pläschke, Hoffstaedter, Langner, Patil, Eickhoff (bib0039) 2018; 223
Choi, Shamosh, Cho, DeYoung, Lee, Lee, Kim, Cho, Kim, Gray (bib0009) 2008; 28
Mišić, Sporns (bib0038) 2016; 40
Robertson, Baron-Cohen (bib0045) 2017; 18
Jiang, Zuo, Ford, Qi, Zhi, Zhuo, Xu, Fu, Bustillo, Turner (bib0031) 2020; 207
Margulies, Ghosh, Goulas, Falkiewicz, Huntenburg, Langs, Bezgin, Eickhoff, Castellanos, Petrides (bib0034) 2016; 113
Park, Seo, Park (bib0041) 2016; 6
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0017) 2013; 80
Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib0046) 2016; 19
Rykhlevskaia, Gratton, Fabiani (bib0048) 2008; 45
Van Den Heuvel, Mandl, Kahn, Hulshoff Pol (bib0055) 2009; 30
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (bib0016) 2016; 536
Toussaint, Maiz, Coynel, Doyon, Messé, de Souza, Sarazin, Perlbarg, Habert, Benali (bib0054) 2014; 101
Rubinov, Sporns (bib0047) 2010; 52
Huang (10.1016/j.media.2021.102026_bib0028) 2015
Baum (10.1016/j.media.2021.102026_bib0004) 2020; 117
Glasser (10.1016/j.media.2021.102026_bib0016) 2016; 536
Choi (10.1016/j.media.2021.102026_bib0009) 2008; 28
Robertson (10.1016/j.media.2021.102026_bib0045) 2017; 18
Hsieh (10.1016/j.media.2021.102026_bib0025) 2014; 15
Damaraju (10.1016/j.media.2021.102026_bib0010) 2014; 5
Kim (10.1016/j.media.2021.102026_bib0032) 2020; 39
Van Essen (10.1016/j.media.2021.102026_bib0056) 2013; 80
Mesulam (10.1016/j.media.2021.102026_bib0036) 1998; 121
Miranda-Dominguez (10.1016/j.media.2021.102026_bib0037) 2014; 9
Thompson (10.1016/j.media.2021.102026_bib0053) 2001; 4
Nostro (10.1016/j.media.2021.102026_bib0039) 2018; 223
Olesen (10.1016/j.media.2021.102026_bib0040) 2003; 18
Park (10.1016/j.media.2021.102026_bib0043) 2014; 47
Poldrack (10.1016/j.media.2021.102026_bib0044) 2012; 8
Dryburgh (10.1016/j.media.2021.102026_bib0012) 2019
Van Den Heuvel (10.1016/j.media.2021.102026_bib0055) 2009; 30
Behrens (10.1016/j.media.2021.102026_bib0006) 2003; 50
Finn (10.1016/j.media.2021.102026_bib0014) 2015; 18
Grosenick (10.1016/j.media.2021.102026_bib0021) 2013; 72
Rykhlevskaia (10.1016/j.media.2021.102026_bib0048) 2008; 45
Hsu (10.1016/j.media.2021.102026_bib0026) 2018; 13
Margulies (10.1016/j.media.2021.102026_bib0034) 2016; 113
Rosenberg (10.1016/j.media.2021.102026_bib0046) 2016; 19
Klingberg (10.1016/j.media.2021.102026_bib0033) 2006; 44
Greene (10.1016/j.media.2021.102026_bib0019) 2018; 9
He (10.1016/j.media.2021.102026_bib0023) 2007; 17
van Wijk (10.1016/j.media.2021.102026_bib0057) 2010; 5
Friedman (10.1016/j.media.2021.102026_bib0015) 2008; 9
Yarkoni (10.1016/j.media.2021.102026_bib0059) 2011; 8
Jbabdi (10.1016/j.media.2021.102026_bib0029) 2012; 68
Takeuchi (10.1016/j.media.2021.102026_bib0052) 2010; 30
Wang (10.1016/j.media.2021.102026_bib0058) 2009; 30
Glasser (10.1016/j.media.2021.102026_bib0017) 2013; 80
Baddeley (10.1016/j.media.2021.102026_bib0002) 2003; 4
Park (10.1016/j.media.2021.102026_bib0041) 2016; 6
Batista-Garc\’\ia-Ramó (10.1016/j.media.2021.102026_bib0003) 2018; 8
Chiang (10.1016/j.media.2021.102026_bib0008) 2009; 29
Beaty (10.1016/j.media.2021.102026_bib0005) 2018; 115
Du (10.1016/j.media.2021.102026_bib0013) 2016; 32
Mišić (10.1016/j.media.2021.102026_bib0038) 2016; 40
Park (10.1016/j.media.2021.102026_bib0042) 2013
Ji (10.1016/j.media.2021.102026_bib0030) 2019; 185
Snyder (10.1016/j.media.2021.102026_bib0050) 2019; 4
Hagmann (10.1016/j.media.2021.102026_bib0022) 2008; 6
Greicius (10.1016/j.media.2021.102026_bib0020) 2009; 19
Boyd (10.1016/j.media.2021.102026_bib0007) 2004
Stam (10.1016/j.media.2021.102026_bib0051) 2007; 17
Gorgolewski (10.1016/j.media.2021.102026_bib0018) 2015; 9
Rubinov (10.1016/j.media.2021.102026_bib0047) 2010; 52
Andersson (10.1016/j.media.2021.102026_bib0001) 2012
Hong (10.1016/j.media.2021.102026_bib0024) 2019; 10
Huang (10.1016/j.media.2021.102026_bib0027) 2013
Jiang (10.1016/j.media.2021.102026_bib0031) 2020; 207
Toussaint (10.1016/j.media.2021.102026_bib0054) 2014; 101
Mechelli (10.1016/j.media.2021.102026_bib0035) 2005; 25
Drakesmith (10.1016/j.media.2021.102026_bib0011) 2015; 118
Salimi-Khorshidi (10.1016/j.media.2021.102026_bib0049) 2014; 90
References_xml – volume: 32
  start-page: 1544
  year: 2016
  end-page: 1551
  ident: bib0013
  article-title: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method
  publication-title: Bioinformatics
– volume: 72
  start-page: 304
  year: 2013
  end-page: 321
  ident: bib0021
  article-title: Interpretable whole-brain prediction analysis with GraphNet
  publication-title: Neuroimage
– volume: 5
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib0057
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS One
– volume: 45
  start-page: 173
  year: 2008
  end-page: 187
  ident: bib0048
  article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review
  publication-title: Psychophysiology
– volume: 18
  start-page: 671
  year: 2017
  ident: bib0045
  article-title: Sensory perception in autism
  publication-title: Nat. Rev. Neurosci.
– volume: 15
  start-page: 2911
  year: 2014
  end-page: 2947
  ident: bib0025
  article-title: QUIC: quadratic approximation for sparse inverse covariance estimation
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib0038
  article-title: From regions to connections and networks: new bridges between brain and behavior
  publication-title: Curr. Opin. Neurobiol.
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib0014
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 68
  start-page: 1846
  year: 2012
  end-page: 1855
  ident: bib0029
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0017
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0049
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
– volume: 29
  start-page: 2212
  year: 2009
  end-page: 2224
  ident: bib0008
  article-title: Genetics of brain fiber architecture and intellectual performance
  publication-title: J. Neurosci.
– volume: 4
  start-page: 829
  year: 2003
  end-page: 839
  ident: bib0002
  article-title: Working memory: looking back and looking forward
  publication-title: Nat. Rev. Neurosci.
– volume: 9
  start-page: 432
  year: 2008
  end-page: 441
  ident: bib0015
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
– volume: 44
  start-page: 2171
  year: 2006
  end-page: 2177
  ident: bib0033
  article-title: Development of a superior frontal–intraparietal network for visuo-spatial working memory
  publication-title: Neuropsychologia
– volume: 113
  start-page: 12574
  year: 2016
  end-page: 12579
  ident: bib0034
  article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization
  publication-title: Proc. Natl. Acad. Sci.
– volume: 4
  start-page: 1253
  year: 2001
  end-page: 1258
  ident: bib0053
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: 510
  year: 2019
  end-page: 521
  ident: bib0050
  article-title: Mapping structure-function relationships in the brain
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0016
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– start-page: 2426
  year: 2012
  ident: bib0001
  article-title: A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images
  publication-title: Proceedings of the 20th Annual Meeting of ISMRM
– volume: 8
  year: 2012
  ident: bib0044
  article-title: Discovering relations between mind, brain, and mental disorders using topic mapping
  publication-title: PLoS Comput. Biol.
– volume: 28
  start-page: 10323
  year: 2008
  end-page: 10329
  ident: bib0009
  article-title: Multiple bases of human intelligence revealed by cortical thickness and neural activation
  publication-title: J. Neurosci.
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib0056
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
– volume: 17
  start-page: 2407
  year: 2007
  end-page: 2419
  ident: bib0023
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. cortex
– volume: 6
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0041
  article-title: Functional brain networks associated with eating behaviors in obesity
  publication-title: Sci. Rep.
– start-page: 342
  year: 2013
  ident: bib0042
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
– volume: 9
  year: 2015
  ident: bib0018
  article-title: NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinform.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0024
  article-title: Atypical functional connectome hierarchy in autism
  publication-title: Nat. Commun.
– volume: 25
  start-page: 8303
  year: 2005
  end-page: 8310
  ident: bib0035
  article-title: Structural covariance in the human cortex
  publication-title: J. Neurosci.
– volume: 8
  start-page: 665
  year: 2011
  end-page: 670
  ident: bib0059
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
– year: 2015
  ident: bib0028
  article-title: A new simplex sparse learning model to measure data similarity for clustering
  publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence
– volume: 8
  start-page: 39
  year: 2018
  ident: bib0003
  article-title: What we know about the brain structure–function relationship
  publication-title: Behav. Sci. (Basel)
– volume: 207
  year: 2020
  ident: bib0031
  article-title: Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships
  publication-title: Neuroimage
– volume: 101
  start-page: 778
  year: 2014
  end-page: 786
  ident: bib0054
  article-title: Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements
  publication-title: Neuroimage
– volume: 50
  start-page: 1077
  year: 2003
  end-page: 1088
  ident: bib0006
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med.
– volume: 17
  start-page: 92
  year: 2007
  end-page: 99
  ident: bib0051
  article-title: Small-world networks and functional connectivity in Alzheimer's disease
  publication-title: Cereb. cortex
– start-page: 625
  year: 2013
  end-page: 632
  ident: bib0027
  article-title: A new sparse simplex model for brain anatomical and genetic network analysis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 9
  year: 2014
  ident: bib0037
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS One
– volume: 39
  start-page: 23
  year: 2020
  end-page: 34
  ident: bib0032
  article-title: Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson's Disease
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib0012
  article-title: Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder
  publication-title: Brain Imaging Behav.
– volume: 30
  start-page: 3297
  year: 2010
  end-page: 3303
  ident: bib0052
  article-title: Training of working memory impacts structural connectivity
  publication-title: J. Neurosci.
– volume: 185
  start-page: 35
  year: 2019
  end-page: 57
  ident: bib0030
  article-title: Mapping the human brain's cortical-subcortical functional network organization
  publication-title: Neuroimage
– year: 2004
  ident: bib0007
  article-title: Convex Optimization
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0019
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nat. Commun.
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: bib0010
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage Clin.
– volume: 19
  start-page: 165
  year: 2016
  end-page: 171
  ident: bib0046
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
– volume: 13
  start-page: 224
  year: 2018
  end-page: 232
  ident: bib0026
  article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 117
  start-page: 771
  year: 2020
  end-page: 778
  ident: bib0004
  article-title: Development of structure–function coupling in human brain networks during youth
  publication-title: Proc. Natl. Acad. Sci.
– volume: 19
  start-page: 72
  year: 2009
  end-page: 78
  ident: bib0020
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
– volume: 121
  start-page: 1013
  year: 1998
  end-page: 1052
  ident: bib0036
  article-title: From sensation to cognition
  publication-title: Brain a J. Neurol.
– volume: 115
  start-page: 1087
  year: 2018
  end-page: 1092
  ident: bib0005
  article-title: Robust prediction of individual creative ability from brain functional connectivity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 47
  start-page: 139
  year: 2014
  end-page: 146
  ident: bib0043
  article-title: Improved explanation of human intelligence using cortical features with second order moments and regression
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 48
  year: 2003
  end-page: 57
  ident: bib0040
  article-title: Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network
  publication-title: Cogn. Brain Res.
– volume: 223
  start-page: 2699
  year: 2018
  end-page: 2719
  ident: bib0039
  article-title: Predicting personality from network-based resting-state functional connectivity
  publication-title: Brain Struct. Funct.
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bib0047
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 30
  start-page: 1511
  year: 2009
  end-page: 1523
  ident: bib0058
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum. Brain Mapp.
– volume: 30
  start-page: 3127
  year: 2009
  end-page: 3141
  ident: bib0055
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum. Brain Mapp.
– volume: 118
  start-page: 313
  year: 2015
  end-page: 333
  ident: bib0011
  article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
  publication-title: Neuroimage
– volume: 6
  start-page: e159
  year: 2008
  ident: bib0022
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
– volume: 30
  start-page: 3127
  year: 2009
  ident: 10.1016/j.media.2021.102026_bib0055
  article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20737
– volume: 6
  start-page: e159
  year: 2008
  ident: 10.1016/j.media.2021.102026_bib0022
  article-title: Mapping the structural core of human cerebral cortex
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060159
– volume: 39
  start-page: 23
  year: 2020
  ident: 10.1016/j.media.2021.102026_bib0032
  article-title: Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson's Disease
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2918839
– volume: 30
  start-page: 3297
  year: 2010
  ident: 10.1016/j.media.2021.102026_bib0052
  article-title: Training of working memory impacts structural connectivity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4611-09.2010
– volume: 5
  start-page: 1
  year: 2010
  ident: 10.1016/j.media.2021.102026_bib0057
  article-title: Comparing brain networks of different size and connectivity density using graph theory
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013701
– volume: 113
  start-page: 12574
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0034
  article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1608282113
– volume: 8
  start-page: 39
  year: 2018
  ident: 10.1016/j.media.2021.102026_bib0003
  article-title: What we know about the brain structure–function relationship
  publication-title: Behav. Sci. (Basel)
  doi: 10.3390/bs8040039
– volume: 25
  start-page: 8303
  year: 2005
  ident: 10.1016/j.media.2021.102026_bib0035
  article-title: Structural covariance in the human cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0357-05.2005
– volume: 15
  start-page: 2911
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0025
  article-title: QUIC: quadratic approximation for sparse inverse covariance estimation
  publication-title: J. Mach. Learn. Res.
– volume: 13
  start-page: 224
  year: 2018
  ident: 10.1016/j.media.2021.102026_bib0026
  article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsy002
– volume: 117
  start-page: 771
  year: 2020
  ident: 10.1016/j.media.2021.102026_bib0004
  article-title: Development of structure–function coupling in human brain networks during youth
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1912034117
– volume: 72
  start-page: 304
  year: 2013
  ident: 10.1016/j.media.2021.102026_bib0021
  article-title: Interpretable whole-brain prediction analysis with GraphNet
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.12.062
– volume: 40
  start-page: 1
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0038
  article-title: From regions to connections and networks: new bridges between brain and behavior
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2016.05.003
– volume: 47
  start-page: 139
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0043
  article-title: Improved explanation of human intelligence using cortical features with second order moments and regression
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.02.003
– volume: 9
  start-page: 432
  year: 2008
  ident: 10.1016/j.media.2021.102026_bib0015
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– volume: 30
  start-page: 1511
  year: 2009
  ident: 10.1016/j.media.2021.102026_bib0058
  article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20623
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2021.102026_bib0019
  article-title: Task-induced brain state manipulation improves prediction of individual traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04920-3
– volume: 50
  start-page: 1077
  year: 2003
  ident: 10.1016/j.media.2021.102026_bib0006
  article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging
  publication-title: Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.10609
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.media.2021.102026_bib0017
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 625
  year: 2013
  ident: 10.1016/j.media.2021.102026_bib0027
  article-title: A new sparse simplex model for brain anatomical and genetic network analysis
– volume: 17
  start-page: 2407
  year: 2007
  ident: 10.1016/j.media.2021.102026_bib0023
  article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
  publication-title: Cereb. cortex
  doi: 10.1093/cercor/bhl149
– volume: 185
  start-page: 35
  year: 2019
  ident: 10.1016/j.media.2021.102026_bib0030
  article-title: Mapping the human brain's cortical-subcortical functional network organization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.006
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0041
  article-title: Functional brain networks associated with eating behaviors in obesity
  publication-title: Sci. Rep.
– volume: 28
  start-page: 10323
  year: 2008
  ident: 10.1016/j.media.2021.102026_bib0009
  article-title: Multiple bases of human intelligence revealed by cortical thickness and neural activation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3259-08.2008
– volume: 9
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0037
  article-title: Connectotyping: model based fingerprinting of the functional connectome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111048
– volume: 5
  start-page: 298
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0010
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2014.07.003
– volume: 118
  start-page: 313
  year: 2015
  ident: 10.1016/j.media.2021.102026_bib0011
  article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.011
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.media.2021.102026_bib0056
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 19
  start-page: 72
  year: 2009
  ident: 10.1016/j.media.2021.102026_bib0020
  article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn059
– year: 2015
  ident: 10.1016/j.media.2021.102026_bib0028
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– volume: 8
  start-page: 665
  year: 2011
  ident: 10.1016/j.media.2021.102026_bib0059
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1635
– volume: 536
  start-page: 171
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0016
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 52
  start-page: 1059
  year: 2010
  ident: 10.1016/j.media.2021.102026_bib0047
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 8
  year: 2012
  ident: 10.1016/j.media.2021.102026_bib0044
  article-title: Discovering relations between mind, brain, and mental disorders using topic mapping
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002707
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.media.2021.102026_bib0024
  article-title: Atypical functional connectome hierarchy in autism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08944-1
– volume: 45
  start-page: 173
  year: 2008
  ident: 10.1016/j.media.2021.102026_bib0048
  article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00621.x
– volume: 17
  start-page: 92
  year: 2007
  ident: 10.1016/j.media.2021.102026_bib0051
  article-title: Small-world networks and functional connectivity in Alzheimer's disease
  publication-title: Cereb. cortex
  doi: 10.1093/cercor/bhj127
– volume: 101
  start-page: 778
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0054
  article-title: Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.003
– year: 2004
  ident: 10.1016/j.media.2021.102026_bib0007
– volume: 223
  start-page: 2699
  year: 2018
  ident: 10.1016/j.media.2021.102026_bib0039
  article-title: Predicting personality from network-based resting-state functional connectivity
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1651-z
– volume: 207
  year: 2020
  ident: 10.1016/j.media.2021.102026_bib0031
  article-title: Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116370
– volume: 18
  start-page: 1664
  year: 2015
  ident: 10.1016/j.media.2021.102026_bib0014
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 4
  start-page: 510
  year: 2019
  ident: 10.1016/j.media.2021.102026_bib0050
  article-title: Mapping structure-function relationships in the brain
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– volume: 19
  start-page: 165
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0046
  article-title: A neuromarker of sustained attention from whole-brain functional connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 44
  start-page: 2171
  year: 2006
  ident: 10.1016/j.media.2021.102026_bib0033
  article-title: Development of a superior frontal–intraparietal network for visuo-spatial working memory
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2005.11.019
– volume: 18
  start-page: 48
  year: 2003
  ident: 10.1016/j.media.2021.102026_bib0040
  article-title: Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network
  publication-title: Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2003.09.003
– volume: 18
  start-page: 671
  year: 2017
  ident: 10.1016/j.media.2021.102026_bib0045
  article-title: Sensory perception in autism
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.112
– volume: 9
  issue: 8
  year: 2015
  ident: 10.1016/j.media.2021.102026_bib0018
  article-title: NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinform.
– start-page: 2426
  year: 2012
  ident: 10.1016/j.media.2021.102026_bib0001
  article-title: A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images
– start-page: 1
  year: 2019
  ident: 10.1016/j.media.2021.102026_bib0012
  article-title: Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder
  publication-title: Brain Imaging Behav.
– start-page: 342
  issue: 80-
  year: 2013
  ident: 10.1016/j.media.2021.102026_bib0042
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
– volume: 32
  start-page: 1544
  year: 2016
  ident: 10.1016/j.media.2021.102026_bib0013
  article-title: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw033
– volume: 29
  start-page: 2212
  year: 2009
  ident: 10.1016/j.media.2021.102026_bib0008
  article-title: Genetics of brain fiber architecture and intellectual performance
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4184-08.2009
– volume: 4
  start-page: 1253
  year: 2001
  ident: 10.1016/j.media.2021.102026_bib0053
  article-title: Genetic influences on brain structure
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn758
– volume: 68
  start-page: 1846
  year: 2012
  ident: 10.1016/j.media.2021.102026_bib0029
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 121
  start-page: 1013
  year: 1998
  ident: 10.1016/j.media.2021.102026_bib0036
  article-title: From sensation to cognition
  publication-title: Brain a J. Neurol.
  doi: 10.1093/brain/121.6.1013
– volume: 115
  start-page: 1087
  year: 2018
  ident: 10.1016/j.media.2021.102026_bib0005
  article-title: Robust prediction of individual creative ability from brain functional connectivity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1713532115
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.media.2021.102026_bib0049
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 4
  start-page: 829
  year: 2003
  ident: 10.1016/j.media.2021.102026_bib0002
  article-title: Working memory: looking back and looking forward
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1201
SSID ssj0007440
Score 2.4572585
Snippet •A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An...
The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102026
SubjectTerms Brain
Cognitive ability
Enrichment
Functional anatomy
Functional network
Graph-constrained elastic net
Magnetic resonance imaging
Nervous system
Neuroimaging
Performance enhancement
Performance prediction
Regression models
Simplex regression
Structure-function coupling
Structure-function relationships
Title A structural enriched functional network: An application to predict brain cognitive performance
URI https://dx.doi.org/10.1016/j.media.2021.102026
https://www.ncbi.nlm.nih.gov/pubmed/33848962
https://www.proquest.com/docview/2563485951
https://www.proquest.com/docview/2512733424
https://pubmed.ncbi.nlm.nih.gov/PMC8184595
Volume 71
WOSCitedRecordID wos000663615600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DSE4IBgfK4zJSNxKqsRxYodbQEOAxMRhSL1ZiWNrmUZSbW3V_fc8x85HV1GxA5eoShzHzfvlfb9nhN6DkSwpIdorYll4NAqUlxk3BydS8pipRPt5s9kEOzvjs1nyczRatbUwqytWVXy9Tub_ldRwDohtSmfvQe5uUjgBv4HocASyw_GfCJ9ObE_Ypp8GDDK5nsXEyC_n9qts5rdzCQ4i2EYPnV-byM1ikputIyZ9ctG8LzAY6rNtnKf8bXJ_MtfhpA_sW4criMNl7zK1sR4QmevlICGoXNoyIa3KPqxl87g_1d5t7SSsc1CQoEtmbXlqaGhPbdVmy3TtviuOa4KS49u6-S2Gbn0Ll9OmjmZqpp_2ozfbZ98Ra12yYZvHdimaSYSZRNhJ9tABYVEC3PAg_XY6-97JcNM20Vbs2aW3_aqazMCttfxNp9m2We6m3g50mfOn6IkzQnBqwfMMjVR1iB4PWlMeooc_XNLFcyRS3CMKt4jCPaKwQ9RHnFZ4gCe8qLHDE27whDs84QGeXqBfX07PP3_13L4cnoyicOGpjCcqVDLOeFHAt5wbuzTziZI6YEUiaaxJzlSmZAQvh2dgYetYFbmmmQQ5z8OXaL-qK3WEcMEKSRRjmvkFlUzzEBRk38-ZDmKtsmCMSPtmhXRN683eKVdiB1XH6EN309z2bNk9PG5JJpzaadVJASDcfeNxS2DhGMCNABMipKZpIKz9XXcZeLYJxGWVqpdmTABWQ0gJHaNXFg_dQsOQU57EZIzYBlK6AaYf_OaVqrxo-sKD7k3hwa_v9_ffoEf9V3uM9gFQ6i16IFeL8ub6BO2xGT9xn8cflEjbTA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structural+enriched+functional+network%3A+An+application+to+predict+brain+cognitive+performance&rft.jtitle=Medical+image+analysis&rft.au=Kim%2C+Mansu&rft.au=Bao%2C+Jingxuan&rft.au=Liu%2C+Kefei&rft.au=Park%2C+Bo-yong&rft.date=2021-07-01&rft.issn=1361-8415&rft.volume=71&rft.spage=102026&rft_id=info:doi/10.1016%2Fj.media.2021.102026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2021_102026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon