A structural enriched functional network: An application to predict brain cognitive performance
•A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional bra...
Gespeichert in:
| Veröffentlicht in: | Medical image analysis Jg. 71; S. 102026 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.07.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional brain networks.•Extensive experiments demonstrate the promise of the proposed structural enriched functional brain networks on predicting interesting behavioral outcomes.
The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.
[Display omitted] |
|---|---|
| AbstractList | The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models. •A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An efficient optimization algorithm using the projected gradient descent method is proposed for the construction of structural enriched functional brain networks.•Extensive experiments demonstrate the promise of the proposed structural enriched functional brain networks on predicting interesting behavioral outcomes. The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models. [Display omitted] The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models.The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the backbone of the functional network. The integration of the functional network with structural information can help us better understand functional communication in the brain. This paper proposed a method to accurately estimate the brain functional network enriched by the structural network from diffusion magnetic resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic Net to construct the functional networks enriched by the structural network. Then, we compared the constructed network characteristics of this approach with several state-of-the-art competing functional network models. Furthermore, we evaluated whether the structural enriched functional network model improves the performance for predicting the cognitive-behavioral outcomes. The experiments have been performed on 218 participants from the Human Connectome Project database. The results demonstrated that our network model improves network consistency and its predictive performance compared with several state-of-the-art competing functional network models. |
| ArticleNumber | 102026 |
| Author | Liu, Kefei Kim, Mansu Park, Hyunjin Bao, Jingxuan Shen, Li Baik, Jae Young Park, Bo-yong |
| AuthorAffiliation | 2 School of Arts and Sciences, University of Pennsylvania, PA, USA 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA 4 School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea 5 Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea 3 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada |
| AuthorAffiliation_xml | – name: 5 Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea – name: 4 School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea – name: 1 Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA – name: 3 McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada – name: 2 School of Arts and Sciences, University of Pennsylvania, PA, USA |
| Author_xml | – sequence: 1 givenname: Mansu orcidid: 0000-0002-0785-4514 surname: Kim fullname: Kim, Mansu organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA – sequence: 2 givenname: Jingxuan orcidid: 0000-0001-7127-3258 surname: Bao fullname: Bao, Jingxuan organization: School of Arts and Sciences, University of Pennsylvania, PA, USA – sequence: 3 givenname: Kefei surname: Liu fullname: Liu, Kefei organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA – sequence: 4 givenname: Bo-yong orcidid: 0000-0001-7096-337X surname: Park fullname: Park, Bo-yong organization: McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada – sequence: 5 givenname: Hyunjin surname: Park fullname: Park, Hyunjin organization: School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea – sequence: 6 givenname: Jae Young orcidid: 0000-0001-8431-5277 surname: Baik fullname: Baik, Jae Young organization: School of Arts and Sciences, University of Pennsylvania, PA, USA – sequence: 7 givenname: Li orcidid: 0000-0002-5443-0503 surname: Shen fullname: Shen, Li email: Li.Shen@pennmedicine.upenn.edu organization: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, PA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33848962$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkVuLFDEQhYOsuBf9BYIEfPFlxlx70oILw-INFnzR55Curt7N2JO0SXrEf29mZx10H_SpQuqcQ1V95-QkxICEPOdsyRlvXm-WW-y9WwomeP2ppXlEzrhs-MIoIU-Ob65PyXnOG8bYSin2hJxKaZRpG3FG7JrmkmYoc3IjxZA83GJPhzlA8THUv4DlR0zf3tB1oG6aRg9u36El0inVAaDQLjkfKMSb4IvfIZ0wDTFtXQB8Sh4Pbsz47L5ekK_v3325-ri4_vzh09X6egFay7JAZ1qUCI0zfT-wrmNCa8cEwsBXfQuqGUS3Qoeg65rGCd0ODfbdoBygAyMvyOUhd5q7ehbAUOpCdkp-69JPG523f3eCv7U3cWcNN0q3uga8ug9I8fuMuditz4Dj6ALGOVuhuVhJqYSq0pcPpJs4p3qrvaqRytQ8XlUv_pzoOMrv21eBPAggxZwTDkcJZ3ZP2G7sHWG7J2wPhKurfeACX-6I1LX8-B_v24MXK4mdx2QzeKyUep8Qiu2j_6f_F2SixT4 |
| CitedBy_id | crossref_primary_10_1093_bib_bbad073 crossref_primary_10_1093_cercor_bhaf002 crossref_primary_10_1002_hbm_25883 crossref_primary_10_1016_j_media_2022_102679 crossref_primary_10_3389_fnins_2023_1288882 crossref_primary_10_1016_j_media_2024_103120 crossref_primary_10_3389_fnins_2024_1411797 crossref_primary_10_1111_cns_70205 crossref_primary_10_1002_hbm_70166 crossref_primary_10_1016_j_ymeth_2023_07_007 crossref_primary_10_1093_cercor_bhac432 crossref_primary_10_1016_j_media_2021_102297 crossref_primary_10_3389_fnins_2024_1337976 |
| Cites_doi | 10.1002/hbm.20737 10.1371/journal.pbio.0060159 10.1109/TMI.2019.2918839 10.1523/JNEUROSCI.4611-09.2010 10.1371/journal.pone.0013701 10.1073/pnas.1608282113 10.3390/bs8040039 10.1523/JNEUROSCI.0357-05.2005 10.1093/scan/nsy002 10.1073/pnas.1912034117 10.1016/j.neuroimage.2012.12.062 10.1016/j.conb.2016.05.003 10.1016/j.compbiomed.2014.02.003 10.1093/biostatistics/kxm045 10.1002/hbm.20623 10.1038/s41467-018-04920-3 10.1002/mrm.10609 10.1016/j.neuroimage.2013.04.127 10.1093/cercor/bhl149 10.1016/j.neuroimage.2018.10.006 10.1523/JNEUROSCI.3259-08.2008 10.1371/journal.pone.0111048 10.1016/j.nicl.2014.07.003 10.1016/j.neuroimage.2015.05.011 10.1016/j.neuroimage.2013.05.041 10.1093/cercor/bhn059 10.1038/nmeth.1635 10.1038/nature18933 10.1016/j.neuroimage.2009.10.003 10.1371/journal.pcbi.1002707 10.1038/s41467-019-08944-1 10.1111/j.1469-8986.2007.00621.x 10.1093/cercor/bhj127 10.1016/j.neuroimage.2014.08.003 10.1007/s00429-018-1651-z 10.1016/j.neuroimage.2019.116370 10.1038/nn.4135 10.1038/nn.4179 10.1016/j.neuropsychologia.2005.11.019 10.1016/j.cogbrainres.2003.09.003 10.1038/nrn.2017.112 10.1093/bioinformatics/btw033 10.1523/JNEUROSCI.4184-08.2009 10.1038/nn758 10.1002/mrm.24204 10.1093/brain/121.6.1013 10.1073/pnas.1713532115 10.1016/j.neuroimage.2013.11.046 10.1038/nrn1201 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jul 2021 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jul 2021 |
| DBID | AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
| DOI | 10.1016/j.media.2021.102026 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| EndPage | 102026 |
| ExternalDocumentID | PMC8184595 33848962 10_1016_j_media_2021_102026 S1361841521000724 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM013463 – fundername: NIA NIH HHS grantid: U01 AG068057 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
| ID | FETCH-LOGICAL-c553t-ea89e3ec6a8ddf0bb0255a02ecf17d9c46f2b7eaec50268a259f6edbf4aceac83 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663615600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Tue Sep 30 16:45:33 EDT 2025 Wed Oct 01 14:38:47 EDT 2025 Tue Oct 07 06:58:08 EDT 2025 Mon Jul 21 05:33:50 EDT 2025 Sat Nov 29 07:02:26 EST 2025 Tue Nov 18 22:37:56 EST 2025 Fri Feb 23 02:41:27 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structure-function coupling Graph-constrained elastic net Simplex regression Functional network |
| Language | English |
| License | Copyright © 2021 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c553t-ea89e3ec6a8ddf0bb0255a02ecf17d9c46f2b7eaec50268a259f6edbf4aceac83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Credit Author Statement Author Contribution Statement Li Shen: Conceptualization, Supervision, Methodology, Writing - Review & Editing; Mansu Kim: Conceptualization, Writing - Original Draft, Methodology, Formal analysis, Investigation; Jingxuan Bao: Formal analysis; Kefei Liu: Methodology, Validation; Bo-yong Park: Investigation; Jae Young Baik: Visualization; Hyunjin Park: Writing - Review & Editing. |
| ORCID | 0000-0001-7127-3258 0000-0002-0785-4514 0000-0001-7096-337X 0000-0001-8431-5277 0000-0002-5443-0503 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S1361841521000724 |
| PMID | 33848962 |
| PQID | 2563485951 |
| PQPubID | 2045428 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184595 proquest_miscellaneous_2512733424 proquest_journals_2563485951 pubmed_primary_33848962 crossref_primary_10_1016_j_media_2021_102026 crossref_citationtrail_10_1016_j_media_2021_102026 elsevier_sciencedirect_doi_10_1016_j_media_2021_102026 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Behrens, Woolrich, Jenkinson, Johansen-Berg, Nunes, Clare, Matthews, Brady, Smith (bib0006) 2003; 50 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil, Consortium (bib0056) 2013; 80 Andersson, Xu, Yacoub, Auerbach, Moeller, Ugurbil (bib0001) 2012 Jbabdi, Sotiropoulos, Savio, Graña, Behrens (bib0029) 2012; 68 Yarkoni, Poldrack, Nichols, Van Essen, Wager (bib0059) 2011; 8 van Wijk, Stam, Daffertshofer (bib0057) 2010; 5 Huang, Yan, Nie, Huang, Cai, Saykin, Shen (bib0027) 2013 Dryburgh, McKenna, Rekik (bib0012) 2019 Greene, Gao, Scheinost, Constable (bib0019) 2018; 9 He, Chen, Evans (bib0023) 2007; 17 Friedman, Hastie, Tibshirani (bib0015) 2008; 9 Wang, Wang, Zang, Yang, Tang, Gong, Chen, Zhu, He (bib0058) 2009; 30 Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet, Sochat, Nichols, Poldrack, Poline (bib0018) 2015; 9 Damaraju, Allen, Belger, Ford, McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda (bib0010) 2014; 5 Mesulam (bib0036) 1998; 121 Ji, Spronk, Kulkarni, Repovš, Anticevic, Cole (bib0030) 2019; 185 Miranda-Dominguez, Mills, Carpenter, Grant, Kroenke, Nigg, Fair (bib0037) 2014; 9 Du, Huang, Yan, Kim, Risacher, Inlow, Moore, Saykin, Shen (bib0013) 2016; 32 Grosenick, Klingenberg, Katovich, Knutson, Taylor (bib0021) 2013; 72 Park, Yang, Seo, Choi, Lee, Lee (bib0043) 2014; 47 Kim, Won, Youn, Park (bib0032) 2020; 39 Thompson, Cannon, Narr, Van Erp, Poutanen, Huttunen, Lönnqvist, Standertskjöld-Nordenstam, Kaprio, Khaledy (bib0053) 2001; 4 Baum, Cui, Roalf, Ciric, Betzel, Larsen, Cieslak, Cook, Xia, Moore (bib0004) 2020; 117 Huang, Nie, Huang (bib0028) 2015 Olesen, Nagy, Westerberg, Klingberg (bib0040) 2003; 18 Klingberg (bib0033) 2006; 44 Hsieh, Sustik, Dhillon, Ravikumar (bib0025) 2014; 15 Snyder, Bauer (bib0050) 2019; 4 Stam, Jones, Nolte, Breakspear, Scheltens (bib0051) 2007; 17 Poldrack, Mumford, Schonberg, Kalar, Barman, Yarkoni (bib0044) 2012; 8 Hsu, Rosenberg, Scheinost, Constable, Chun (bib0026) 2018; 13 Mechelli, Friston, Frackowiak, Price (bib0035) 2005; 25 Greicius, Supekar, Menon, Dougherty (bib0020) 2009; 19 Baddeley (bib0002) 2003; 4 Batista-Garc\’\ia-Ramó, Fernández-Verdecia (bib0003) 2018; 8 Boyd, Boyd, Vandenberghe (bib0007) 2004 Park, Friston (bib0042) 2013 Drakesmith, Caeyenberghs, Dutt, Lewis, David, Jones (bib0011) 2015; 118 Takeuchi, Sekiguchi, Taki, Yokoyama, Yomogida, Komuro, Yamanouchi, Suzuki, Kawashima (bib0052) 2010; 30 Hagmann, Cammoun, Gigandet, Meuli, Honey, Wedeen, Sporns (bib0022) 2008; 6 Chiang, Barysheva, Shattuck, Lee, Madsen, Avedissian, Klunder, Toga, McMahon, De Zubicaray (bib0008) 2009; 29 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0049) 2014; 90 Beaty, Kenett, Christensen, Rosenberg, Benedek, Chen, Fink, Qiu, Kwapil, Kane (bib0005) 2018; 115 Hong, De Wael, Bethlehem, Lariviere, Paquola, Valk, Milham, Di Martino, Margulies, Smallwood (bib0024) 2019; 10 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib0014) 2015; 18 Nostro, Müller, Varikuti, Pläschke, Hoffstaedter, Langner, Patil, Eickhoff (bib0039) 2018; 223 Choi, Shamosh, Cho, DeYoung, Lee, Lee, Kim, Cho, Kim, Gray (bib0009) 2008; 28 Mišić, Sporns (bib0038) 2016; 40 Robertson, Baron-Cohen (bib0045) 2017; 18 Jiang, Zuo, Ford, Qi, Zhi, Zhuo, Xu, Fu, Bustillo, Turner (bib0031) 2020; 207 Margulies, Ghosh, Goulas, Falkiewicz, Huntenburg, Langs, Bezgin, Eickhoff, Castellanos, Petrides (bib0034) 2016; 113 Park, Seo, Park (bib0041) 2016; 6 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib0017) 2013; 80 Rosenberg, Finn, Scheinost, Papademetris, Shen, Constable, Chun (bib0046) 2016; 19 Rykhlevskaia, Gratton, Fabiani (bib0048) 2008; 45 Van Den Heuvel, Mandl, Kahn, Hulshoff Pol (bib0055) 2009; 30 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Van Essen (bib0016) 2016; 536 Toussaint, Maiz, Coynel, Doyon, Messé, de Souza, Sarazin, Perlbarg, Habert, Benali (bib0054) 2014; 101 Rubinov, Sporns (bib0047) 2010; 52 Huang (10.1016/j.media.2021.102026_bib0028) 2015 Baum (10.1016/j.media.2021.102026_bib0004) 2020; 117 Glasser (10.1016/j.media.2021.102026_bib0016) 2016; 536 Choi (10.1016/j.media.2021.102026_bib0009) 2008; 28 Robertson (10.1016/j.media.2021.102026_bib0045) 2017; 18 Hsieh (10.1016/j.media.2021.102026_bib0025) 2014; 15 Damaraju (10.1016/j.media.2021.102026_bib0010) 2014; 5 Kim (10.1016/j.media.2021.102026_bib0032) 2020; 39 Van Essen (10.1016/j.media.2021.102026_bib0056) 2013; 80 Mesulam (10.1016/j.media.2021.102026_bib0036) 1998; 121 Miranda-Dominguez (10.1016/j.media.2021.102026_bib0037) 2014; 9 Thompson (10.1016/j.media.2021.102026_bib0053) 2001; 4 Nostro (10.1016/j.media.2021.102026_bib0039) 2018; 223 Olesen (10.1016/j.media.2021.102026_bib0040) 2003; 18 Park (10.1016/j.media.2021.102026_bib0043) 2014; 47 Poldrack (10.1016/j.media.2021.102026_bib0044) 2012; 8 Dryburgh (10.1016/j.media.2021.102026_bib0012) 2019 Van Den Heuvel (10.1016/j.media.2021.102026_bib0055) 2009; 30 Behrens (10.1016/j.media.2021.102026_bib0006) 2003; 50 Finn (10.1016/j.media.2021.102026_bib0014) 2015; 18 Grosenick (10.1016/j.media.2021.102026_bib0021) 2013; 72 Rykhlevskaia (10.1016/j.media.2021.102026_bib0048) 2008; 45 Hsu (10.1016/j.media.2021.102026_bib0026) 2018; 13 Margulies (10.1016/j.media.2021.102026_bib0034) 2016; 113 Rosenberg (10.1016/j.media.2021.102026_bib0046) 2016; 19 Klingberg (10.1016/j.media.2021.102026_bib0033) 2006; 44 Greene (10.1016/j.media.2021.102026_bib0019) 2018; 9 He (10.1016/j.media.2021.102026_bib0023) 2007; 17 van Wijk (10.1016/j.media.2021.102026_bib0057) 2010; 5 Friedman (10.1016/j.media.2021.102026_bib0015) 2008; 9 Yarkoni (10.1016/j.media.2021.102026_bib0059) 2011; 8 Jbabdi (10.1016/j.media.2021.102026_bib0029) 2012; 68 Takeuchi (10.1016/j.media.2021.102026_bib0052) 2010; 30 Wang (10.1016/j.media.2021.102026_bib0058) 2009; 30 Glasser (10.1016/j.media.2021.102026_bib0017) 2013; 80 Baddeley (10.1016/j.media.2021.102026_bib0002) 2003; 4 Park (10.1016/j.media.2021.102026_bib0041) 2016; 6 Batista-Garc\’\ia-Ramó (10.1016/j.media.2021.102026_bib0003) 2018; 8 Chiang (10.1016/j.media.2021.102026_bib0008) 2009; 29 Beaty (10.1016/j.media.2021.102026_bib0005) 2018; 115 Du (10.1016/j.media.2021.102026_bib0013) 2016; 32 Mišić (10.1016/j.media.2021.102026_bib0038) 2016; 40 Park (10.1016/j.media.2021.102026_bib0042) 2013 Ji (10.1016/j.media.2021.102026_bib0030) 2019; 185 Snyder (10.1016/j.media.2021.102026_bib0050) 2019; 4 Hagmann (10.1016/j.media.2021.102026_bib0022) 2008; 6 Greicius (10.1016/j.media.2021.102026_bib0020) 2009; 19 Boyd (10.1016/j.media.2021.102026_bib0007) 2004 Stam (10.1016/j.media.2021.102026_bib0051) 2007; 17 Gorgolewski (10.1016/j.media.2021.102026_bib0018) 2015; 9 Rubinov (10.1016/j.media.2021.102026_bib0047) 2010; 52 Andersson (10.1016/j.media.2021.102026_bib0001) 2012 Hong (10.1016/j.media.2021.102026_bib0024) 2019; 10 Huang (10.1016/j.media.2021.102026_bib0027) 2013 Jiang (10.1016/j.media.2021.102026_bib0031) 2020; 207 Toussaint (10.1016/j.media.2021.102026_bib0054) 2014; 101 Mechelli (10.1016/j.media.2021.102026_bib0035) 2005; 25 Drakesmith (10.1016/j.media.2021.102026_bib0011) 2015; 118 Salimi-Khorshidi (10.1016/j.media.2021.102026_bib0049) 2014; 90 |
| References_xml | – volume: 32 start-page: 1544 year: 2016 end-page: 1551 ident: bib0013 article-title: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method publication-title: Bioinformatics – volume: 72 start-page: 304 year: 2013 end-page: 321 ident: bib0021 article-title: Interpretable whole-brain prediction analysis with GraphNet publication-title: Neuroimage – volume: 5 start-page: 1 year: 2010 end-page: 13 ident: bib0057 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One – volume: 45 start-page: 173 year: 2008 end-page: 187 ident: bib0048 article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review publication-title: Psychophysiology – volume: 18 start-page: 671 year: 2017 ident: bib0045 article-title: Sensory perception in autism publication-title: Nat. Rev. Neurosci. – volume: 15 start-page: 2911 year: 2014 end-page: 2947 ident: bib0025 article-title: QUIC: quadratic approximation for sparse inverse covariance estimation publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 1 year: 2016 end-page: 7 ident: bib0038 article-title: From regions to connections and networks: new bridges between brain and behavior publication-title: Curr. Opin. Neurobiol. – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib0014 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 68 start-page: 1846 year: 2012 end-page: 1855 ident: bib0029 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0017 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0049 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage – volume: 29 start-page: 2212 year: 2009 end-page: 2224 ident: bib0008 article-title: Genetics of brain fiber architecture and intellectual performance publication-title: J. Neurosci. – volume: 4 start-page: 829 year: 2003 end-page: 839 ident: bib0002 article-title: Working memory: looking back and looking forward publication-title: Nat. Rev. Neurosci. – volume: 9 start-page: 432 year: 2008 end-page: 441 ident: bib0015 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 44 start-page: 2171 year: 2006 end-page: 2177 ident: bib0033 article-title: Development of a superior frontal–intraparietal network for visuo-spatial working memory publication-title: Neuropsychologia – volume: 113 start-page: 12574 year: 2016 end-page: 12579 ident: bib0034 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. – volume: 4 start-page: 1253 year: 2001 end-page: 1258 ident: bib0053 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. – volume: 4 start-page: 510 year: 2019 end-page: 521 ident: bib0050 article-title: Mapping structure-function relationships in the brain publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib0016 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – start-page: 2426 year: 2012 ident: bib0001 article-title: A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images publication-title: Proceedings of the 20th Annual Meeting of ISMRM – volume: 8 year: 2012 ident: bib0044 article-title: Discovering relations between mind, brain, and mental disorders using topic mapping publication-title: PLoS Comput. Biol. – volume: 28 start-page: 10323 year: 2008 end-page: 10329 ident: bib0009 article-title: Multiple bases of human intelligence revealed by cortical thickness and neural activation publication-title: J. Neurosci. – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib0056 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage – volume: 17 start-page: 2407 year: 2007 end-page: 2419 ident: bib0023 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. cortex – volume: 6 start-page: 1 year: 2016 end-page: 8 ident: bib0041 article-title: Functional brain networks associated with eating behaviors in obesity publication-title: Sci. Rep. – start-page: 342 year: 2013 ident: bib0042 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science – volume: 9 year: 2015 ident: bib0018 article-title: NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinform. – volume: 10 start-page: 1 year: 2019 end-page: 13 ident: bib0024 article-title: Atypical functional connectome hierarchy in autism publication-title: Nat. Commun. – volume: 25 start-page: 8303 year: 2005 end-page: 8310 ident: bib0035 article-title: Structural covariance in the human cortex publication-title: J. Neurosci. – volume: 8 start-page: 665 year: 2011 end-page: 670 ident: bib0059 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nat. Methods – year: 2015 ident: bib0028 article-title: A new simplex sparse learning model to measure data similarity for clustering publication-title: Twenty-Fourth International Joint Conference on Artificial Intelligence – volume: 8 start-page: 39 year: 2018 ident: bib0003 article-title: What we know about the brain structure–function relationship publication-title: Behav. Sci. (Basel) – volume: 207 year: 2020 ident: bib0031 article-title: Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships publication-title: Neuroimage – volume: 101 start-page: 778 year: 2014 end-page: 786 ident: bib0054 article-title: Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements publication-title: Neuroimage – volume: 50 start-page: 1077 year: 2003 end-page: 1088 ident: bib0006 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med. – volume: 17 start-page: 92 year: 2007 end-page: 99 ident: bib0051 article-title: Small-world networks and functional connectivity in Alzheimer's disease publication-title: Cereb. cortex – start-page: 625 year: 2013 end-page: 632 ident: bib0027 article-title: A new sparse simplex model for brain anatomical and genetic network analysis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 year: 2014 ident: bib0037 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS One – volume: 39 start-page: 23 year: 2020 end-page: 34 ident: bib0032 article-title: Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson's Disease publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2019 end-page: 10 ident: bib0012 article-title: Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder publication-title: Brain Imaging Behav. – volume: 30 start-page: 3297 year: 2010 end-page: 3303 ident: bib0052 article-title: Training of working memory impacts structural connectivity publication-title: J. Neurosci. – volume: 185 start-page: 35 year: 2019 end-page: 57 ident: bib0030 article-title: Mapping the human brain's cortical-subcortical functional network organization publication-title: Neuroimage – year: 2004 ident: bib0007 article-title: Convex Optimization – volume: 9 start-page: 1 year: 2018 end-page: 13 ident: bib0019 article-title: Task-induced brain state manipulation improves prediction of individual traits publication-title: Nat. Commun. – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: bib0010 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage Clin. – volume: 19 start-page: 165 year: 2016 end-page: 171 ident: bib0046 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. – volume: 13 start-page: 224 year: 2018 end-page: 232 ident: bib0026 article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals publication-title: Soc. Cogn. Affect. Neurosci. – volume: 117 start-page: 771 year: 2020 end-page: 778 ident: bib0004 article-title: Development of structure–function coupling in human brain networks during youth publication-title: Proc. Natl. Acad. Sci. – volume: 19 start-page: 72 year: 2009 end-page: 78 ident: bib0020 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex – volume: 121 start-page: 1013 year: 1998 end-page: 1052 ident: bib0036 article-title: From sensation to cognition publication-title: Brain a J. Neurol. – volume: 115 start-page: 1087 year: 2018 end-page: 1092 ident: bib0005 article-title: Robust prediction of individual creative ability from brain functional connectivity publication-title: Proc. Natl. Acad. Sci. – volume: 47 start-page: 139 year: 2014 end-page: 146 ident: bib0043 article-title: Improved explanation of human intelligence using cortical features with second order moments and regression publication-title: Comput. Biol. Med. – volume: 18 start-page: 48 year: 2003 end-page: 57 ident: bib0040 article-title: Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network publication-title: Cogn. Brain Res. – volume: 223 start-page: 2699 year: 2018 end-page: 2719 ident: bib0039 article-title: Predicting personality from network-based resting-state functional connectivity publication-title: Brain Struct. Funct. – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: bib0047 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage – volume: 30 start-page: 1511 year: 2009 end-page: 1523 ident: bib0058 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum. Brain Mapp. – volume: 30 start-page: 3127 year: 2009 end-page: 3141 ident: bib0055 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum. Brain Mapp. – volume: 118 start-page: 313 year: 2015 end-page: 333 ident: bib0011 article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data publication-title: Neuroimage – volume: 6 start-page: e159 year: 2008 ident: bib0022 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. – volume: 30 start-page: 3127 year: 2009 ident: 10.1016/j.media.2021.102026_bib0055 article-title: Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20737 – volume: 6 start-page: e159 year: 2008 ident: 10.1016/j.media.2021.102026_bib0022 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 39 start-page: 23 year: 2020 ident: 10.1016/j.media.2021.102026_bib0032 article-title: Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson's Disease publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2918839 – volume: 30 start-page: 3297 year: 2010 ident: 10.1016/j.media.2021.102026_bib0052 article-title: Training of working memory impacts structural connectivity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4611-09.2010 – volume: 5 start-page: 1 year: 2010 ident: 10.1016/j.media.2021.102026_bib0057 article-title: Comparing brain networks of different size and connectivity density using graph theory publication-title: PLoS One doi: 10.1371/journal.pone.0013701 – volume: 113 start-page: 12574 year: 2016 ident: 10.1016/j.media.2021.102026_bib0034 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1608282113 – volume: 8 start-page: 39 year: 2018 ident: 10.1016/j.media.2021.102026_bib0003 article-title: What we know about the brain structure–function relationship publication-title: Behav. Sci. (Basel) doi: 10.3390/bs8040039 – volume: 25 start-page: 8303 year: 2005 ident: 10.1016/j.media.2021.102026_bib0035 article-title: Structural covariance in the human cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0357-05.2005 – volume: 15 start-page: 2911 year: 2014 ident: 10.1016/j.media.2021.102026_bib0025 article-title: QUIC: quadratic approximation for sparse inverse covariance estimation publication-title: J. Mach. Learn. Res. – volume: 13 start-page: 224 year: 2018 ident: 10.1016/j.media.2021.102026_bib0026 article-title: Resting-state functional connectivity predicts neuroticism and extraversion in novel individuals publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsy002 – volume: 117 start-page: 771 year: 2020 ident: 10.1016/j.media.2021.102026_bib0004 article-title: Development of structure–function coupling in human brain networks during youth publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1912034117 – volume: 72 start-page: 304 year: 2013 ident: 10.1016/j.media.2021.102026_bib0021 article-title: Interpretable whole-brain prediction analysis with GraphNet publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.12.062 – volume: 40 start-page: 1 year: 2016 ident: 10.1016/j.media.2021.102026_bib0038 article-title: From regions to connections and networks: new bridges between brain and behavior publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2016.05.003 – volume: 47 start-page: 139 year: 2014 ident: 10.1016/j.media.2021.102026_bib0043 article-title: Improved explanation of human intelligence using cortical features with second order moments and regression publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.02.003 – volume: 9 start-page: 432 year: 2008 ident: 10.1016/j.media.2021.102026_bib0015 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – volume: 30 start-page: 1511 year: 2009 ident: 10.1016/j.media.2021.102026_bib0058 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20623 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.media.2021.102026_bib0019 article-title: Task-induced brain state manipulation improves prediction of individual traits publication-title: Nat. Commun. doi: 10.1038/s41467-018-04920-3 – volume: 50 start-page: 1077 year: 2003 ident: 10.1016/j.media.2021.102026_bib0006 article-title: Characterization and propagation of uncertainty in diffusion-weighted MR imaging publication-title: Magn. Reson. Med. An Off. J. Int. Soc. Magn. Reson. Med. doi: 10.1002/mrm.10609 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.media.2021.102026_bib0017 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – start-page: 625 year: 2013 ident: 10.1016/j.media.2021.102026_bib0027 article-title: A new sparse simplex model for brain anatomical and genetic network analysis – volume: 17 start-page: 2407 year: 2007 ident: 10.1016/j.media.2021.102026_bib0023 article-title: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI publication-title: Cereb. cortex doi: 10.1093/cercor/bhl149 – volume: 185 start-page: 35 year: 2019 ident: 10.1016/j.media.2021.102026_bib0030 article-title: Mapping the human brain's cortical-subcortical functional network organization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.006 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.media.2021.102026_bib0041 article-title: Functional brain networks associated with eating behaviors in obesity publication-title: Sci. Rep. – volume: 28 start-page: 10323 year: 2008 ident: 10.1016/j.media.2021.102026_bib0009 article-title: Multiple bases of human intelligence revealed by cortical thickness and neural activation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3259-08.2008 – volume: 9 year: 2014 ident: 10.1016/j.media.2021.102026_bib0037 article-title: Connectotyping: model based fingerprinting of the functional connectome publication-title: PLoS One doi: 10.1371/journal.pone.0111048 – volume: 5 start-page: 298 year: 2014 ident: 10.1016/j.media.2021.102026_bib0010 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2014.07.003 – volume: 118 start-page: 313 year: 2015 ident: 10.1016/j.media.2021.102026_bib0011 article-title: Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.011 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.media.2021.102026_bib0056 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 19 start-page: 72 year: 2009 ident: 10.1016/j.media.2021.102026_bib0020 article-title: Resting-state functional connectivity reflects structural connectivity in the default mode network publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn059 – year: 2015 ident: 10.1016/j.media.2021.102026_bib0028 article-title: A new simplex sparse learning model to measure data similarity for clustering – volume: 8 start-page: 665 year: 2011 ident: 10.1016/j.media.2021.102026_bib0059 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nat. Methods doi: 10.1038/nmeth.1635 – volume: 536 start-page: 171 year: 2016 ident: 10.1016/j.media.2021.102026_bib0016 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – volume: 52 start-page: 1059 year: 2010 ident: 10.1016/j.media.2021.102026_bib0047 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 8 year: 2012 ident: 10.1016/j.media.2021.102026_bib0044 article-title: Discovering relations between mind, brain, and mental disorders using topic mapping publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002707 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.media.2021.102026_bib0024 article-title: Atypical functional connectome hierarchy in autism publication-title: Nat. Commun. doi: 10.1038/s41467-019-08944-1 – volume: 45 start-page: 173 year: 2008 ident: 10.1016/j.media.2021.102026_bib0048 article-title: Combining structural and functional neuroimaging data for studying brain connectivity: a review publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00621.x – volume: 17 start-page: 92 year: 2007 ident: 10.1016/j.media.2021.102026_bib0051 article-title: Small-world networks and functional connectivity in Alzheimer's disease publication-title: Cereb. cortex doi: 10.1093/cercor/bhj127 – volume: 101 start-page: 778 year: 2014 ident: 10.1016/j.media.2021.102026_bib0054 article-title: Characteristics of the default mode functional connectivity in normal ageing and Alzheimer's disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.003 – year: 2004 ident: 10.1016/j.media.2021.102026_bib0007 – volume: 223 start-page: 2699 year: 2018 ident: 10.1016/j.media.2021.102026_bib0039 article-title: Predicting personality from network-based resting-state functional connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1651-z – volume: 207 year: 2020 ident: 10.1016/j.media.2021.102026_bib0031 article-title: Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116370 – volume: 18 start-page: 1664 year: 2015 ident: 10.1016/j.media.2021.102026_bib0014 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 4 start-page: 510 year: 2019 ident: 10.1016/j.media.2021.102026_bib0050 article-title: Mapping structure-function relationships in the brain publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – volume: 19 start-page: 165 year: 2016 ident: 10.1016/j.media.2021.102026_bib0046 article-title: A neuromarker of sustained attention from whole-brain functional connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 44 start-page: 2171 year: 2006 ident: 10.1016/j.media.2021.102026_bib0033 article-title: Development of a superior frontal–intraparietal network for visuo-spatial working memory publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2005.11.019 – volume: 18 start-page: 48 year: 2003 ident: 10.1016/j.media.2021.102026_bib0040 article-title: Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network publication-title: Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2003.09.003 – volume: 18 start-page: 671 year: 2017 ident: 10.1016/j.media.2021.102026_bib0045 article-title: Sensory perception in autism publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.112 – volume: 9 issue: 8 year: 2015 ident: 10.1016/j.media.2021.102026_bib0018 article-title: NeuroVault. org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinform. – start-page: 2426 year: 2012 ident: 10.1016/j.media.2021.102026_bib0001 article-title: A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images – start-page: 1 year: 2019 ident: 10.1016/j.media.2021.102026_bib0012 article-title: Predicting full-scale and verbal intelligence scores from functional Connectomic data in individuals with autism Spectrum disorder publication-title: Brain Imaging Behav. – start-page: 342 issue: 80- year: 2013 ident: 10.1016/j.media.2021.102026_bib0042 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science – volume: 32 start-page: 1544 year: 2016 ident: 10.1016/j.media.2021.102026_bib0013 article-title: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw033 – volume: 29 start-page: 2212 year: 2009 ident: 10.1016/j.media.2021.102026_bib0008 article-title: Genetics of brain fiber architecture and intellectual performance publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4184-08.2009 – volume: 4 start-page: 1253 year: 2001 ident: 10.1016/j.media.2021.102026_bib0053 article-title: Genetic influences on brain structure publication-title: Nat. Neurosci. doi: 10.1038/nn758 – volume: 68 start-page: 1846 year: 2012 ident: 10.1016/j.media.2021.102026_bib0029 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24204 – volume: 121 start-page: 1013 year: 1998 ident: 10.1016/j.media.2021.102026_bib0036 article-title: From sensation to cognition publication-title: Brain a J. Neurol. doi: 10.1093/brain/121.6.1013 – volume: 115 start-page: 1087 year: 2018 ident: 10.1016/j.media.2021.102026_bib0005 article-title: Robust prediction of individual creative ability from brain functional connectivity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1713532115 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.media.2021.102026_bib0049 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 4 start-page: 829 year: 2003 ident: 10.1016/j.media.2021.102026_bib0002 article-title: Working memory: looking back and looking forward publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1201 |
| SSID | ssj0007440 |
| Score | 2.4572585 |
| Snippet | •A new method incorporating GraphNet and simplex constraints is proposed to estimate interpretable and structural enriched functional brain networks.•An... The structure-function coupling in brain networks has emerged as an important research topic in modern neuroscience. The structural network could provide the... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102026 |
| SubjectTerms | Brain Cognitive ability Enrichment Functional anatomy Functional network Graph-constrained elastic net Magnetic resonance imaging Nervous system Neuroimaging Performance enhancement Performance prediction Regression models Simplex regression Structure-function coupling Structure-function relationships |
| Title | A structural enriched functional network: An application to predict brain cognitive performance |
| URI | https://dx.doi.org/10.1016/j.media.2021.102026 https://www.ncbi.nlm.nih.gov/pubmed/33848962 https://www.proquest.com/docview/2563485951 https://www.proquest.com/docview/2512733424 https://pubmed.ncbi.nlm.nih.gov/PMC8184595 |
| Volume | 71 |
| WOSCitedRecordID | wos000663615600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DSE4IBgfK4zJSNxKqsRxYodbQEOAxMRhSL1ZiWNrmUZSbW3V_fc8x85HV1GxA5eoShzHzfvlfb9nhN6DkSwpIdorYll4NAqUlxk3BydS8pipRPt5s9kEOzvjs1nyczRatbUwqytWVXy9Tub_ldRwDohtSmfvQe5uUjgBv4HocASyw_GfCJ9ObE_Ypp8GDDK5nsXEyC_n9qts5rdzCQ4i2EYPnV-byM1ikputIyZ9ctG8LzAY6rNtnKf8bXJ_MtfhpA_sW4criMNl7zK1sR4QmevlICGoXNoyIa3KPqxl87g_1d5t7SSsc1CQoEtmbXlqaGhPbdVmy3TtviuOa4KS49u6-S2Gbn0Ll9OmjmZqpp_2ozfbZ98Ra12yYZvHdimaSYSZRNhJ9tABYVEC3PAg_XY6-97JcNM20Vbs2aW3_aqazMCttfxNp9m2We6m3g50mfOn6IkzQnBqwfMMjVR1iB4PWlMeooc_XNLFcyRS3CMKt4jCPaKwQ9RHnFZ4gCe8qLHDE27whDs84QGeXqBfX07PP3_13L4cnoyicOGpjCcqVDLOeFHAt5wbuzTziZI6YEUiaaxJzlSmZAQvh2dgYetYFbmmmQQ5z8OXaL-qK3WEcMEKSRRjmvkFlUzzEBRk38-ZDmKtsmCMSPtmhXRN683eKVdiB1XH6EN309z2bNk9PG5JJpzaadVJASDcfeNxS2DhGMCNABMipKZpIKz9XXcZeLYJxGWVqpdmTABWQ0gJHaNXFg_dQsOQU57EZIzYBlK6AaYf_OaVqrxo-sKD7k3hwa_v9_ffoEf9V3uM9gFQ6i16IFeL8ub6BO2xGT9xn8cflEjbTA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+structural+enriched+functional+network%3A+An+application+to+predict+brain+cognitive+performance&rft.jtitle=Medical+image+analysis&rft.au=Kim%2C+Mansu&rft.au=Bao%2C+Jingxuan&rft.au=Liu%2C+Kefei&rft.au=Park%2C+Bo-yong&rft.date=2021-07-01&rft.issn=1361-8415&rft.volume=71&rft.spage=102026&rft_id=info:doi/10.1016%2Fj.media.2021.102026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2021_102026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |