Enhanced CNN for image denoising

Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train. (ii) Deeper networks face the challenge of performance saturation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CAAI Transactions on Intelligence Technology Jg. 4; H. 1; S. 17 - 23
Hauptverfasser: Tian, Chunwei, Xu, Yong, Fei, Lunke, Wang, Junqian, Wen, Jie, Luo, Nan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Beijing The Institution of Engineering and Technology 01.03.2019
John Wiley & Sons, Inc
Wiley
Schlagworte:
ISSN:2468-2322, 2468-6557, 2468-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train. (ii) Deeper networks face the challenge of performance saturation. In this study, the authors propose a novel method called enhanced convolutional neural denoising network (ECNDNet). Specifically, they use residual learning and batch normalisation techniques to address the problem of training difficulties and accelerate the convergence of the network. In addition, dilated convolutions are used in the proposed network to enlarge the context information and reduce the computational cost. Extensive experiments demonstrate that the ECNDNet outperforms the state-of-the-art methods for image denoising.
AbstractList Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train. (ii) Deeper networks face the challenge of performance saturation. In this study, the authors propose a novel method called enhanced convolutional neural denoising network (ECNDNet). Specifically, they use residual learning and batch normalisation techniques to address the problem of training difficulties and accelerate the convergence of the network. In addition, dilated convolutions are used in the proposed network to enlarge the context information and reduce the computational cost. Extensive experiments demonstrate that the ECNDNet outperforms the state-of-the-art methods for image denoising.
Author Wang, Junqian
Luo, Nan
Xu, Yong
Fei, Lunke
Wen, Jie
Tian, Chunwei
Author_xml – sequence: 1
  givenname: Chunwei
  surname: Tian
  fullname: Tian, Chunwei
  organization: 2Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, People's Republic of China
– sequence: 2
  givenname: Yong
  surname: Xu
  fullname: Xu, Yong
  email: yongxu@ymail.com
  organization: 2Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, People's Republic of China
– sequence: 3
  givenname: Lunke
  surname: Fei
  fullname: Fei, Lunke
  organization: 3School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
– sequence: 4
  givenname: Junqian
  surname: Wang
  fullname: Wang, Junqian
  organization: 2Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, People's Republic of China
– sequence: 5
  givenname: Jie
  surname: Wen
  fullname: Wen, Jie
  organization: 2Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, People's Republic of China
– sequence: 6
  givenname: Nan
  surname: Luo
  fullname: Luo, Nan
  organization: 4Institute of Automation Heilongjiang Academy of Sciences, Harbin 150090, People's Republic of China
BookMark eNqFkV1LwzAYhYNMUKe3XhcEL4TNNB9tcqlj6kAmSL0Ob9NkZsxmph2yf29qRYY4vMoH55znzckJGtS-Ngidp3icYiav2-DaMcGpiEfODtAxYZkYEUrIYGd_hM6aZokxTqWUnObHKJnWr1BrUyWT-TyxPiTuDRYmqUztXePqxSk6tLBqzNn3OkQvd9Ni8jB6fLqfTW4eR5pzykelLTlJBfCI0lBWVIssYzwTNtcUBOesMgJMvIdcZIxIoKbUVqcyCgS3dIhmfW7lYanWIY4RtsqDU18XPiwUhNbplVGZiSBiJUBJGZMd1RjMCdUVcCuzmHXRZ62Df9-YplVLvwl1HF9RLFOZS0xlVI17lQ6-aYKxP9QUq65U1ZWqulJVV2o0sF8G7Vpona_bAG6135b3tg-3Mtt_IGoyK8jtXfyiWOsQXfVOZ3aesBdz-Ye4eJ4VO-nrytJPwPmmnQ
CitedBy_id crossref_primary_10_3390_electronics13091676
crossref_primary_10_1007_s11600_024_01339_x
crossref_primary_10_3390_electronics11213535
crossref_primary_10_1016_j_inffus_2021_07_001
crossref_primary_10_1016_j_eswa_2023_120628
crossref_primary_10_1016_j_knosys_2021_106949
crossref_primary_10_1007_s11042_021_11521_8
crossref_primary_10_1109_TCYB_2018_2884715
crossref_primary_10_1007_s11554_020_01060_0
crossref_primary_10_1016_j_aap_2022_106836
crossref_primary_10_3390_electronics12092146
crossref_primary_10_1016_j_dsp_2025_105309
crossref_primary_10_1007_s12293_025_00463_5
crossref_primary_10_3390_info15030133
crossref_primary_10_35848_1347_4065_acbda2
crossref_primary_10_1109_TCBB_2022_3205217
crossref_primary_10_1007_s11600_022_00912_6
crossref_primary_10_1016_j_jvcir_2021_103425
crossref_primary_10_1016_j_imavis_2024_104974
crossref_primary_10_1007_s11227_024_06045_5
crossref_primary_10_1088_2057_1976_ad4f91
crossref_primary_10_1007_s11227_025_07742_5
crossref_primary_10_1109_ACCESS_2021_3086811
crossref_primary_10_1049_iet_ipr_2020_0717
crossref_primary_10_1007_s12524_020_01155_y
crossref_primary_10_1007_s00138_024_01573_9
crossref_primary_10_1109_TIV_2023_3327501
crossref_primary_10_1049_cit2_12172
crossref_primary_10_1109_ACCESS_2020_2999750
crossref_primary_10_1109_ACCESS_2023_3264604
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_1007_s00530_025_01859_6
crossref_primary_10_1016_j_asoc_2020_106440
crossref_primary_10_1088_1742_6596_1854_1_012040
crossref_primary_10_1088_1757_899X_1055_1_012116
crossref_primary_10_1109_ACCESS_2021_3106020
crossref_primary_10_1016_j_iswa_2023_200211
crossref_primary_10_1016_j_inffus_2023_102043
crossref_primary_10_1007_s10489_023_04895_9
crossref_primary_10_1016_j_ab_2024_115491
crossref_primary_10_1109_TNNLS_2020_3016321
crossref_primary_10_1109_TC_2025_3558579
crossref_primary_10_1016_j_jvcir_2020_102774
crossref_primary_10_3390_s25092672
crossref_primary_10_1049_ipr2_12915
crossref_primary_10_1007_s11042_023_16209_9
crossref_primary_10_3390_rs14246300
crossref_primary_10_1088_1361_6560_ad7e78
crossref_primary_10_3390_app15105339
crossref_primary_10_1109_ACCESS_2020_2970143
crossref_primary_10_1007_s11042_023_17670_2
crossref_primary_10_1109_ACCESS_2019_2936861
crossref_primary_10_1016_j_knosys_2020_106235
crossref_primary_10_1016_j_neunet_2020_07_025
crossref_primary_10_1007_s11760_023_02944_x
crossref_primary_10_1002_ett_3843
crossref_primary_10_3390_electronics12245019
crossref_primary_10_1007_s11042_023_16452_0
crossref_primary_10_1016_j_neunet_2019_12_024
crossref_primary_10_1109_TGRS_2020_3034752
crossref_primary_10_3390_s25082615
crossref_primary_10_1049_joe_2019_1151
crossref_primary_10_1007_s10489_022_04313_6
crossref_primary_10_3390_bios15010019
crossref_primary_10_1016_j_jksuci_2023_02_003
crossref_primary_10_1038_s41598_023_38335_y
crossref_primary_10_1364_AO_501143
crossref_primary_10_1007_s10489_022_03717_8
crossref_primary_10_3390_electronics12183770
crossref_primary_10_1016_j_ultrasmedbio_2025_02_013
crossref_primary_10_1016_j_engappai_2025_110275
crossref_primary_10_1007_s11042_023_16346_1
crossref_primary_10_1007_s11053_025_10473_2
crossref_primary_10_1109_TCSVT_2023_3348804
crossref_primary_10_1016_j_procs_2024_04_204
crossref_primary_10_3390_rs14051243
crossref_primary_10_1016_j_neunet_2023_05_025
crossref_primary_10_1109_ACCESS_2021_3084951
crossref_primary_10_1155_2020_6097167
crossref_primary_10_1007_s11063_023_11359_1
crossref_primary_10_1109_TSMC_2025_3552621
crossref_primary_10_1109_ACCESS_2019_2937098
crossref_primary_10_3390_s25020317
crossref_primary_10_1007_s10115_023_01965_9
crossref_primary_10_1109_ACCESS_2024_3411709
crossref_primary_10_3390_app13010028
crossref_primary_10_1016_j_patrec_2023_05_015
crossref_primary_10_1007_s11042_022_13096_4
crossref_primary_10_3390_s23187713
crossref_primary_10_1109_ACCESS_2021_3092425
crossref_primary_10_1049_cit2_12256
crossref_primary_10_1137_20M1340654
crossref_primary_10_1007_s11760_024_03093_5
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1016_j_eswa_2021_114900
crossref_primary_10_1049_cit2_12019
crossref_primary_10_1109_TBME_2024_3501732
crossref_primary_10_1109_ACCESS_2019_2939167
crossref_primary_10_1007_s11042_019_08089_9
crossref_primary_10_1109_ACCESS_2022_3162608
crossref_primary_10_1007_s00371_022_02749_y
crossref_primary_10_3390_s24144578
crossref_primary_10_1109_TCSVT_2020_3009235
crossref_primary_10_1002_gamm_202470004
crossref_primary_10_3390_electronics11203375
crossref_primary_10_1007_s11760_025_04776_3
Cites_doi 10.1109/ICCV.2015.123
10.1007/s11263‐008‐0197‐6
10.1109/ICCV.2011.6126278
10.1007/s00791‐004‐0150‐3
10.1109/CVPR.2014.349
10.1137/050644999
10.1109/TCYB.2016.2536638
10.1109/TIP.2018.2839891
10.1007/978-3-030-01264-9_19
10.1109/CVPR.2014.366
10.1109/MSP.2017.2717489
10.1109/TIP.2009.2028250
10.1109/CVPR.2017.623
10.1109/CVPRW.2018.00121
10.1109/CVPR.2018.00338
10.1109/CVPR.2016.90
10.1145/3072959.3073708
10.1109/TMI.2018.2823756
10.1016/j.trit.2017.03.001
10.1109/TIP.2014.2316423
10.1109/TIP.2017.2662206
10.1109/CVPR.2012.6247952
10.1109/83.563320
10.1109/ICCV.2009.5459452
10.1109/TIP.2007.901238
10.1109/TIP.2012.2235847
10.1109/ICTAI.2017.00192
10.1109/ICDMW.2016.0041
10.1109/TBME.2012.2217493
10.1007/s13369‐017‐2696‐7
10.1109/CVPR.2017.300
ContentType Journal Article
Copyright 2019 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of Chongqing University of Technology
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IDLOA
24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/trit.2018.1054
DatabaseName IET Digital Library Open Access
Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_6e18a2f9aab344918a5ee0523cda5f96
10_1049_trit_2018_1054
CIT2BF00055
Genre article
GrantInformation_xml – fundername: Shenzhen Municipal Science and Technology Innovation Council
  grantid: JCYJ20170811155725434
– fundername: Guangdong Province high-level personnel of special support program
  grantid: 2016TX03X164
– fundername: Shenzhen Municipal Science and Technology Innovation Council
  funderid: JCYJ20170811155725434
– fundername: Guangdong Province high‐level personnel of special support program
  funderid: 2016TX03X164
GroupedDBID 0R
0SF
24P
6I.
AACTN
AAFTH
AAJGR
ABMAC
ACGFS
ADBBV
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
BFFAM
EBS
EJD
FDB
GROUPED_DOAJ
IDLOA
O9-
OCL
OK1
RIE
RIG
RUI
SSZ
0R~
1OC
AAEDW
AAHHS
AAHJG
AALRI
AAXUO
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADVLN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
AKRWK
ALUQN
ARAPS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
HCIFZ
IAO
ITC
K7-
M41
M43
NCXOZ
PIMPY
ROL
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFFHD
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c5535-bfb5218a5468cabd3c8664568f7c3a8554de8aed3ca786429a3ebcfc19f7c85f3
IEDL.DBID BENPR
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000597144900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2468-2322
2468-6557
IngestDate Fri Oct 03 12:50:55 EDT 2025
Sat Jul 26 00:20:46 EDT 2025
Tue Nov 18 22:35:12 EST 2025
Wed Oct 29 21:25:59 EDT 2025
Wed Jan 22 16:31:40 EST 2025
Tue Jan 05 21:44:20 EST 2021
Thu May 09 18:00:46 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords dilated convolutions
residual learning
enhanced CNN
convolutional neural denoising network
batch normalisation techniques
deep network architecture
image denoising
flexible architectures
image restoration
Deeper networks
image representation
training difficulties
convolution
performance saturation
deep convolutional neural networks
learning (artificial intelligence)
image restoration CNN
neural nets
authors
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5535-bfb5218a5468cabd3c8664568f7c3a8554de8aed3ca786429a3ebcfc19f7c85f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3091979039?pq-origsite=%requestingapplication%
PQID 3091979039
PQPubID 6852857
PageCount 7
ParticipantIDs wiley_primary_10_1049_trit_2018_1054_CIT2BF00055
doaj_primary_oai_doaj_org_article_6e18a2f9aab344918a5ee0523cda5f96
proquest_journals_3091979039
crossref_primary_10_1049_trit_2018_1054
iet_journals_10_1049_trit_2018_1054
crossref_citationtrail_10_1049_trit_2018_1054
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2019
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
– name: Wiley
References Beck, A.; Teboulle, M. (C9) 2009; 18
Frohn, C.; Henn, S.; Witsch, K. (C12) 2004; 7
Kang, E.; Chang, W.; Yoo, J. (C24) 2018; 37
Dabov, K.; Foi, A.; Katkovnik, V. (C6) 2007; 16
Bako, S.; Vogels, T.; McWilliams, B. (C20) 2017; 36
Li, S.; Yin, H.; Fang, L. (C1) 2006; 59
Chan, T.F.; Chen, K (C11) 2006; 5
Roth, S.; Black, M.J. (C43) 2009; 82
Chen, Y.; Pock, T. (C42) 2016; PP
Zhang, K.; Zuo, W.; Chen, Y. (C3) 2017; 26
Guo, K.; Wu, S.; Xu, Y. (C36) 2017; 2
Zhang, L.; Zuo, W. (C2) 2017; 34
Dong, W.; Zhang, L.; Shi, G. (C8) 2013; 22
Zhang, K.; Zuo, W.; Zhang, L. (C15) 2018
Duchi, J.; Hazan, E.; Singer, Y. (C31) 2011; 12
Du, B.; Xiong, W.; Wu, J. (C18) 2017; 47
Kinga, D.; Adam, J.B. (C39) 2015; 5
Tian, C.; Zhang, Q.; Sun, G. (C34) 2018; 42
Malfait, M.; Roose, D. (C4) 1996; 6
Fei, L.; Lu, G.; Jia, W. (C35) 2018
Zuo, W.; Zhang, L.; Song, C. (C7) 2014; 23
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. (C33) 2012
2017; 2
2015; 5
2017; 26
2013; 22
2012
2017; 47
2011
2009; 82
2004; 7
2006; 59
2009
2008
2006; 5
2011; 12
2018; 42
2014; 23
2007; 16
2017; 36
2017; 34
2018
2017
2016
2015
2014
2018; 37
1996; 6
2009; 18
2016; PP
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
Kinga D. (e_1_2_8_40_2) 2015; 5
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
Chen Y. (e_1_2_8_43_2) 2016
e_1_2_8_8_2
e_1_2_8_7_2
Duchi J. (e_1_2_8_32_2) 2011; 12
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
Krizhevsky A. (e_1_2_8_34_2) 2012
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
Fei L. (e_1_2_8_36_2) 2018
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
References_xml – volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 14
  ident: C20
  article-title: Kernel-predicting convolutional networks for denoising Monte Carlo renderings
  publication-title: ACM Trans. Graph
– year: 2018
  ident: C35
  article-title: Feature extraction methods for palmprint recognition: a survey and evaluation
  publication-title: IEEE Trans. Syst., Man, Cybern. Syst.
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  ident: C3
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 37
  start-page: 1358
  issue: 6
  year: 2018
  end-page: 1369
  ident: C24
  article-title: Deep convolutional framelet denoising for low-dose ct via wavelet residual network
  publication-title: IEEE Trans. Med. Imaging
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  end-page: 1
  ident: C42
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  end-page: 2434
  ident: C9
  article-title: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  ident: C6
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 23
  start-page: 2459
  issue: 6
  year: 2014
  end-page: 2472
  ident: C7
  article-title: Gradient histogram estimation and preservation for texture enhanced image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 5
  start-page: 615
  issue: 2
  year: 2006
  end-page: 645
  ident: C11
  article-title: An optimization-based multilevel algorithm for total variation image denoising
  publication-title: Multiscale. Model. Simul.
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  end-page: 1027
  ident: C18
  article-title: Stacked convolutional denoising auto-encoders for feature representation
  publication-title: IEEE Trans Cybern.
– volume: 22
  start-page: 1620
  issue: 4
  year: 2013
  end-page: 1630
  ident: C8
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 549
  issue: 4
  year: 1996
  end-page: 565
  ident: C4
  article-title: Wavelet-based image denoising using a Markov random field a priori model
  publication-title: IEEE Trans. Image Process.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: C33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 42
  start-page: 741
  issue: 2
  year: 2018
  end-page: 758
  ident: C34
  article-title: FFT consolidated sparse and collaborative representation for image classification
  publication-title: Arab. J. Sci. Eng.
– volume: 59
  start-page: 3450
  issue: 12
  year: 2006
  end-page: 3459
  ident: C1
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 172
  issue: 5
  year: 2017
  end-page: 179
  ident: C2
  article-title: Image restoration: from sparse and low-rank priors to deep priors
  publication-title: IEEE Signal Process. Mag.
– start-page: 4608
  year: 2018
  end-page: 4622
  ident: C15
  article-title: FFDNet: toward a fast and flexible solution for CNN based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 39
  issue: 1
  year: 2017
  end-page: 47
  ident: C36
  article-title: Face recognition using both visible light image and near-infrared image and a deep network
  publication-title: CAAI Trans. Intell. Technol.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: C31
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 199
  issue: 3–4
  year: 2004
  end-page: 206
  ident: C12
  article-title: Nonlinear multigrid methods for total variation image denoising
  publication-title: Comput. Vis. Sci.
– volume: 5
  year: 2015
  ident: C39
  article-title: A method for stochastic optimization
  publication-title: Int. Conf. Learn. Representations (ICLR)
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  end-page: 229
  ident: C43
  article-title: Fields of experts
  publication-title: Int. J. Comput. Vis.
– volume: 23
  start-page: 2459
  issue: 6
  year: 2014
  end-page: 2472
  article-title: Gradient histogram estimation and preservation for texture enhanced image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 47
  start-page: 1017
  issue: 4
  year: 2017
  end-page: 1027
  article-title: Stacked convolutional denoising auto‐encoders for feature representation
  publication-title: IEEE Trans Cybern.
– volume: 37
  start-page: 1358
  issue: 6
  year: 2018
  end-page: 1369
  article-title: Deep convolutional framelet denoising for low‐dose ct via wavelet residual network
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2774
  year: 2014
  end-page: 2781
  article-title: Shrinkage fields for effective image restoration
– year: 2015
  article-title: Adam: a method for stochastic optimization
– start-page: 3587
  year: 2017
  end-page: 3596
  article-title: Learning deep CNN denoiser prior for image restoration
– start-page: 1026
  year: 2015
  end-page: 1034
  article-title: Delving deep into rectifiers: surpassing human‐level performance on imagenet classification
– volume: 7
  start-page: 199
  issue: 3–4
  year: 2004
  end-page: 206
  article-title: Nonlinear multigrid methods for total variation image denoising
  publication-title: Comput. Vis. Sci.
– start-page: 1026
  year: 2015
  end-page: 1034
  article-title: Delving deep into rectifiers:surpassing human‐level performance on imagenet classification
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  end-page: 1
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2008
  article-title: An efficient primal‐dual hybrid gradient algorithm for total variation image restoration
– volume: 5
  start-page: 615
  issue: 2
  year: 2006
  end-page: 645
  article-title: An optimization‐based multilevel algorithm for total variation image denoising
  publication-title: Multiscale. Model. Simul.
– start-page: 479
  year: 2011
  end-page: 486
  article-title: From learning models of natural image patches to whole image restoration
– volume: 5
  year: 2015
  article-title: A method for stochastic optimization
  publication-title: Int. Conf. Learn. Representations (ICLR)
– start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 6
  start-page: 549
  issue: 4
  year: 1996
  end-page: 565
  article-title: Wavelet‐based image denoising using a Markov random field a priori model
  publication-title: IEEE Trans. Image Process.
– start-page: 2862
  year: 2014
  end-page: 2869
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 34
  start-page: 172
  issue: 5
  year: 2017
  end-page: 179
  article-title: Image restoration: from sparse and low‐rank priors to deep priors
  publication-title: IEEE Signal Process. Mag.
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 3450
  issue: 12
  year: 2006
  end-page: 3459
  article-title: Group‐sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  end-page: 229
  article-title: Fields of experts
  publication-title: Int. J. Comput. Vis.
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 2392
  year: 2012
  end-page: 2399
  article-title: Image denoising: Can plain neural networks compete with BM3D?
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 14
  article-title: Kernel‐predicting convolutional networks for denoising Monte Carlo renderings
  publication-title: ACM Trans. Graph
– volume: 18
  start-page: 2419
  issue: 11
  year: 2009
  end-page: 2434
  article-title: Fast gradient‐based algorithms for constrained total variation image denoising and deblurring problems
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 1620
  issue: 4
  year: 2013
  end-page: 1630
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 42
  start-page: 741
  issue: 2
  year: 2018
  end-page: 758
  article-title: FFT consolidated sparse and collaborative representation for image classification
  publication-title: Arab. J. Sci. Eng.
– year: 2018
  article-title: Feature extraction methods for palmprint recognition: a survey and evaluation
  publication-title: IEEE Trans. Syst., Man, Cybern. Syst.
– start-page: 2272
  year: 2009
  end-page: 2279
  article-title: Non‐local sparse models for image restoration
– start-page: 4608
  year: 2018
  end-page: 4622
  article-title: FFDNet: toward a fast and flexible solution for CNN based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 241
  year: 2016
  end-page: 246
  article-title: Medical image denoising using convolutional denoising auto encoders
– year: 2017
– volume: 2
  start-page: 39
  issue: 1
  year: 2017
  end-page: 47
  article-title: Face recognition using both visible light image and near‐infrared image and a deep network
  publication-title: CAAI Trans. Intell. Technol.
– start-page: 3204
  year: 2018
  end-page: 3213
  article-title: Universal denoising networks: a novel CNN architecture for image denoising
– year: 2015
– start-page: 3587
  year: 2017
  end-page: 3596
  article-title: Non‐local color image denoising with convolutional neural networks
– ident: e_1_2_8_41_2
  doi: 10.1109/ICCV.2015.123
– ident: e_1_2_8_44_2
  doi: 10.1007/s11263‐008‐0197‐6
– ident: e_1_2_8_39_2
  doi: 10.1109/ICCV.2011.6126278
– start-page: 1
  issue: 99
  year: 2016
  ident: e_1_2_8_43_2
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_8_13_2
  doi: 10.1007/s00791‐004‐0150‐3
– ident: e_1_2_8_24_2
– ident: e_1_2_8_45_2
  doi: 10.1109/CVPR.2014.349
– ident: e_1_2_8_12_2
  doi: 10.1137/050644999
– ident: e_1_2_8_30_2
– volume: 12
  start-page: 2121
  year: 2011
  ident: e_1_2_8_32_2
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_8_19_2
  doi: 10.1109/TCYB.2016.2536638
– ident: e_1_2_8_16_2
  doi: 10.1109/TIP.2018.2839891
– ident: e_1_2_8_29_2
– ident: e_1_2_8_27_2
  doi: 10.1007/978-3-030-01264-9_19
– ident: e_1_2_8_14_2
  doi: 10.1109/CVPR.2014.366
– ident: e_1_2_8_3_2
  doi: 10.1109/MSP.2017.2717489
– ident: e_1_2_8_10_2
  doi: 10.1109/TIP.2009.2028250
– start-page: 1097
  year: 2012
  ident: e_1_2_8_34_2
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_8_42_2
– year: 2018
  ident: e_1_2_8_36_2
  article-title: Feature extraction methods for palmprint recognition: a survey and evaluation
  publication-title: IEEE Trans. Syst., Man, Cybern. Syst.
– ident: e_1_2_8_17_2
  doi: 10.1109/CVPR.2017.623
– ident: e_1_2_8_11_2
– ident: e_1_2_8_20_2
– ident: e_1_2_8_23_2
  doi: 10.1109/CVPRW.2018.00121
– ident: e_1_2_8_31_2
  doi: 10.1109/ICCV.2015.123
– ident: e_1_2_8_15_2
  doi: 10.1109/CVPR.2018.00338
– ident: e_1_2_8_28_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_21_2
  doi: 10.1145/3072959.3073708
– ident: e_1_2_8_25_2
  doi: 10.1109/TMI.2018.2823756
– ident: e_1_2_8_37_2
  doi: 10.1016/j.trit.2017.03.001
– ident: e_1_2_8_8_2
  doi: 10.1109/TIP.2014.2316423
– ident: e_1_2_8_22_2
– ident: e_1_2_8_33_2
– ident: e_1_2_8_4_2
  doi: 10.1109/TIP.2017.2662206
– ident: e_1_2_8_46_2
  doi: 10.1109/CVPR.2012.6247952
– ident: e_1_2_8_5_2
  doi: 10.1109/83.563320
– ident: e_1_2_8_6_2
  doi: 10.1109/ICCV.2009.5459452
– ident: e_1_2_8_7_2
  doi: 10.1109/TIP.2007.901238
– ident: e_1_2_8_9_2
  doi: 10.1109/TIP.2012.2235847
– ident: e_1_2_8_38_2
  doi: 10.1109/ICTAI.2017.00192
– ident: e_1_2_8_26_2
  doi: 10.1109/ICDMW.2016.0041
– ident: e_1_2_8_2_2
  doi: 10.1109/TBME.2012.2217493
– volume: 5
  year: 2015
  ident: e_1_2_8_40_2
  article-title: A method for stochastic optimization
  publication-title: Int. Conf. Learn. Representations (ICLR)
– ident: e_1_2_8_35_2
  doi: 10.1007/s13369‐017‐2696‐7
– ident: e_1_2_8_18_2
  doi: 10.1109/CVPR.2017.300
SSID ssj0001999537
ssib050169717
ssib050729737
ssib052855658
Score 2.5020628
Snippet Owing to the flexible architectures of deep convolutional neural networks (CNNs) are successfully used for image denoising. However, they suffer from the...
SourceID doaj
proquest
crossref
wiley
iet
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Artificial neural networks
authors
B6135 Optical, image and video signal processing
batch normalisation techniques
C5260B Computer vision and image processing techniques
C5290 Neural computing techniques
convolution
convolutional neural denoising network
deep convolutional neural networks
deep network architecture
Deeper networks
dilated convolutions
enhanced CNN
flexible architectures
image denoising
Image enhancement
image representation
image restoration
image restoration CNN
learning (artificial intelligence)
neural nets
Noise
Noise reduction
performance saturation
Research Article
residual learning
training difficulties
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgRRcVo1YCCp2Cafc5Ri6IgRaSKt2WzDyxolbb6-53dpNoepBeP2QybzEyS-WZ38g0hp0x675m1ReABCsw3XAFW1QU3AEa4krn01_vTnez31fMz3M-1-oo1YQ09cGO4c-G7ylQBjKkpY4AH3Pu4lmmdwekT2XYpYS6ZSqsriHs4lTOWRgbnkdo-VnKp2NmWLUShRNaPsWXopws4cx6tpnBzvUk2WpyYXzT3t0VW_Gib5Fejl7Rjn_f6_RzhZj58w-9Bjt-O92FM-nfI4_XVoHdTtC0OCss55UUdaoyfqBMTypraUauEQEyjgrTUxBIy55XxOG6kwlQBDPW1DbYLKKB4oLtkdfQ-8nskF0FxV_lQcu5YaYSpBAgnK-WFrH2oM1LMVNa25f-ObSheddqHZqCjiXQ0kY4mysjZj_xHw3zxp-RltOCPVGSsTgPoR936US_zY0ZO0P66fYMmf17qeEFq8HA7-D2rP1zISGfmwV8xiqgIJJQUMlImry5RSfduB9VlrLzkfP8_1Dsg6zg5NNVrHbI6HX_6Q7Jmv6bDyfgoPbzf3oPvew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5R6KEXoKJVTSm1RKWerDreh3ePEIGKVEUIpYjbap9tpDZBIfD7O7N2EnJAVdXrevwYz8zu5_HsNwCfeBtj5N5XSSRd4fdGqLRXrhJWaytDzUPe9X7zrR2N1O2tvnqyi7_jh1gl3Cgy8nxNAW5d14UEQS0akbjqqTRLUata_gJ2BgPWkl83_GqdZUH8IzJxZkNbjBA-NEvmRq6_bF5iY2XKBP643kziYgN7PkWweQm62Pv_h9-H3R5-lqedv7yGrTg9gPJ8-jMXApTD0ahEFFtOfuM0U-KUNJtQLuENfL84Hw-_Vn3nhMoLwUTlksNlWVmBSnvrAvNKSoRKKrWeWapMC1HZiOO2VfgFoi2Lzic_0CigRGJvYXs6m8Z3UMqkRGhiqoUIvLbSNlLL0DYqytbF5Aqolm_N-J5WnLpb_DL59zbXhnQ1pKshXQv4vJK_6wg1npU8IyOspIgIOw_M5j9MH1dGRlSzSdpaxzjXpHOMlOr2waL3yQJO0ISmD8z7Z2_1cUNqfH05Xh81dyEVcLR0grUYQ7ClW10zXUCdzf0XlczwctycUUGnEIf_fsp7eIXjuiuBO4LtxfwhfoCX_nExuZ8fZ8__A5xaAQo
  priority: 102
  providerName: Wiley-Blackwell
Title Enhanced CNN for image denoising
URI http://digital-library.theiet.org/content/journals/10.1049/trit.2018.1054
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftrit.2018.1054
https://www.proquest.com/docview/3091979039
https://doaj.org/article/6e18a2f9aab344918a5ee0523cda5f96
Volume 4
WOSCitedRecordID wos000597144900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050729737
  issn: 2468-2322
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: K7-
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: BENPR
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: PIMPY
  dateStart: 20170601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: WIN
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2468-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999537
  issn: 2468-2322
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbhMx0KItBy4UBIiFElYCiZPVZf0-VSRKRQRdraoA5WR5_SiRIAlJ6LHfzthxGnIoHLhYWnv24ZnxzHg8O4PQayq899RaHFhQGPYbDisrO8yMUoa7irr01_vnj6Jp5MWFarPDbZnDKjcyMQlqN7PRR35MQLEpoSqiTuY_cawaFU9XcwmNPXQQM5UBnx_0h017vvWygP3DiNhka6TqOKa4jxFdMla4pTvaKCXtBx0z8asde_NPqzWpndPD__3gB-h-NjjLd2sOeYju-OkjVA6n39LRfzlomhLs1nLyAwRLCUJoNoneg8fo0-lwPHiPc60EbBkjDHehA0UsDaNcWtM5YiXnYBzJICwxMRbNeWk89BshYc-hDPGdDfatAgDJAnmC9qezqX-KSh4kc7UPFWOOVoabmivuRC09F50PXYHwBmfa5kTisZ7Fd50OtKnSEcc64lhHHBfozQ38fJ1C41bIfiTBDVRMfZ06ZotLnVeS5h6mWQdlTEcoVXHO3kfntnUG-I0X6BUQUOeluLz1VS93oMbno_F2VM9dKNDRhq5bsC1RC1QltvjHlPRgNK77MYSTsWd_f-JzdA9uU-sAtyO0v1r88i_QXXu1miwXPbRX07aX-buXXAfQfhAY2rPrIYy0o7P2K1x9GTW_AQ1ABRU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuBQQI00ItAeJk1fU-vHtAiIZWtZpaETKonJb1PiASJCFJi_hT_EZmHbshh8KpB67r0djr-XZmdnZ2BuA5zZ1z1JjEMy8T3G_YRBpRJ0xLqblNqW1uvX8Y5GUpzs7kcAN-dXdhQlplpxMbRW0nJsTI9wgaNpnLlMjX0-9J6BoVTle7FhpLWJy4nz9wyzZ_VbxF-b7IsqPDqn-ctF0FEsMYYUntazRZQjPKhdG1JUZwjm6E8LkhOmRtWSe0w3GdC_TOpSauNt7sSyQQzBPkewM2KYI97cHmsDgdflxFddDfYiTvqkNSuRdK6ocMMhE66tI169c0CUCbNnKLNf_2Ty-5MXNHd_63H3QXtlqHOn6zXAH3YMON70N8OP7SpDbE_bKM0S-PR99QccaoZCejEB15AO-v5aMeQm88GbtHEHMvmM2cTxmzNNVcZ1xym2fC8bx2vo4g6WSkTFsoPfTr-KqaA3sqVZCpCjJVQaYRvLykny5LhFxJeRBEfkkVSns3A5PZZ9VqCsUdTjPzUuuaUCrDnJ0LwXtjNa4nHsEzBIxqVc38ylftrlFV74pq9VRNrY9gp8PRimwFogjSBob_mJLqF1V2EFJUGXv8d467cOu4Oh2oQVGebMNtZCGXyXw70FvMzt0TuGkuFqP57Gm7qmL4dN04_Q1hZV0p
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BQIiXAQJE2GCRQOIpIiS2Yz9u3SoqpmhCBfZmOfYZKkE7dYW_nzsnbenDhJB4dS4_LufzfT6fPwO8Fg0iCu-LKKMpaL4RCuN1V0hnjFOhFCHtev983rStvrw0F0M1Ie-F6fkhNgk39ow0XrOD41WI_YRTMEkmk9VzbZbms2rFbbgjCIxzVdeXSbtNsxAAkok5s-I9RoQfqjV1ozBvdx-xE5oSgz8FnBmudsDnnxA2xaDxg__w9Q9hfwCg-XHfYx7BLZw_hvxs_i2VAuSjts0Jx-azHzTQ5DQoLWacTXgCn8Zn09H7Yjg7ofBS1rLoYkeBWTtJWnvXhdprpQgs6dj42nFtWkDtkNpdo2kOYlyNnY_-nSEBLWP9FPbmizk-g1xFLUOFsZQyiNIpVymjQlNpVE2HscugWP826wdicT7f4rtNC9zCWNbVsq6Wdc3gzUb-qqfUuFHyhK2wkWIq7NSwWH61g2dZhaRmFY1zXS2EYZ0ROdntg6P-pzJ4RTa0g2te3_iqox2p6cfJdHvVku0yOFz3gq1YTXDLNKasTQZlsvdfVLKjybQ64ZJOKZ__-y1HcO_idGzPJ-2HA7hPIqavhzuEvdXyJ76Au_7Xana9fJm84DcpqATf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+CNN+for+image+denoising&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Tian%2C+Chunwei&rft.au=Xu%2C+Yong&rft.au=Fei%2C+Lunke&rft.au=Wang%2C+Junqian&rft.date=2019-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=4&rft.issue=1&rft.spage=17&rft.epage=23&rft_id=info:doi/10.1049%2Ftrit.2018.1054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon