Characterizing cell subsets using marker enrichment modeling

Marker enrichment modeling (MEM) provides an objective metric for characterizing cell populations from high-content single-cell analysis. The MEM score outperforms standard metrics and provides a machine-readeable label for cell subsets. Learning cell identity from high-content single-cell data pres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature methods Ročník 14; číslo 3; s. 275 - 278
Hlavní autoři: Diggins, Kirsten E, Greenplate, Allison R, Leelatian, Nalin, Wogsland, Cara E, Irish, Jonathan M
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.03.2017
Nature Publishing Group
Témata:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Marker enrichment modeling (MEM) provides an objective metric for characterizing cell populations from high-content single-cell analysis. The MEM score outperforms standard metrics and provides a machine-readeable label for cell subsets. Learning cell identity from high-content single-cell data presently relies on human experts. We present marker enrichment modeling (MEM), an algorithm that objectively describes cells by quantifying contextual feature enrichment and reporting a human- and machine-readable text label. MEM outperforms traditional metrics in describing immune and cancer cell subsets from fluorescence and mass cytometry. MEM provides a quantitative language to communicate characteristics of new and established cytotypes observed in complex tissues.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/nmeth.4149