A quantum-quantum Metropolis algorithm

The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method t...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 3; p. 754
Main Authors: Yung, Man-Hong, Aspuru-Guzik, Alán
Format: Journal Article
Language:English
Published: United States 17.01.2012
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.
AbstractList The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature.
Author Aspuru-Guzik, Alán
Yung, Man-Hong
Author_xml – sequence: 1
  givenname: Man-Hong
  surname: Yung
  fullname: Yung, Man-Hong
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
– sequence: 2
  givenname: Alán
  surname: Aspuru-Guzik
  fullname: Aspuru-Guzik, Alán
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22215584$$D View this record in MEDLINE/PubMed
BookMark eNpNj71PwzAUxC1URD9gZkOZYErxey9u7LGqCq1UxAJz5NgOBCVxGicD_z2RCBI33N3w00m3ZLPGN46xW-Br4Ck9to0OaxiVCglcXbDF6BBvEsVn__qcLUP44pwrIfkVmyMiCCGTBbvfRudBN_1Qx1NGL67vfOurMkS6-vBd2X_W1-yy0FVwN1Ou2PvT_m13iE-vz8fd9hQbIaiPDRqSaBLpEDSQ2VhURLlNwZKVUktnCoQctOMJ5lbltsBCKY0JKYtC44o9_O62nT8PLvRZXQbjqko3zg8hU8iRgASN5N1EDnntbNZ2Za277-zvGv4A0LNR5Q
CitedBy_id crossref_primary_10_1103_PhysRevApplied_20_044059
crossref_primary_10_1103_PhysRevResearch_7_013231
crossref_primary_10_1088_2058_9565_ac11a7
crossref_primary_10_1007_s00220_025_05235_3
crossref_primary_10_1021_prechem_5c00025
crossref_primary_10_1103_66pk_1byg
crossref_primary_10_1103_PhysRevA_110_052434
crossref_primary_10_1103_PRXQuantum_4_010305
crossref_primary_10_3390_e26090722
crossref_primary_10_1039_C9SC01313J
crossref_primary_10_1038_ncomms1860
crossref_primary_10_1007_s00220_023_04797_4
crossref_primary_10_1088_2058_9565_ac4f2f
crossref_primary_10_1145_3588579
crossref_primary_10_1088_1361_6382_acafcf
crossref_primary_10_1007_s42484_020_00033_7
crossref_primary_10_1103_PhysRevResearch_6_013106
crossref_primary_10_1103_PhysRevD_105_034515
crossref_primary_10_1038_nphoton_2013_354
crossref_primary_10_1021_acs_chemrev_4c00508
crossref_primary_10_1038_s41598_023_45540_2
crossref_primary_10_1038_s41598_017_12280_z
crossref_primary_10_1103_PhysRevX_11_011047
crossref_primary_10_1103_PhysRevA_104_032422
crossref_primary_10_1103_PRXQuantum_4_040201
crossref_primary_10_1088_2058_9565_ac546a
crossref_primary_10_1007_s42484_023_00119_y
crossref_primary_10_1088_2058_9565_ac1ca6
crossref_primary_10_1016_j_cosrev_2018_11_002
crossref_primary_10_1088_2058_9565_ac47f0
crossref_primary_10_1103_vdxg_mmkl
crossref_primary_10_1088_2058_9565_aab822
crossref_primary_10_1038_s41534_022_00555_x
crossref_primary_10_1109_TPAMI_2023_3272029
crossref_primary_10_3847_2041_8213_ada6ae
crossref_primary_10_1007_s00220_016_2641_8
crossref_primary_10_1103_PhysRevX_4_031002
crossref_primary_10_1038_s41598_023_28317_5
crossref_primary_10_1103_PhysRevLett_134_190404
crossref_primary_10_1088_1361_6633_aab406
crossref_primary_10_1103_PRXQuantum_2_010328
crossref_primary_10_1103_PhysRevResearch_5_033059
crossref_primary_10_1007_s11242_022_01855_8
crossref_primary_10_1103_PhysRevLett_127_100504
crossref_primary_10_1103_PRXQuantum_5_020324
crossref_primary_10_1007_s11128_024_04412_y
crossref_primary_10_4018_IJEHMC_315730
crossref_primary_10_1038_nature23474
crossref_primary_10_1038_srep03589
crossref_primary_10_1088_1751_8121_ad00f0
crossref_primary_10_22331_q_2025_08_29_1843
crossref_primary_10_1088_1751_8113_49_29_295301
crossref_primary_10_1103_PhysRevApplied_16_054035
crossref_primary_10_1088_2058_9565_ada08e
crossref_primary_10_1038_ncomms5213
crossref_primary_10_1088_1751_8121_acf174
crossref_primary_10_1007_JHEP08_2022_209
crossref_primary_10_1103_PRXQuantum_2_010317
crossref_primary_10_1103_PhysRevResearch_6_033147
crossref_primary_10_1098_rspa_2015_0301
crossref_primary_10_1002_adts_201800182
crossref_primary_10_1063_5_0173591
crossref_primary_10_1016_j_future_2024_04_060
crossref_primary_10_1145_2493252_2493256
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1111758109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22215584
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c553t-c2c382c48e21a13c6d2933bd71d3d88a8ecf21b1ae042bd9bdf2f99a2439d25a2
IEDL.DBID 7X8
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299154000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 11:20:40 EDT 2025
Thu Apr 03 07:01:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-c2c382c48e21a13c6d2933bd71d3d88a8ecf21b1ae042bd9bdf2f99a2439d25a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/3/754.full.pdf
PMID 22215584
PQID 920231353
PQPubID 23479
ParticipantIDs proquest_miscellaneous_920231353
pubmed_primary_22215584
PublicationCentury 2000
PublicationDate 2012-01-17
PublicationDateYYYYMMDD 2012-01-17
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 21231028 - Phys Rev Lett. 2010 Oct 22;105(17):170405
16151006 - Science. 2005 Sep 9;309(5741):1704-7
18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504
21166541 - Annu Rev Phys Chem. 2011;62:185-207
19392338 - Phys Rev Lett. 2009 Apr 3;102(13):130503
18766235 - Phys Chem Chem Phys. 2008 Sep 21;10(35):5388-93
22355607 - Sci Rep. 2011;1:88
19033207 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18681-6
11030947 - Phys Rev Lett. 2000 Oct 23;85(17):3547-51
21090853 - J Chem Phys. 2010 Nov 21;133(19):194106
15904269 - Phys Rev Lett. 2005 May 6;94(17):170201
11780110 - Nature. 2002 Jan 3;415(6867):39-44
19797653 - Science. 2009 Oct 2;326(5949):108-11
8688088 - Science. 1996 Aug 23;273(5278):1073-8
20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502
21368829 - Nature. 2011 Mar 3;471(7336):87-90
References_xml – reference: 19033207 - Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18681-6
– reference: 21368829 - Nature. 2011 Mar 3;471(7336):87-90
– reference: 21166541 - Annu Rev Phys Chem. 2011;62:185-207
– reference: 19392338 - Phys Rev Lett. 2009 Apr 3;102(13):130503
– reference: 21231028 - Phys Rev Lett. 2010 Oct 22;105(17):170405
– reference: 21090853 - J Chem Phys. 2010 Nov 21;133(19):194106
– reference: 8688088 - Science. 1996 Aug 23;273(5278):1073-8
– reference: 11030947 - Phys Rev Lett. 2000 Oct 23;85(17):3547-51
– reference: 18851429 - Phys Rev Lett. 2008 Sep 26;101(13):130504
– reference: 15904269 - Phys Rev Lett. 2005 May 6;94(17):170201
– reference: 18766235 - Phys Chem Chem Phys. 2008 Sep 21;10(35):5388-93
– reference: 11780110 - Nature. 2002 Jan 3;415(6867):39-44
– reference: 22355607 - Sci Rep. 2011;1:88
– reference: 20366078 - Phys Rev Lett. 2009 Nov 27;103(22):220502
– reference: 16151006 - Science. 2005 Sep 9;309(5741):1704-7
– reference: 19797653 - Science. 2009 Oct 2;326(5949):108-11
SSID ssj0009580
Score 2.500455
Snippet The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 754
SubjectTerms Algorithms
Computer Simulation
Markov Chains
Quantum Theory
Title A quantum-quantum Metropolis algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/22215584
https://www.proquest.com/docview/920231353
Volume 109
WOSCitedRecordID wos000299154000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL0CysAClGd5KQNCMFiN7TSxJ1QhKgZadQDULfIrUImmKUn5fuzERSyIgSUeoljWje_1kX18DsCljBJnyy1RpjOFIkMNkjpUSMoEaxoLyeqt7JfHZDRikwkfe25O6WmVq5pYF2o9V26PvMudz7czabgtFsiZRrnDVe-gsQ4t-4o7RlcyYT80d1kjRsAxiiMerpR9EtotclHW1cLC5ZqM-Bu8rJeZwc4_B7gL2x5fBv1mQrRhzeR70PYZXAbXXmb6Zh-u-sFiaeO6nCHfBkNT1aYJ0zIQ76-29-ptdgDPg_unuwfkXROQ6vVohRRRlBEVMUOwwFTF2q7oVGoXe82YYEZlBEssjM1XqbnUGck4F8RCE016ghzCRj7PzTEE3F2vjLLQiJhGnIVSU8WcIp_tn7AYdyBYhSK1s9IdNYjczJdl-h2MDhw14UyLRj0jtYDEYhgWnfz98SlsWXziqCMIJ2fQymxGmnPYVJ_VtPy4qP-2fY7Gwy9doLNS
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+quantum-quantum+Metropolis+algorithm&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yung%2C+Man-Hong&rft.au=Aspuru-Guzik%2C+Al%C3%A1n&rft.date=2012-01-17&rft.eissn=1091-6490&rft.volume=109&rft.issue=3&rft.spage=754&rft_id=info:doi/10.1073%2Fpnas.1111758109&rft_id=info%3Apmid%2F22215584&rft_id=info%3Apmid%2F22215584&rft.externalDocID=22215584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon