Classical and general relativistic post-Keplerian effects in binary pulsars hosting fast rotating main sequence stars

We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M , spin angular momentum S , dimensionless mass quadrupole moment J 2 , equatorial and polar radii R e , R p , flattening ν ≐ ( R e - R p ) / R e , and ellipticity ε ≐ 1 - R p...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Vol. 79; no. 8; pp. 1 - 12
Main Authors: Iorio, Lorenzo, Rieutord, Michel, Rozelot, Jean-Pierre, de Souza, Armando Domiciano
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2019
Springer
Springer Nature B.V
Springer Verlag (Germany)
SpringerOpen
Subjects:
ISSN:1434-6044, 1434-6052
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M , spin angular momentum S , dimensionless mass quadrupole moment J 2 , equatorial and polar radii R e , R p , flattening ν ≐ ( R e - R p ) / R e , and ellipticity ε ≐ 1 - R p 2 / R e 2 as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations Δ δ τ of the Rømer-like, orbital component of the pulsar’s time delay δ τ induced over 10 years by the pN gravitoelectric mass monopole Schwarzschild , G M c - 2 , quadrupole G M R e 2 J 2 c - 2 , gravitomagnetic spin dipole Lense - Thirring , G S c - 2 and octupole G S R e 2 ε 2 c - 2 accelerations along with the Newtonian quadrupolar G M R e 2 J 2 one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with M = 15 M ⊙ , R e = 5.96 R ⊙ , ν = 0.203 , S = 3.41 × 10 45 J s , J 2 = 1.92 × 10 - 3 orbited by a pulsar with an orbital period P b ≃ 40–70 days, the classical oblateness-driven effects are at the ≲ 4 - 150 s level, while the pN shifts are of the order of ≲ 1.5 - 20 s G M c - 2 , ≲ 10 - 40 ms G M R e 2 J 2 c - 2 , ≲ 0.5 - 6 ms G S c - 2 , ≲ 5 - 20 μ s G S R e 2 ε 2 c - 2 , depending on their orbital configuration. The root-mean-square (rms) timing residuals σ τ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are ≲ ms . Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian ( G M c - 2 , G M J 2 c - 2 , and, perhaps, G S c - 2 as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
AbstractList We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum \[\mathbf S \], dimensionless mass quadrupole moment \[J_2\], equatorial and polar radii \[R_\text {e},~R_\text {p}\], flattening \[\nu \doteq (R_\text {e}-R_\text {p})/R_\text {e}\], and ellipticity \[\varepsilon \doteq \sqrt{1-R_\text {p}^2/R_\text {e}^2}\] as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations \[\Delta \left( \delta \tau \right) \] of the Rømer-like, orbital component of the pulsar’s time delay \[\delta \tau \] induced over 10 years by the pN gravitoelectric mass monopole \[\left( \text {Schwarzschild}, GMc^{-2}\right) \], quadrupole \[\left( GMR^2_\text {e}J_2 c^{-2}\right) \], gravitomagnetic spin dipole \[\left( \text {Lense}{-}\text {Thirring},~GSc^{-2}\right) \] and octupole \[\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) \] accelerations along with the Newtonian quadrupolar \[\left( GMR^2_\text {e}J_2\right) \] one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with \[M = 15~\text {M}_\odot ,~R_\text {e} = 5.96~\text {R}_\odot ,~\nu = 0.203,~S = 3.41\times \]\[10^{45}~\text {J}~\text {s},\,J_2 = 1.92\times 10^{-3}\] orbited by a pulsar with an orbital period \[P_\mathrm{b}\simeq \] 40–70 days, the classical oblateness-driven effects are at the \[\lesssim 4-150~\text {s}\] level, while the pN shifts are of the order of \[ \lesssim 1.5-20~\text {s}~\left( GMc^{-2}\right) ,~ \lesssim 10-40~\text {ms}~\left( GMR^2_\text {e} J_2 c^{-2}\right) ,\]\[~ \lesssim 0.5-6~\text {ms}~\left( GSc^{-2}\right) ,~ \lesssim 5-20~\upmu \text {s}~\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) \], depending on their orbital configuration. The root-mean-square (rms) timing residuals \[\upsigma _{\tau }\] of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are \[\lesssim \text {ms}\]. Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian (\[GMc^{-2},\,GMJ_2c^{-2}\], and, perhaps, \[GSc^{-2}\] as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum [Formula omitted], dimensionless mass quadrupole moment [Formula omitted], equatorial and polar radii [Formula omitted], flattening [Formula omitted], and ellipticity [Formula omitted] as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations [Formula omitted] of the Rømer-like, orbital component of the pulsar's time delay [Formula omitted] induced over 10 years by the pN gravitoelectric mass monopole [Formula omitted], quadrupole [Formula omitted], gravitomagnetic spin dipole [Formula omitted] and octupole [Formula omitted] accelerations along with the Newtonian quadrupolar [Formula omitted] one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with [Formula omitted] [Formula omitted] orbited by a pulsar with an orbital period [Formula omitted] 40-70 days, the classical oblateness-driven effects are at the [Formula omitted] level, while the pN shifts are of the order of [Formula omitted] [Formula omitted], depending on their orbital configuration. The root-mean-square (rms) timing residuals [Formula omitted] of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are [Formula omitted]. Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian ( [Formula omitted], and, perhaps, [Formula omitted] as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M , spin angular momentum S , dimensionless mass quadrupole moment J 2 , equatorial and polar radii R e , R p , flattening ν ≐ ( R e - R p ) / R e , and ellipticity ε ≐ 1 - R p 2 / R e 2 as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations Δ δ τ of the Rømer-like, orbital component of the pulsar’s time delay δ τ induced over 10 years by the pN gravitoelectric mass monopole Schwarzschild , G M c - 2 , quadrupole G M R e 2 J 2 c - 2 , gravitomagnetic spin dipole Lense - Thirring , G S c - 2 and octupole G S R e 2 ε 2 c - 2 accelerations along with the Newtonian quadrupolar G M R e 2 J 2 one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with M = 15 M ⊙ , R e = 5.96 R ⊙ , ν = 0.203 , S = 3.41 × 10 45 J s , J 2 = 1.92 × 10 - 3 orbited by a pulsar with an orbital period P b ≃ 40–70 days, the classical oblateness-driven effects are at the ≲ 4 - 150 s level, while the pN shifts are of the order of ≲ 1.5 - 20 s G M c - 2 , ≲ 10 - 40 ms G M R e 2 J 2 c - 2 , ≲ 0.5 - 6 ms G S c - 2 , ≲ 5 - 20 μ s G S R e 2 ε 2 c - 2 , depending on their orbital configuration. The root-mean-square (rms) timing residuals σ τ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are ≲ ms . Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian ( G M c - 2 , G M J 2 c - 2 , and, perhaps, G S c - 2 as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum $\mathbf S $ , dimensionless mass quadrupole moment $J_2$ , equatorial and polar radii $R_\text {e},~R_\text {p}$ , flattening $\nu \doteq (R_\text {e}-R_\text {p})/R_\text {e}$ , and ellipticity $\varepsilon \doteq \sqrt{1-R_\text {p}^2/R_\text {e}^2}$ as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations $\Delta \left( \delta \tau \right) $ of the Rømer-like, orbital component of the pulsar’s time delay $\delta \tau $ induced over 10 years by the pN gravitoelectric mass monopole $\left( \text {Schwarzschild}, GMc^{-2}\right) $ , quadrupole $\left( GMR^2_\text {e}J_2 c^{-2}\right) $ , gravitomagnetic spin dipole $\left( \text {Lense}{-}\text {Thirring},~GSc^{-2}\right) $ and octupole $\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) $ accelerations along with the Newtonian quadrupolar $\left( GMR^2_\text {e}J_2\right) $ one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with $M = 15~\text {M}_\odot ,~R_\text {e} = 5.96~\text {R}_\odot ,~\nu = 0.203,~S = 3.41\times $ $10^{45}~\text {J}~\text {s},\,J_2 = 1.92\times 10^{-3}$ orbited by a pulsar with an orbital period $P_\mathrm{b}\simeq $ 40–70 days, the classical oblateness-driven effects are at the $\lesssim 4-150~\text {s}$ level, while the pN shifts are of the order of $ \lesssim 1.5-20~\text {s}~\left( GMc^{-2}\right) ,~ \lesssim 10-40~\text {ms}~\left( GMR^2_\text {e} J_2 c^{-2}\right) ,$ $~ \lesssim 0.5-6~\text {ms}~\left( GSc^{-2}\right) ,~ \lesssim 5-20~\upmu \text {s}~\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) $ , depending on their orbital configuration. The root-mean-square (rms) timing residuals $\upsigma _{\tau }$ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are $\lesssim \text {ms}$ . Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian ( $GMc^{-2},\,GMJ_2c^{-2}$ , and, perhaps, $GSc^{-2}$ as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
Abstract We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum $$\mathbf S $$ S , dimensionless mass quadrupole moment $$J_2$$ J2 , equatorial and polar radii $$R_\text {e},~R_\text {p}$$ Re,Rp , flattening $$\nu \doteq (R_\text {e}-R_\text {p})/R_\text {e}$$ ν≐(Re-Rp)/Re , and ellipticity $$\varepsilon \doteq \sqrt{1-R_\text {p}^2/R_\text {e}^2}$$ ε≐1-Rp2/Re2 as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations $$\Delta \left( \delta \tau \right) $$ Δδτ of the Rømer-like, orbital component of the pulsar’s time delay $$\delta \tau $$ δτ induced over 10 years by the pN gravitoelectric mass monopole $$\left( \text {Schwarzschild}, GMc^{-2}\right) $$ Schwarzschild,GMc-2 , quadrupole $$\left( GMR^2_\text {e}J_2 c^{-2}\right) $$ GMRe2J2c-2 , gravitomagnetic spin dipole $$\left( \text {Lense}{-}\text {Thirring},~GSc^{-2}\right) $$ Lense-Thirring,GSc-2 and octupole $$\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) $$ GSRe2ε2c-2 accelerations along with the Newtonian quadrupolar $$\left( GMR^2_\text {e}J_2\right) $$ GMRe2J2 one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with $$M = 15~\text {M}_\odot ,~R_\text {e} = 5.96~\text {R}_\odot ,~\nu = 0.203,~S = 3.41\times $$ M=15M⊙,Re=5.96R⊙,ν=0.203,S=3.41× $$10^{45}~\text {J}~\text {s},\,J_2 = 1.92\times 10^{-3}$$ 1045Js,J2=1.92×10-3 orbited by a pulsar with an orbital period $$P_\mathrm{b}\simeq $$ Pb≃ 40–70 days, the classical oblateness-driven effects are at the $$\lesssim 4-150~\text {s}$$ ≲4-150s level, while the pN shifts are of the order of $$ \lesssim 1.5-20~\text {s}~\left( GMc^{-2}\right) ,~ \lesssim 10-40~\text {ms}~\left( GMR^2_\text {e} J_2 c^{-2}\right) ,$$ ≲1.5-20sGMc-2,≲10-40msGMRe2J2c-2, $$~ \lesssim 0.5-6~\text {ms}~\left( GSc^{-2}\right) ,~ \lesssim 5-20~\upmu \text {s}~\left( GSR^2_\text {e}\varepsilon ^2 c^{-2}\right) $$ ≲0.5-6msGSc-2,≲5-20μsGSRe2ε2c-2 , depending on their orbital configuration. The root-mean-square (rms) timing residuals $$\upsigma _{\tau }$$ στ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are $$\lesssim \text {ms}$$ ≲ms . Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian ($$GMc^{-2},\,GMJ_2c^{-2}$$ GMc-2,GMJ2c-2 , and, perhaps, $$GSc^{-2}$$ GSc-2 as well) key features of the distorted gravitational fields of the fast rotating stars hosted by them.
ArticleNumber 690
Audience Academic
Author Rieutord, Michel
de Souza, Armando Domiciano
Iorio, Lorenzo
Rozelot, Jean-Pierre
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Iorio
  fullname: Iorio, Lorenzo
  email: lorenzo.iorio@libero.it
  organization: Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione
– sequence: 2
  givenname: Michel
  surname: Rieutord
  fullname: Rieutord, Michel
  organization: IRAP, Université de Toulouse, CNRS, UPS, CNES
– sequence: 3
  givenname: Jean-Pierre
  surname: Rozelot
  fullname: Rozelot, Jean-Pierre
  organization: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS
– sequence: 4
  givenname: Armando Domiciano
  surname: de Souza
  fullname: de Souza, Armando Domiciano
  organization: Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, UMR7293 Lagrange
BackLink https://hal.science/hal-02147941$$DView record in HAL
BookMark eNqFkktr3DAUhU1JoUnav1AEXXXhRJIly4ZuhqFNhg4U-liLaz0cDR7ZleSQ_vvIcdqQboIWki7fudzDPWfFiR-9KYr3BF8QwvClmQ7qMhKMOS0xaUtBWlbyV8UpYRUr61w--fdm7E1xFuMBY0wZbk6LeTtAjE7BgMBr1BtvQn4HM0Byty4mp9A0xlR-NdNgggOPjLVGpYicR53zEP6gaR4ihIhuMuh8jyzEhMKY4OF3hExG83s2XhkUUybfFq8tDNG8e7zPi19fPv_cXpf7b1e77WZfKs5pKrvaVpQoTTvTdV2jRF0xLXTNu7oRVWutZrYTBDMuoDUtbgEawauONqBNo3F1XuzWvnqEg5yCO-Zx5QhOPhTG0EsI2eJgJFZWCN1oBbRlFW_BKt0IxalluGo45F4f1143MDxrdb3Zy6WGKWGiZeSWZPbDyk5hzL5jkodxDj5blZQKRkktmipTFyvVQx7AeTumACofbY5O5SVbl-sb3tY1Z4KIpxEeBZlJ5i71MMcodz--P2c_rawKY4zBWKncspAsCeAGSbBc0iOX9Mg1PTKnRy7pkTzL6__kfy2_KBSrMGaB7014sv6C8h5HMN8c
CitedBy_id crossref_primary_10_1016_j_dark_2024_101770
crossref_primary_10_1140_epjc_s10052_024_13298_0
Cites_doi 10.1086/673401
10.1111/j.1365-2966.2006.10887.x
10.1086/147949
10.1007/s10714-010-0939-y
10.1086/187231
10.3847/1538-4365/aab5b0
10.1088/0264-9381/23/15/006
10.1088/0264-9381/31/24/245012
10.1103/PhysRevD.77.044029
10.1007/s10569-015-9626-3
10.1142/S0218271815500674
10.1023/A:1005238718479
10.1007/s00190-016-0927-4
10.1007/s00159-013-0069-0
10.1088/2041-8205/732/1/L11
10.1016/j.newar.2010.09.026
10.1046/j.1365-8711.1998.01570.x
10.1086/317233
10.1038/381584a0
10.1103/PhysRevD.89.044043
10.1088/0004-637X/726/1/15
10.1111/j.1365-2966.2012.21691.x
10.1103/PhysRevLett.66.2549
10.1007/BF00051205
10.1126/science.1094645
10.1086/186300
10.1093/mnras/stt2123
10.1088/0004-637X/777/1/68
10.1051/0004-6361/201220844
10.1007/BF01232949
10.1007/s10714-011-1302-7
10.1098/rsos.180640
10.1103/PhysRevD.75.062002
10.1086/306732
10.1111/j.1365-2966.2004.07806.x
10.1093/mnras/280.3.L31
10.1111/j.1365-2966.2004.07740.x
10.1038/nature02124
10.1103/PhysRevLett.108.231104
10.1051/0004-6361/201424144
10.1103/PhysRevLett.106.221101
10.1007/s10569-018-9836-6
10.1046/j.1365-8711.2001.04447.x
10.1093/mnras/stv236
10.2478/s11534-013-0189-1
10.1098/rsta.1974.0046
10.1007/BF00756587
10.1088/0264-9381/32/15/155012
10.1086/176350
10.1088/0264-9381/30/19/195011
10.1093/mnras/stz452
10.1093/mnras/stz304
10.1111/j.1365-2966.2009.15938.x
10.1126/science.1172740
10.1016/j.jcp.2016.05.011
10.1103/PhysRevD.12.329
10.1007/978-3-642-73406-9
10.1103/PhysRevD.74.124006
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 Springer
The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 Springer
– notice: The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
ISR
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.1140/epjc/s10052-019-7194-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
EndPage 12
ExternalDocumentID oai_doaj_org_article_0cf77d8dca294359afcd87c52f40385a
oai:HAL:hal-02147941v1
A596654717
10_1140_epjc_s10052_019_7194_5
GroupedDBID -5F
-5G
-A0
-BR
-Y2
-~X
.86
0R~
199
1SB
29G
29Q
2JY
2P1
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
ABDBF
ABEEZ
ABMNI
ABQSL
ABTEG
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADINQ
ADKPE
ADMLS
AENEX
AFBBN
AFFNX
AFGXO
AFKRA
AFPKN
AFWTZ
AGJBK
AGWIL
AHSBF
AHYZX
AI.
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EJD
EMK
EPL
ER.
ESX
FEDTE
GQ6
GQ8
GROUPED_DOAJ
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
N2Q
NB0
NU0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
RZK
S1Z
S27
S3B
SDH
SOJ
SPH
SZN
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
VH1
WK8
Z45
Z7Y
~8M
AAYXX
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHWEU
AIXLP
CITATION
PHGZM
PHGZT
PQGLB
7U5
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c552t-b6f321cd2bebbb8c7634d7d65b68739ffd4fb710457a9e909aa8753b28ade8d03
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1434-6044
IngestDate Tue Oct 14 19:07:43 EDT 2025
Sat Nov 01 11:35:41 EDT 2025
Sat Oct 18 23:45:36 EDT 2025
Mon Oct 20 16:45:41 EDT 2025
Thu Oct 16 13:57:41 EDT 2025
Tue Nov 18 22:45:21 EST 2025
Sat Nov 29 02:58:37 EST 2025
Fri Feb 21 02:33:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-b6f321cd2bebbb8c7634d7d65b68739ffd4fb710457a9e909aa8753b28ade8d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9395-6954
0000-0002-5369-1381
OpenAccessLink https://doaj.org/article/0cf77d8dca294359afcd87c52f40385a
PQID 2274216783
PQPubID 2034659
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0cf77d8dca294359afcd87c52f40385a
hal_primary_oai_HAL_hal_02147941v1
proquest_journals_2274216783
gale_infotracacademiconefile_A596654717
gale_incontextgauss_ISR_A596654717
crossref_citationtrail_10_1140_epjc_s10052_019_7194_5
crossref_primary_10_1140_epjc_s10052_019_7194_5
springer_journals_10_1140_epjc_s10052_019_7194_5
PublicationCentury 2000
PublicationDate 20190800
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 8
  year: 2019
  text: 20190800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Particles and Fields
PublicationTitle The European physical journal. C, Particles and fields
PublicationTitleAbbrev Eur. Phys. J. C
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Springer Verlag (Germany)
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: Springer Verlag (Germany)
– name: SpringerOpen
References LucchesiDMAnselmoLBassanMPardiniCPeronRPucaccoGViscoMClass. Quantum Gravity2015321550122015CQGra..32o5012L
PanhansMSoffelMHClass. Quantum Gravity2014312450122014CQGra..31x5012P
M. Kramer, in The Twelfth Marcel Grossmann Meeting. Proceedings of the MG12 Meeting on General Relativity, eds. T. Damour, R. Jantzen, R. Ruffini (World Scientific, Singapore, 2012), pp. 241–260
MeichsnerJSoffelMHCelest. Mech. Dyn. Astron.201512312015CeMDA.123....1M
PapapetrouAPhilos. Trans. R. Soc. Lond. A1951209248
SrinivasanGNew Astron. Rev.201054932010NewAR..54...93S
HelledRAndersonJDPodolakMSchubertGAstrophys. J.2011726152011ApJ...726...15H
Le Poncin-LafitteCTeyssandierPPhys. Rev. D2008770440292008PhRvD..77d4029L
SchannerMSoffelMCelest. Mech. Dyn. Astron.2018130402018CeMDA.130...40S
BrumbergVAEssential Relativistic Celestial Mechanics1991BristolAdam Hilger0743.70001
MadsenECMNRAS201242523782012MNRAS.425.2378M
Frutos-AlfaroFSoffelMR. Soc. Open Sci.201851806402018RSOS....580640F3852252
A. Einstein, (Sitzber. Preuss. Akad., 1915), p. 831
NegueruelaIRibóMHerreroALorenzoJKhangulyanDAharonianFAAstrophys. J. Lett.2011732L112011ApJ...732L..11N
WexNMNRAS1998298671998MNRAS.298...67W
BauböckMBertiEPsaltisDÖzelFAstrophys. J.2013777682013ApJ...777...68B
IorioLMNRAS201948448112019MNRAS.484.4811I
M. Kramer, in IAU Symposium, Vol. 337, Pulsar Astrophysics the Next Fifty Years, eds. P. Weltevrede, B.B.P. Perera, L.L. Preston, S. Sanidas, (Cambridge University Press, Cambridge 2018), pp. 128–133
StairsIHMNRAS20013259792001MNRAS.325..979S
SoffelMFrutosFJ. Geodesy20169013452016JGeod..90.1345S
IorioLInt. J. Mod. Phys. D20152415500672015IJMPD..2450067I
ShannonRMJohnstonSManchesterRNMNRAS201443732552014MNRAS.437.3255S
RenzettiGOpen Phys.2013115312013OPhy...11..531R
SoffelMHRelativity in Astrometry, Celestial Mechanics and Geodesy1989HeidelbergSpringer
RiviniusTCarciofiACMartayanCA&A Rev.201321692013A&ARv..21...69R
KaspiVMJohnstonSBellJFManchesterRNBailesMBessellMLyneAGD’AmicoNAstrophys. J.1994423L431994ApJ...423L..43K
EspinosaLFRieutordMA&A2013552A352013A&A...552A..35E
JamesRAAstrophys. J.19641405521964ApJ...140..552J191616
MashhoonBSinghDPhys. Rev. D2006741240062006PhRvD..74l4006M
LevatoHGrossoMPASP201312511912013PASP..125.1191L
BarkerBMO’ConnellRFGen. Relativ. Gravit.1979111491979GReGr..11..149B
KaspiVMBailesMManchesterRNStappersBWBellJFNature19963815841996Natur.381..584K
LyneAGStappersBWKeithMJRayPSKerrMCamiloFJohnsonTJMNRAS20154515812015MNRAS.451..581L
HobbsGLyneAGKramerMMNRAS201040210272010MNRAS.402.1027H
ArchibaldAMScience200932414112009Sci...324.1411A
KopeikinSMMakarovVVPhys. Rev. D2007750620022007PhRvD..75f2002K
LaiDBildstenLKaspiVMAstrophys. J.19954528191995ApJ...452..819L
PetitGLuzumBIERS Tech. Note20103612010ITN....36....1P
EverittCWFPhys. Rev. Lett.20111062211012011PhRvL.106v1101E
MathissonMGen. Relativ. Gravit.20104210112010GReGr..42.1011M2602798
HeimbergerJSoffelMRuderHCelest. Mech. Dyn. Astron.1990472051990CeMDA..47..205H
BarkerBMO’ConnellRFPhys. Rev. D1975123291975PhRvD..12..329B
M. S. Kehl, N. Wex, M. Kramer, K. Liu, in Proceedings of the MG14 Meeting on General Relativity The Fourteenth Marcel Grossmann Meeting, eds. M. Bianchi, R. Jantzen, R. Ruffini (World Scientific, Singapore, 2017), pp. 1860–1865
TamCRStairsIHWagnerSKramerMManchesterRNLyneAGCamiloFD’AmicoNMNRAS201040618482010MNRAS.406.1848T
DixonWGPhilos. Trans. R. Soc. Lond. A1974277591974RSPTA.277...59D
LorimerDRMNRAS20063727772006MNRAS.372..777L
A.M. Archibald, V.M. Kaspi, J.W.T. Hessels, B. Stappers, G. Janssen, A. Lyne (2013), arXiv:1311.5161
LaarakkersWGPoissonEAstrophys. J.19995122821999ApJ...512..282L
WillCMPhys. Rev. D2014890440432014PhRvD..89d4043W
KonackiMMaciejewskiAJWolszczanAAstrophys. J.20005449212000ApJ...544..921K
WangNJohnstonSManchesterRNMNRAS20043515992004MNRAS.351..599W
IorioLGen. Relativ. Gravit.2012447192012GReGr..44..719I
AbbasUBucciarelliBLattanziMGMNRAS201948511472019MNRAS.485.1147A
BurgayMNature20034265312003Natur.426..531B
de DomicianoSAA&A2014569A102014A&A...569A..10D
LyneAGScience200430311532004Sci...303.1153L
SoffelMWirrerRSchastokJRuderHSchneiderMCelest. Mech. Dyn. Astron.19874281
IorioLClass. Quantum Gravity2013301950112013CQGra..30s5011I
CrostaMTMignardFClass. Quantum Gravity20062348532006CQGra..23.4853C
DamourTSchaeferGPhys. Rev. Lett.19916625491991PhRvL..66.2549D
ArzoumanianZAstrophys. J. Suppl.2018235372018ApJS..235...37A
PorterJMMNRAS1996280L311996MNRAS.280L..31P
RozelotJPGodierSLefebvreSSolar Phys.20011982232001SoPh..198..223R
BertiEStergioulasNMNRAS200435014162004MNRAS.350.1416B
PappasGApostolatosTAPhys. Rev. Lett.20121082311042012PhRvL.108w1104P
JohnstonSManchesterRNLyneAGBailesMKaspiVMQiaoGD’AmicoNAstrophys. J.1992387L371992ApJ...387L..37J
RieutordMEspinosaLFPutignyBJ. Comput. Phys.20163182772016JCoPh.318..277R3503997
J Heimberger (7194_CR19) 1990; 47
M Bauböck (7194_CR7) 2013; 777
VM Kaspi (7194_CR29) 1994; 423
M Soffel (7194_CR60) 1987; 42
S Johnston (7194_CR27) 1992; 387
M Burgay (7194_CR10) 2003; 426
R Helled (7194_CR20) 2011; 726
RA James (7194_CR26) 1964; 140
SA de Domiciano (7194_CR14) 2014; 569
AG Lyne (7194_CR41) 2004; 303
MH Soffel (7194_CR61) 1989
JM Porter (7194_CR52) 1996; 280
F Frutos-Alfaro (7194_CR18) 2018; 5
B Mashhoon (7194_CR44) 2006; 74
E Berti (7194_CR8) 2004; 350
VA Brumberg (7194_CR9) 1991
T Rivinius (7194_CR55) 2013; 21
I Negueruela (7194_CR47) 2011; 732
VM Kaspi (7194_CR28) 1996; 381
EC Madsen (7194_CR43) 2012; 425
CM Will (7194_CR67) 2014; 89
Z Arzoumanian (7194_CR4) 2018; 235
T Damour (7194_CR12) 1991; 66
J Meichsner (7194_CR46) 2015; 123
7194_CR30
G Srinivasan (7194_CR62) 2010; 54
M Konacki (7194_CR31) 2000; 544
N Wex (7194_CR66) 1998; 298
7194_CR34
7194_CR33
C Le Poncin-Lafitte (7194_CR37) 2008; 77
L Iorio (7194_CR24) 2015; 24
CR Tam (7194_CR64) 2010; 406
BM Barker (7194_CR5) 1975; 12
N Wang (7194_CR65) 2004; 351
MT Crosta (7194_CR11) 2006; 23
DM Lucchesi (7194_CR40) 2015; 32
M Panhans (7194_CR48) 2014; 31
G Hobbs (7194_CR21) 2010; 402
LF Espinosa (7194_CR16) 2013; 552
M Mathisson (7194_CR45) 2010; 42
CWF Everitt (7194_CR17) 2011; 106
AM Archibald (7194_CR3) 2009; 324
G Pappas (7194_CR50) 2012; 108
G Petit (7194_CR51) 2010; 36
WG Laarakkers (7194_CR35) 1999; 512
D Lai (7194_CR36) 1995; 452
M Soffel (7194_CR59) 2016; 90
JP Rozelot (7194_CR56) 2001; 198
H Levato (7194_CR38) 2013; 125
RM Shannon (7194_CR58) 2014; 437
BM Barker (7194_CR6) 1979; 11
7194_CR2
M Schanner (7194_CR57) 2018; 130
SM Kopeikin (7194_CR32) 2007; 75
L Iorio (7194_CR25) 2019; 484
L Iorio (7194_CR22) 2012; 44
U Abbas (7194_CR1) 2019; 485
IH Stairs (7194_CR63) 2001; 325
M Rieutord (7194_CR54) 2016; 318
AG Lyne (7194_CR42) 2015; 451
G Renzetti (7194_CR53) 2013; 11
DR Lorimer (7194_CR39) 2006; 372
7194_CR15
A Papapetrou (7194_CR49) 1951; 209
WG Dixon (7194_CR13) 1974; 277
L Iorio (7194_CR23) 2013; 30
References_xml – reference: MeichsnerJSoffelMHCelest. Mech. Dyn. Astron.201512312015CeMDA.123....1M
– reference: BauböckMBertiEPsaltisDÖzelFAstrophys. J.2013777682013ApJ...777...68B
– reference: M. S. Kehl, N. Wex, M. Kramer, K. Liu, in Proceedings of the MG14 Meeting on General Relativity The Fourteenth Marcel Grossmann Meeting, eds. M. Bianchi, R. Jantzen, R. Ruffini (World Scientific, Singapore, 2017), pp. 1860–1865
– reference: RozelotJPGodierSLefebvreSSolar Phys.20011982232001SoPh..198..223R
– reference: RieutordMEspinosaLFPutignyBJ. Comput. Phys.20163182772016JCoPh.318..277R3503997
– reference: Frutos-AlfaroFSoffelMR. Soc. Open Sci.201851806402018RSOS....580640F3852252
– reference: HeimbergerJSoffelMRuderHCelest. Mech. Dyn. Astron.1990472051990CeMDA..47..205H
– reference: IorioLClass. Quantum Gravity2013301950112013CQGra..30s5011I
– reference: KaspiVMBailesMManchesterRNStappersBWBellJFNature19963815841996Natur.381..584K
– reference: A.M. Archibald, V.M. Kaspi, J.W.T. Hessels, B. Stappers, G. Janssen, A. Lyne (2013), arXiv:1311.5161
– reference: BurgayMNature20034265312003Natur.426..531B
– reference: WillCMPhys. Rev. D2014890440432014PhRvD..89d4043W
– reference: IorioLGen. Relativ. Gravit.2012447192012GReGr..44..719I
– reference: DixonWGPhilos. Trans. R. Soc. Lond. A1974277591974RSPTA.277...59D
– reference: LyneAGStappersBWKeithMJRayPSKerrMCamiloFJohnsonTJMNRAS20154515812015MNRAS.451..581L
– reference: JamesRAAstrophys. J.19641405521964ApJ...140..552J191616
– reference: LyneAGScience200430311532004Sci...303.1153L
– reference: ArzoumanianZAstrophys. J. Suppl.2018235372018ApJS..235...37A
– reference: EspinosaLFRieutordMA&A2013552A352013A&A...552A..35E
– reference: RenzettiGOpen Phys.2013115312013OPhy...11..531R
– reference: M. Kramer, in IAU Symposium, Vol. 337, Pulsar Astrophysics the Next Fifty Years, eds. P. Weltevrede, B.B.P. Perera, L.L. Preston, S. Sanidas, (Cambridge University Press, Cambridge 2018), pp. 128–133
– reference: CrostaMTMignardFClass. Quantum Gravity20062348532006CQGra..23.4853C
– reference: PorterJMMNRAS1996280L311996MNRAS.280L..31P
– reference: LevatoHGrossoMPASP201312511912013PASP..125.1191L
– reference: LucchesiDMAnselmoLBassanMPardiniCPeronRPucaccoGViscoMClass. Quantum Gravity2015321550122015CQGra..32o5012L
– reference: RiviniusTCarciofiACMartayanCA&A Rev.201321692013A&ARv..21...69R
– reference: KonackiMMaciejewskiAJWolszczanAAstrophys. J.20005449212000ApJ...544..921K
– reference: A. Einstein, (Sitzber. Preuss. Akad., 1915), p. 831
– reference: PanhansMSoffelMHClass. Quantum Gravity2014312450122014CQGra..31x5012P
– reference: ArchibaldAMScience200932414112009Sci...324.1411A
– reference: ShannonRMJohnstonSManchesterRNMNRAS201443732552014MNRAS.437.3255S
– reference: WexNMNRAS1998298671998MNRAS.298...67W
– reference: LaiDBildstenLKaspiVMAstrophys. J.19954528191995ApJ...452..819L
– reference: MathissonMGen. Relativ. Gravit.20104210112010GReGr..42.1011M2602798
– reference: NegueruelaIRibóMHerreroALorenzoJKhangulyanDAharonianFAAstrophys. J. Lett.2011732L112011ApJ...732L..11N
– reference: SoffelMWirrerRSchastokJRuderHSchneiderMCelest. Mech. Dyn. Astron.19874281
– reference: de DomicianoSAA&A2014569A102014A&A...569A..10D
– reference: HelledRAndersonJDPodolakMSchubertGAstrophys. J.2011726152011ApJ...726...15H
– reference: PetitGLuzumBIERS Tech. Note20103612010ITN....36....1P
– reference: SoffelMHRelativity in Astrometry, Celestial Mechanics and Geodesy1989HeidelbergSpringer
– reference: TamCRStairsIHWagnerSKramerMManchesterRNLyneAGCamiloFD’AmicoNMNRAS201040618482010MNRAS.406.1848T
– reference: BarkerBMO’ConnellRFGen. Relativ. Gravit.1979111491979GReGr..11..149B
– reference: IorioLInt. J. Mod. Phys. D20152415500672015IJMPD..2450067I
– reference: Le Poncin-LafitteCTeyssandierPPhys. Rev. D2008770440292008PhRvD..77d4029L
– reference: WangNJohnstonSManchesterRNMNRAS20043515992004MNRAS.351..599W
– reference: MadsenECMNRAS201242523782012MNRAS.425.2378M
– reference: BarkerBMO’ConnellRFPhys. Rev. D1975123291975PhRvD..12..329B
– reference: EverittCWFPhys. Rev. Lett.20111062211012011PhRvL.106v1101E
– reference: LaarakkersWGPoissonEAstrophys. J.19995122821999ApJ...512..282L
– reference: PappasGApostolatosTAPhys. Rev. Lett.20121082311042012PhRvL.108w1104P
– reference: SchannerMSoffelMCelest. Mech. Dyn. Astron.2018130402018CeMDA.130...40S
– reference: DamourTSchaeferGPhys. Rev. Lett.19916625491991PhRvL..66.2549D
– reference: SrinivasanGNew Astron. Rev.201054932010NewAR..54...93S
– reference: KopeikinSMMakarovVVPhys. Rev. D2007750620022007PhRvD..75f2002K
– reference: StairsIHMNRAS20013259792001MNRAS.325..979S
– reference: BrumbergVAEssential Relativistic Celestial Mechanics1991BristolAdam Hilger0743.70001
– reference: SoffelMFrutosFJ. Geodesy20169013452016JGeod..90.1345S
– reference: AbbasUBucciarelliBLattanziMGMNRAS201948511472019MNRAS.485.1147A
– reference: IorioLMNRAS201948448112019MNRAS.484.4811I
– reference: LorimerDRMNRAS20063727772006MNRAS.372..777L
– reference: KaspiVMJohnstonSBellJFManchesterRNBailesMBessellMLyneAGD’AmicoNAstrophys. J.1994423L431994ApJ...423L..43K
– reference: HobbsGLyneAGKramerMMNRAS201040210272010MNRAS.402.1027H
– reference: JohnstonSManchesterRNLyneAGBailesMKaspiVMQiaoGD’AmicoNAstrophys. J.1992387L371992ApJ...387L..37J
– reference: M. Kramer, in The Twelfth Marcel Grossmann Meeting. Proceedings of the MG12 Meeting on General Relativity, eds. T. Damour, R. Jantzen, R. Ruffini (World Scientific, Singapore, 2012), pp. 241–260
– reference: BertiEStergioulasNMNRAS200435014162004MNRAS.350.1416B
– reference: PapapetrouAPhilos. Trans. R. Soc. Lond. A1951209248
– reference: MashhoonBSinghDPhys. Rev. D2006741240062006PhRvD..74l4006M
– volume: 125
  start-page: 1191
  year: 2013
  ident: 7194_CR38
  publication-title: PASP
  doi: 10.1086/673401
– volume: 372
  start-page: 777
  year: 2006
  ident: 7194_CR39
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10887.x
– volume: 140
  start-page: 552
  year: 1964
  ident: 7194_CR26
  publication-title: Astrophys. J.
  doi: 10.1086/147949
– volume: 42
  start-page: 1011
  year: 2010
  ident: 7194_CR45
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-010-0939-y
– volume: 423
  start-page: L43
  year: 1994
  ident: 7194_CR29
  publication-title: Astrophys. J.
  doi: 10.1086/187231
– volume: 235
  start-page: 37
  year: 2018
  ident: 7194_CR4
  publication-title: Astrophys. J. Suppl.
  doi: 10.3847/1538-4365/aab5b0
– volume: 23
  start-page: 4853
  year: 2006
  ident: 7194_CR11
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/23/15/006
– volume: 31
  start-page: 245012
  year: 2014
  ident: 7194_CR48
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/31/24/245012
– volume: 36
  start-page: 1
  year: 2010
  ident: 7194_CR51
  publication-title: IERS Tech. Note
– volume-title: Essential Relativistic Celestial Mechanics
  year: 1991
  ident: 7194_CR9
– volume: 77
  start-page: 044029
  year: 2008
  ident: 7194_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.044029
– volume: 123
  start-page: 1
  year: 2015
  ident: 7194_CR46
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-015-9626-3
– volume: 24
  start-page: 1550067
  year: 2015
  ident: 7194_CR24
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271815500674
– volume: 198
  start-page: 223
  year: 2001
  ident: 7194_CR56
  publication-title: Solar Phys.
  doi: 10.1023/A:1005238718479
– volume: 90
  start-page: 1345
  year: 2016
  ident: 7194_CR59
  publication-title: J. Geodesy
  doi: 10.1007/s00190-016-0927-4
– volume: 21
  start-page: 69
  year: 2013
  ident: 7194_CR55
  publication-title: A&A Rev.
  doi: 10.1007/s00159-013-0069-0
– volume: 732
  start-page: L11
  year: 2011
  ident: 7194_CR47
  publication-title: Astrophys. J. Lett.
  doi: 10.1088/2041-8205/732/1/L11
– volume: 54
  start-page: 93
  year: 2010
  ident: 7194_CR62
  publication-title: New Astron. Rev.
  doi: 10.1016/j.newar.2010.09.026
– volume: 298
  start-page: 67
  year: 1998
  ident: 7194_CR66
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01570.x
– volume: 544
  start-page: 921
  year: 2000
  ident: 7194_CR31
  publication-title: Astrophys. J.
  doi: 10.1086/317233
– volume: 381
  start-page: 584
  year: 1996
  ident: 7194_CR28
  publication-title: Nature
  doi: 10.1038/381584a0
– volume: 89
  start-page: 044043
  year: 2014
  ident: 7194_CR67
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.044043
– volume: 726
  start-page: 15
  year: 2011
  ident: 7194_CR20
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/726/1/15
– volume: 425
  start-page: 2378
  year: 2012
  ident: 7194_CR43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21691.x
– volume: 66
  start-page: 2549
  year: 1991
  ident: 7194_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.2549
– volume: 47
  start-page: 205
  year: 1990
  ident: 7194_CR19
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF00051205
– volume: 303
  start-page: 1153
  year: 2004
  ident: 7194_CR41
  publication-title: Science
  doi: 10.1126/science.1094645
– volume: 387
  start-page: L37
  year: 1992
  ident: 7194_CR27
  publication-title: Astrophys. J.
  doi: 10.1086/186300
– volume: 437
  start-page: 3255
  year: 2014
  ident: 7194_CR58
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2123
– ident: 7194_CR15
– volume: 777
  start-page: 68
  year: 2013
  ident: 7194_CR7
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/777/1/68
– volume: 552
  start-page: A35
  year: 2013
  ident: 7194_CR16
  publication-title: A&A
  doi: 10.1051/0004-6361/201220844
– volume: 42
  start-page: 81
  year: 1987
  ident: 7194_CR60
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/BF01232949
– volume: 44
  start-page: 719
  year: 2012
  ident: 7194_CR22
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-011-1302-7
– ident: 7194_CR34
– volume: 406
  start-page: 1848
  year: 2010
  ident: 7194_CR64
  publication-title: MNRAS
– ident: 7194_CR30
– volume: 5
  start-page: 180640
  year: 2018
  ident: 7194_CR18
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.180640
– volume: 75
  start-page: 062002
  year: 2007
  ident: 7194_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.062002
– volume: 512
  start-page: 282
  year: 1999
  ident: 7194_CR35
  publication-title: Astrophys. J.
  doi: 10.1086/306732
– volume: 351
  start-page: 599
  year: 2004
  ident: 7194_CR65
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07806.x
– volume: 280
  start-page: L31
  year: 1996
  ident: 7194_CR52
  publication-title: MNRAS
  doi: 10.1093/mnras/280.3.L31
– volume: 350
  start-page: 1416
  year: 2004
  ident: 7194_CR8
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07740.x
– volume: 426
  start-page: 531
  year: 2003
  ident: 7194_CR10
  publication-title: Nature
  doi: 10.1038/nature02124
– volume: 108
  start-page: 231104
  year: 2012
  ident: 7194_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.231104
– volume: 569
  start-page: A10
  year: 2014
  ident: 7194_CR14
  publication-title: A&A
  doi: 10.1051/0004-6361/201424144
– volume: 106
  start-page: 221101
  year: 2011
  ident: 7194_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.221101
– volume: 130
  start-page: 40
  year: 2018
  ident: 7194_CR57
  publication-title: Celest. Mech. Dyn. Astron.
  doi: 10.1007/s10569-018-9836-6
– volume: 325
  start-page: 979
  year: 2001
  ident: 7194_CR63
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04447.x
– volume: 451
  start-page: 581
  year: 2015
  ident: 7194_CR42
  publication-title: MNRAS
  doi: 10.1093/mnras/stv236
– volume: 11
  start-page: 531
  year: 2013
  ident: 7194_CR53
  publication-title: Open Phys.
  doi: 10.2478/s11534-013-0189-1
– volume: 277
  start-page: 59
  year: 1974
  ident: 7194_CR13
  publication-title: Philos. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1974.0046
– volume: 11
  start-page: 149
  year: 1979
  ident: 7194_CR6
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/BF00756587
– ident: 7194_CR2
– volume: 32
  start-page: 155012
  year: 2015
  ident: 7194_CR40
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/15/155012
– volume: 452
  start-page: 819
  year: 1995
  ident: 7194_CR36
  publication-title: Astrophys. J.
  doi: 10.1086/176350
– volume: 30
  start-page: 195011
  year: 2013
  ident: 7194_CR23
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/30/19/195011
– volume: 485
  start-page: 1147
  year: 2019
  ident: 7194_CR1
  publication-title: MNRAS
  doi: 10.1093/mnras/stz452
– ident: 7194_CR33
– volume: 209
  start-page: 248
  year: 1951
  ident: 7194_CR49
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 484
  start-page: 4811
  year: 2019
  ident: 7194_CR25
  publication-title: MNRAS
  doi: 10.1093/mnras/stz304
– volume: 402
  start-page: 1027
  year: 2010
  ident: 7194_CR21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15938.x
– volume: 324
  start-page: 1411
  year: 2009
  ident: 7194_CR3
  publication-title: Science
  doi: 10.1126/science.1172740
– volume: 318
  start-page: 277
  year: 2016
  ident: 7194_CR54
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.05.011
– volume: 12
  start-page: 329
  year: 1975
  ident: 7194_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.12.329
– volume-title: Relativity in Astrometry, Celestial Mechanics and Geodesy
  year: 1989
  ident: 7194_CR61
  doi: 10.1007/978-3-642-73406-9
– volume: 74
  start-page: 124006
  year: 2006
  ident: 7194_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.124006
SSID ssj0002408
Score 2.2908237
Snippet We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M , spin angular momentum S ,...
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum [Formula...
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum \[\mathbf S...
We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum $\mathbf S...
Abstract We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star of mass M, spin angular momentum...
SourceID doaj
hal
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Angular momentum
Astronomy
Astrophysics
Astrophysics and Cosmology
Binary stars
Dipoles
Electric waves
Electromagnetic radiation
Electromagnetic waves
Elementary Particles
Ellipticity
General Relativity and Quantum Cosmology
Gravitational fields
Gravity
Hadrons
Heavy Ions
Main sequence stars
Measurement Science and Instrumentation
Millisecond pulsars
Nuclear Energy
Nuclear Physics
Orbits
Physics
Physics and Astronomy
Quadrupoles
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
Stellar rotation
String Theory
Time lag
Wave propagation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZYB9JeuKMFBrImJJ6sJqkdO0-oQ5uGmKppXLQ3y5e4DJUkJG1_Pz6O21EexgOPTe0ozvl8cmx_5zsIvc0F7O1XGXHUCkJtRonSRpOCVZYblbsikDG_XfDZTFxfl5dxw62PtMqNTwyO2jYG9sjHOZwp-vuKyfv2F4GqUXC6Gkto7KF9UCqjI7R_cjq7vNr6YhDwCvlFE0qKlNKYI-xXFeOq_WEggy5lwE0oCff9Cdv5PAUV_62v3vsOVMk_4tC_jk7DF-ns0f-O5TF6GGNRPB3A8wTdq-qn6EHghJr-GVqFgplgRKxqi-eDQDUesl_WQeAZt02_JJ-qdgFArnFkh-CbGuuQ6Ivb1aL3a2cMySR-FNipfom7BggA_tdP5Vtu2NzYB6pd_xx9PTv98uGcxCoNxDCWL4ku3CTPjM11pbUWxjssarktmC4En5TOWeq0j2Mo46qsyrRUCtZIOhfKVsKmkxdoVDd1dYiwYyo3PmDyfqSklKbax5LaQ91B2QYu0gSxjXGkiRLmUEljIYf06lSCUeVgVOmNKsGokiVovO3XDiIe_-xxArbftgYR7nCh6eYyzmmZGse5FdZDuvRRZ6mcsYIbljsK560qQceAHAkyGzXweOZq1ffy4-crOWVlKPuc8QS9i41c48diVEyL8G8ElLl2Wh57BO480vn0QsI1EL7zjjVbZwk62kBORm_Uy1u8JSjdgPb277tfxcu77_gKHeQwfQIn8giNlt2qeo3um_Xypu_exPn4GxgYPAQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaAlIvvBGBgqwKiZPVJGvHznFBVEVUFWqh6s3yI94WLdlVkt3f3xknWVgkQHBMYkfxeDweZ-b7hpA3ucJ_-1XGAveKcZ9xZqyzrBCVl87koYjJmJen8uxMXV2Vn3eIGrEwMdt9DElGS93z2aZH1fKbQ8RbKjCXoGQSjt9M7JI7sOUpXJLnF5cbG4zEXRFXNOGsSDkfsMG_f8_WthTZ-zc2evcaUyR_8j9_CZnGnej4wf-P4SG5P3ifdNqryyOyU9WPyb2YBeraJ2QVS2TitFFTezrrKalpj3dZR0pnuly0HftULeeoujUd8kHoTU1thPbS5WrewmmZInwEvo0G03a0WWDIH66-G2g55m9TcE2b9in5evzhy_sTNtRlYE6IvGO2CJM8cz63lbVWOTBR3EtfCFsoOSlD8DxY8Fy4kKasyrQ0Bk9FNlfGV8qnk2dkr17U1XNCgzC5AxcJLEfJOU8teI8WlDtgoQap0oSIcVq0G0jLsXbGXPeA6lSjSHUvUg0i1ShSLRJytOm37Gk7_trjHc76pjXSbscbi2amh1WsUxek9MqDEpfgZ5YmOK-kE3ngGGE1CTlEndFIrFFj5s7MrNpWf7w411NRxkLPmUzI26FRWMBYnBmAECAR5OLaankIurf1SSfTU433kOoOTGm2zhJyMKqmHuxPq3OMwMMqVJOEpKMq_nj8Z1G8-PcuL8l-jgodMyMPyF7XrKpX5K5bdzdt8zquzVuXHDXJ
  priority: 102
  providerName: Springer Nature
Title Classical and general relativistic post-Keplerian effects in binary pulsars hosting fast rotating main sequence stars
URI https://link.springer.com/article/10.1140/epjc/s10052-019-7194-5
https://www.proquest.com/docview/2274216783
https://hal.science/hal-02147941
https://doaj.org/article/0cf77d8dca294359afcd87c52f40385a
Volume 79
WOSCitedRecordID wos000481749300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: RSV
  dateStart: 19980103
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1434-6052
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002408
  issn: 1434-6044
  databaseCode: C24
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfYAIkXxKcIjMqakHiymqR27Dx206ZNjKrqYBq8WP6Ix1BJq6bt38-dk5aVB_bCSyTHtuTcnc938d3vCPmQK_y3X2UscK8Y9xlnxjrLClF56UweihiMeXUhRyN1fV2O75T6wpiwFh64JVw_dUFKrzzMK-FoL01wXkkn8sDxUiuaRmD1bJypTgcjcFfMKxpwVqScd7nB4E30q_lPh5lzqcCYhJJJcOOZ2DmWInr_Vkfv_cAQyTv2519XpvEkOn1GnnYmJB22S39OHlT1C_I4hnK65iVZxTqXSHtqak9vWlxp2iatrCMuM53PmiX7VM2nKH817YI66G1NbczPpfPVtAGXl2IOCCyCBtMs6WKG9_bQ-mVg5CYIm4J9uWheka-nJ1-Oz1hXXIE5IfIls0UY5Jnzua2stcqBnuFe-kLYQslBGYLnwYL5wYU0ZVWmpTHo2thcGV8pnw5ek_16VldvCA3C5A7sHNj-Jec8tWACWpDQgNUWpEoTIja01a5DHscCGFPdZkWnGnmiW55o4IlGnmiRkP523rzF3rh3xhGybjsasbPjC5Ao3UmUvk-iEnKIjNeIjlFj-M2NWTWNPr-c6KEoY7XmTCbkYzcozOBbnOmyGYAiCKi1M_IQBGhnSWfDC43vEK8O9GG2zhJysJEv3SmRRud4jQ5bSQ0Skm5k7k_3v0nx9n-Q4h15kuMeiQGPB2R_uVhV78kjt17eNoseeXh0MhpPemTvOOe9uAHhORbfoWd8_nn8DVqTy6vf2fAzXA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLa2DgQv3BGBAdYE4slq4jq3B4TKZWrVrqpgoO3J-BKXoZKGpC3iT_Eb8XGSjvIwnvbAY1PHSpzvXBJ_3zkIPaMJfNvPAmKYTgjTASNCKkmiMNOxEtREjoz5aRxPJsnJSTrdQb9aLQzQKluf6By1Xij4Rt6lsKdo5016r4rvBLpGwe5q20KjhsUo-_nDvrJVL4dv7fN9Tunhu-M3A9J0FSAqDOmSyMj0aKA0lZmUMlHWwJiOdRTKKIl7qTGaGWnjLgtjkWapnwoBOb2kidBZov2enXcX7TEL9qSD9qbDo-npxvdDwTCnZ-oxEvmMNZpk-xbTzYqvChR7fghciJTEQcpIuBUOXdeATWzY_QLUzD_y3r-2al0EPLz5v63dLXSjybVxvzaO22gny--gq47zqqq7aOUaggJIscg1ntUFuHGt7lm7Ata4WFRLMsqKORhqjhv2Cz7LsXRCZlys5pUoKwxiGbtq2IhqicsFEBzsr2_CjmzZ6tgm4mV1D328lHu-jzr5Is8eIGxCQZVNCC10UsaYL22uLK0pG2hLESe-h8IWDFw1JdqhU8ic1_JxnwOIeA0ibkHEAUQ89FB3c15RFyn55xmvAWub0VBk3B1YlDPe-CzuKxPHOtHWZFObVafCKJ3EKqSGwX6y8NABIJVDGZEceEozsaoqPvzwnvfD1LW1DmIPvWgGmYW9FyUa2YddEag8tjXywCJ-65IG_TGHY1DYzwaOYB14aL-FOG-8bcXP8e0hvzWS878vXoqHF8_4FF0bHB-N-Xg4GT1C1ymYruN_7qPOslxlj9EVtV6eVeWTxhdg9PmyTeg3-iyatg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZ2l4e48EYEFrBWIE5WE9fO44BQYal21aqqeGnFxfgRl0UlKUlbxF_j1-Fxki7lsJz2wLGpYzXu982M429mEHpKU3i3n0fEMpMSZiJGpNKKxDw3iZbUxl6M-XGcTCbpyUk23UG_ulwYkFV2NtEbalNqeEfeo3Cm6OZN-z3byiKmh8OXi-8EOkjBSWvXTqOByCj_-cNt3-oXx4fuv35G6fDN-9dHpO0wQDTndElUbPs00oaqXCmVakc2ZhITcxWnST-z1jCrnA9mPJFZnoWZlBDfK5pKk6cm7Lt5d9GlxO0xgV1T_mnjBaB0mM9s6jMSh4y12cluP9PLF1815O6FHFQRGUmijBG-5Rh9_4CNl9j9AiLNPyLgvw5tvS8c3vifV_Emut5G4HjQUOYW2smL2-iKV8Lq-g5a-TahAF0sC4NnTVlu3OT8rH1Za7wo6yUZ5Ys50LfArSYGnxZY-fRmvFjNa1nVGFJo3ApiK-slrkqQPbhP36Qb2WnYsQvPq_ou-nAhz3wP7RVlkd9H2HJJtQsTnfXMGGOhchG0cgS30KwiScMA8Q4YQreF26F_yFw0SeWhAECJBlDCAUoAoAQPUG9z36IpXfLPO14B7jajofS4v1BWM9FaMhFqmyQmNY7ImYu1M2m1SRPNqWVwyiwDdACoFVBcpACAzeSqrsXxu7diwDPf7DpKAvS8HWRL9yxatskgbkWgHtnWyAOH_q2fdDQYC7gG5f6cO4nWUYD2O7iL1gbX4gzrAQo7wpx9ff5SPDh_xifoquONGB9PRg_RNQos9qLQfbS3rFb5I3RZr5endfXYGwWMPl80f34De0GiGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classical+and+general+relativistic+post-Keplerian+effects+in+binary+pulsars+hosting+fast+rotating+main+sequence+stars&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Iorio%2C+Lorenzo&rft.au=Rieutord%2C+Michel&rft.au=Rozelot%2C+Jean-Pierre&rft.au=de+Souza%2C+Armando+Domiciano&rft.date=2019-08-01&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=79&rft.issue=8&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-019-7194-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_019_7194_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon