Combinatorial Sublinear-Time Fourier Algorithms
We study the problem of estimating the best k term Fourier representation for a given frequency sparse signal (i.e., vector) A of length N ≫ k . More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of , and estimate their coefficients, in polynomia...
Uložené v:
| Vydané v: | Foundations of computational mathematics Ročník 10; číslo 3; s. 303 - 338 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer-Verlag
01.06.2010
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the problem of estimating the best
k
term Fourier representation for a given frequency sparse signal (i.e., vector)
A
of length
N
≫
k
. More explicitly, we investigate how to deterministically identify
k
of the largest magnitude frequencies of
, and estimate their coefficients, in polynomial(
k
,log
N
) time. Randomized sublinear-time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem (Gilbert et al. in ACM STOC, pp. 152–161,
2002
; Proceedings of SPIE Wavelets XI,
2005
). In this paper we develop the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method (Gilbert et al. in Proceedings of SPIE Wavelets XI,
2005
). Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in (Iwen in Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA’08),
2008
). |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-009-9057-1 |