A quantum-quantum Metropolis algorithm
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method t...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 3; p. 754 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
17.01.2012
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. |
|---|---|
| AbstractList | The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. |
| Author | Aspuru-Guzik, Alán Yung, Man-Hong |
| Author_xml | – sequence: 1 givenname: Man-Hong surname: Yung fullname: Yung, Man-Hong organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA – sequence: 2 givenname: Alán surname: Aspuru-Guzik fullname: Aspuru-Guzik, Alán |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22215584$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj71PwzAUxC1URD9gZkOZYErxey9u7LGqCq1UxAJz5NgOBCVxGicD_z2RCBI33N3w00m3ZLPGN46xW-Br4Ck9to0OaxiVCglcXbDF6BBvEsVn__qcLUP44pwrIfkVmyMiCCGTBbvfRudBN_1Qx1NGL67vfOurMkS6-vBd2X_W1-yy0FVwN1Ou2PvT_m13iE-vz8fd9hQbIaiPDRqSaBLpEDSQ2VhURLlNwZKVUktnCoQctOMJ5lbltsBCKY0JKYtC44o9_O62nT8PLvRZXQbjqko3zg8hU8iRgASN5N1EDnntbNZ2Za277-zvGv4A0LNR5Q |
| CitedBy_id | crossref_primary_10_1103_PhysRevApplied_20_044059 crossref_primary_10_1103_PhysRevResearch_7_013231 crossref_primary_10_1088_2058_9565_ac11a7 crossref_primary_10_1007_s00220_025_05235_3 crossref_primary_10_1021_prechem_5c00025 crossref_primary_10_1103_66pk_1byg crossref_primary_10_1103_PhysRevA_110_052434 crossref_primary_10_1103_PRXQuantum_4_010305 crossref_primary_10_3390_e26090722 crossref_primary_10_1039_C9SC01313J crossref_primary_10_1038_ncomms1860 crossref_primary_10_1007_s00220_023_04797_4 crossref_primary_10_1088_2058_9565_ac4f2f crossref_primary_10_1145_3588579 crossref_primary_10_1088_1361_6382_acafcf crossref_primary_10_1007_s42484_020_00033_7 crossref_primary_10_1103_PhysRevResearch_6_013106 crossref_primary_10_1103_PhysRevD_105_034515 crossref_primary_10_1038_nphoton_2013_354 crossref_primary_10_1021_acs_chemrev_4c00508 crossref_primary_10_1038_s41598_023_45540_2 crossref_primary_10_1038_s41598_017_12280_z crossref_primary_10_1103_PhysRevX_11_011047 crossref_primary_10_1103_PhysRevA_104_032422 crossref_primary_10_1103_PRXQuantum_4_040201 crossref_primary_10_1088_2058_9565_ac546a crossref_primary_10_1007_s42484_023_00119_y crossref_primary_10_1088_2058_9565_ac1ca6 crossref_primary_10_1016_j_cosrev_2018_11_002 crossref_primary_10_1088_2058_9565_ac47f0 crossref_primary_10_1103_vdxg_mmkl crossref_primary_10_1088_2058_9565_aab822 crossref_primary_10_1038_s41534_022_00555_x crossref_primary_10_1109_TPAMI_2023_3272029 crossref_primary_10_3847_2041_8213_ada6ae crossref_primary_10_1007_s00220_016_2641_8 crossref_primary_10_1103_PhysRevX_4_031002 crossref_primary_10_1038_s41598_023_28317_5 crossref_primary_10_1103_PhysRevLett_134_190404 crossref_primary_10_1088_1361_6633_aab406 crossref_primary_10_1103_PRXQuantum_2_010328 crossref_primary_10_1103_PhysRevResearch_5_033059 crossref_primary_10_1007_s11242_022_01855_8 crossref_primary_10_1103_PhysRevLett_127_100504 crossref_primary_10_1103_PRXQuantum_5_020324 crossref_primary_10_1007_s11128_024_04412_y crossref_primary_10_4018_IJEHMC_315730 crossref_primary_10_1038_nature23474 crossref_primary_10_1038_srep03589 crossref_primary_10_1088_1751_8121_ad00f0 crossref_primary_10_22331_q_2025_08_29_1843 crossref_primary_10_1088_1751_8113_49_29_295301 crossref_primary_10_1103_PhysRevApplied_16_054035 crossref_primary_10_1088_2058_9565_ada08e crossref_primary_10_1038_ncomms5213 crossref_primary_10_1088_1751_8121_acf174 crossref_primary_10_1007_JHEP08_2022_209 crossref_primary_10_1103_PRXQuantum_2_010317 crossref_primary_10_1103_PhysRevResearch_6_033147 crossref_primary_10_1098_rspa_2015_0301 crossref_primary_10_1002_adts_201800182 crossref_primary_10_1063_5_0173591 crossref_primary_10_1016_j_future_2024_04_060 crossref_primary_10_1145_2493252_2493256 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1111758109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22215584 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c553t-c2c382c48e21a13c6d2933bd71d3d88a8ecf21b1ae042bd9bdf2f99a2439d25a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299154000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 11:20:40 EDT 2025 Thu Apr 03 07:01:51 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c553t-c2c382c48e21a13c6d2933bd71d3d88a8ecf21b1ae042bd9bdf2f99a2439d25a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/3/754.full.pdf |
| PMID | 22215584 |
| PQID | 920231353 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_920231353 pubmed_primary_22215584 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-01-17 |
| PublicationDateYYYYMMDD | 2012-01-17 |
| PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 21231028 - Phys Rev Lett. 2010 Oct 22;105(17):170405 16151006 - Science. 2005 Sep 9;309(5741):1704-7 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504 21166541 - Annu Rev Phys Chem. 2011;62:185-207 19392338 - Phys Rev Lett. 2009 Apr 3;102(13):130503 18766235 - Phys Chem Chem Phys. 2008 Sep 21;10(35):5388-93 22355607 - Sci Rep. 2011;1:88 19033207 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18681-6 11030947 - Phys Rev Lett. 2000 Oct 23;85(17):3547-51 21090853 - J Chem Phys. 2010 Nov 21;133(19):194106 15904269 - Phys Rev Lett. 2005 May 6;94(17):170201 11780110 - Nature. 2002 Jan 3;415(6867):39-44 19797653 - Science. 2009 Oct 2;326(5949):108-11 8688088 - Science. 1996 Aug 23;273(5278):1073-8 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502 21368829 - Nature. 2011 Mar 3;471(7336):87-90 |
| References_xml | – reference: 19033207 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18681-6 – reference: 21368829 - Nature. 2011 Mar 3;471(7336):87-90 – reference: 21166541 - Annu Rev Phys Chem. 2011;62:185-207 – reference: 19392338 - Phys Rev Lett. 2009 Apr 3;102(13):130503 – reference: 21231028 - Phys Rev Lett. 2010 Oct 22;105(17):170405 – reference: 21090853 - J Chem Phys. 2010 Nov 21;133(19):194106 – reference: 8688088 - Science. 1996 Aug 23;273(5278):1073-8 – reference: 11030947 - Phys Rev Lett. 2000 Oct 23;85(17):3547-51 – reference: 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504 – reference: 15904269 - Phys Rev Lett. 2005 May 6;94(17):170201 – reference: 18766235 - Phys Chem Chem Phys. 2008 Sep 21;10(35):5388-93 – reference: 11780110 - Nature. 2002 Jan 3;415(6867):39-44 – reference: 22355607 - Sci Rep. 2011;1:88 – reference: 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502 – reference: 16151006 - Science. 2005 Sep 9;309(5741):1704-7 – reference: 19797653 - Science. 2009 Oct 2;326(5949):108-11 |
| SSID | ssj0009580 |
| Score | 2.500455 |
| Snippet | The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 754 |
| SubjectTerms | Algorithms Computer Simulation Markov Chains Quantum Theory |
| Title | A quantum-quantum Metropolis algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22215584 https://www.proquest.com/docview/920231353 |
| Volume | 109 |
| WOSCitedRecordID | wos000299154000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL0CysAClGd5KQNCMFiN7TSxJ1QhKgZadQDULfIrUImmKUn5fuzERSyIgSUeoljWje_1kX18DsCljBJnyy1RpjOFIkMNkjpUSMoEaxoLyeqt7JfHZDRikwkfe25O6WmVq5pYF2o9V26PvMudz7czabgtFsiZRrnDVe-gsQ4t-4o7RlcyYT80d1kjRsAxiiMerpR9EtotclHW1cLC5ZqM-Bu8rJeZwc4_B7gL2x5fBv1mQrRhzeR70PYZXAbXXmb6Zh-u-sFiaeO6nCHfBkNT1aYJ0zIQ76-29-ptdgDPg_unuwfkXROQ6vVohRRRlBEVMUOwwFTF2q7oVGoXe82YYEZlBEssjM1XqbnUGck4F8RCE016ghzCRj7PzTEE3F2vjLLQiJhGnIVSU8WcIp_tn7AYdyBYhSK1s9IdNYjczJdl-h2MDhw14UyLRj0jtYDEYhgWnfz98SlsWXziqCMIJ2fQymxGmnPYVJ_VtPy4qP-2fY7Gwy9doLNS |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum-quantum+Metropolis+algorithm&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yung%2C+Man-Hong&rft.au=Aspuru-Guzik%2C+Al%C3%A1n&rft.date=2012-01-17&rft.eissn=1091-6490&rft.volume=109&rft.issue=3&rft.spage=754&rft_id=info:doi/10.1073%2Fpnas.1111758109&rft_id=info%3Apmid%2F22215584&rft_id=info%3Apmid%2F22215584&rft.externalDocID=22215584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |