Information transmission in genetic regulatory networks: a review

Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter Jg. 23; H. 15; S. 153102
Hauptverfasser: Tkačik, Gašper, Walczak, Aleksandra M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 20.04.2011
Schlagworte:
ISSN:1361-648X, 1361-648X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.
AbstractList Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.
Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.
Author Tkačik, Gašper
Walczak, Aleksandra M
Author_xml – sequence: 1
  givenname: Gašper
  surname: Tkačik
  fullname: Tkačik, Gašper
  email: gtkacik@ist.ac.at
  organization: Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria. gtkacik@ist.ac.at
– sequence: 2
  givenname: Aleksandra M
  surname: Walczak
  fullname: Walczak, Aleksandra M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21460423$$D View this record in MEDLINE/PubMed
BookMark eNpNj1tLw0AQhRdR7EX_QsmbT7F7z8S3UrwUCr4o-BY22UmJJrt1N7H03xuxgjBw5nwchjkzcu68Q0IWjN4yCrCkuRIp5CCXXCyZGkcwys_IlAnNUi3h7fzfPiGzGN8ppRKEvCQTzqSmkospWW1c7UNn-sa7pA_Gxa6J8cc0Ltmhw76pkoC7oTW9D8dkBAcfPuJdYkb81eDhilzUpo14fdI5eX24f1k_pdvnx816tU0rpXifAjOAXMoSZSk4NRSzLIdMK1uK3CqFtlJCYl5rmwHTYxuqOMPM1gyqyko-Jze_d_fBfw4Y-2L8tMK2NQ79EAvQlIGSLB-Ti1NyKDu0xT40nQnH4q81_wa-NVxj
CitedBy_id crossref_primary_10_1038_s41467_018_07085_1
crossref_primary_10_1038_s41467_018_05882_2
crossref_primary_10_1073_pnas_2308796121
crossref_primary_10_1016_j_plrev_2016_06_002
crossref_primary_10_1155_2020_8536365
crossref_primary_10_1016_j_copbio_2014_04_010
crossref_primary_10_3390_e21121212
crossref_primary_10_1146_annurev_biophys_060524_102720
crossref_primary_10_3390_cells14120903
crossref_primary_10_1007_s10955_015_1354_2
crossref_primary_10_1088_1478_3975_13_3_035005
crossref_primary_10_1038_ncomms12307
crossref_primary_10_1016_j_bpj_2013_01_033
crossref_primary_10_1109_TCOMM_2016_2638899
crossref_primary_10_1038_s41467_020_17276_4
crossref_primary_10_1073_pnas_2006731117
crossref_primary_10_1016_j_mib_2018_04_001
crossref_primary_10_1007_s10955_015_1444_1
crossref_primary_10_1073_pnas_1315642110
crossref_primary_10_1093_biostatistics_kxv010
crossref_primary_10_1016_j_crhy_2015_09_004
crossref_primary_10_1371_journal_pone_0057180
crossref_primary_10_3732_ajb_1300314
crossref_primary_10_1038_s41467_018_05417_9
crossref_primary_10_1103_hskn_zdb1
crossref_primary_10_1016_j_cels_2022_12_012
crossref_primary_10_1073_pnas_1114108108
crossref_primary_10_3389_fpls_2019_01710
crossref_primary_10_1088_1478_3975_ad9792
crossref_primary_10_1038_srep43673
crossref_primary_10_1111_evo_13601
crossref_primary_10_1042_BST20220333
crossref_primary_10_1016_j_bioelechem_2025_108923
crossref_primary_10_1038_s41598_023_29539_3
crossref_primary_10_1103_PhysRevE_103_L010102
crossref_primary_10_1016_j_cels_2018_12_006
crossref_primary_10_3390_e21040382
crossref_primary_10_1038_s41591_020_1040_z
crossref_primary_10_1073_pnas_1305604110
crossref_primary_10_1146_annurev_conmatphys_031214_014803
crossref_primary_10_1126_science_1215478
crossref_primary_10_1146_annurev_conmatphys_031720_032754
crossref_primary_10_1103_PhysRevX_13_041017
crossref_primary_10_1111_jeb_13762
crossref_primary_10_1371_journal_pone_0123242
crossref_primary_10_1088_1478_3975_11_2_026004
crossref_primary_10_1016_j_bpj_2014_01_014
crossref_primary_10_1016_j_copbio_2014_05_002
crossref_primary_10_1038_s41467_020_14806_y
crossref_primary_10_1007_s10955_015_1332_8
crossref_primary_10_1073_pnas_1420903112
crossref_primary_10_1088_1478_3975_abc9d1
crossref_primary_10_1242_dev_176065
crossref_primary_10_7554_eLife_06559
crossref_primary_10_7554_eLife_24040
crossref_primary_10_1088_1361_6633_ac7a4a
crossref_primary_10_1371_journal_pone_0186624
crossref_primary_10_1038_srep34743
crossref_primary_10_1016_j_semcdb_2014_06_011
crossref_primary_10_1016_j_cels_2022_06_004
crossref_primary_10_1073_pnas_2103939118
crossref_primary_10_1039_c2ib00114d
crossref_primary_10_1038_s41567_025_02848_2
crossref_primary_10_1111_evo_12012
crossref_primary_10_3390_metabo2030529
crossref_primary_10_7554_eLife_62574
crossref_primary_10_1126_science_1225182
crossref_primary_10_1371_journal_pone_0054694
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0953-8984/23/15/153102
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1361-648X
ExternalDocumentID 21460423
Genre Journal Article
Review
GroupedDBID ---
-~X
1JI
1WK
4.4
53G
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABLJU
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AERVB
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CGR
CJUJL
CRLBU
CS3
CUY
CVF
EBS
ECM
EDWGO
EIF
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NPM
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TN5
W28
WH7
XPP
YQT
ZMT
~02
7X8
ADEQX
AEINN
AGQPQ
ID FETCH-LOGICAL-c552t-81a8e244be4b320a0e7798765db39d55edc534e9f6d78163100521e7df18ccd42
IEDL.DBID 7X8
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289199800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-648X
IngestDate Thu Sep 04 15:27:12 EDT 2025
Thu Apr 03 07:10:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c552t-81a8e244be4b320a0e7798765db39d55edc534e9f6d78163100521e7df18ccd42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 21460423
PQID 860185419
PQPubID 23479
ParticipantIDs proquest_miscellaneous_860185419
pubmed_primary_21460423
PublicationCentury 2000
PublicationDate 2011-04-20
PublicationDateYYYYMMDD 2011-04-20
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAlternate J Phys Condens Matter
PublicationYear 2011
SSID ssj0004834
Score 2.4331722
SecondaryResourceType review_article
Snippet Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 153102
SubjectTerms Entropy
Gene Regulatory Networks
Information Theory
Models, Genetic
Transcription Factors - metabolism
Title Information transmission in genetic regulatory networks: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/21460423
https://www.proquest.com/docview/860185419
Volume 23
WOSCitedRecordID wos000289199800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qFLz4fswXOXgNW9IvTeJFhji8OHZQ6K20SQq7dHOdgv-9X5pOvIgHofTWEr5879ePkNuh18p5EAyUlQxAVsxUEnnZK2WVSysnihZsQk0mOsvMtOvNabq2yrVObBW1m9uQIx9ojBy0BG7uF28sgEaF4mqHoLFJegl6MkEuVfZjWbiOReUk5SwFna0HhDHmC1vWmDYaBiIZcIkPujnidy-ztTbj_X-e84DsdW4mHUW-OCQbvj4iO227p22OyaibQgq3QlfBXOF1h7wZndUUWSpMNtJlhKmfLz9pHZvFmzta0DjsckJex48vD0-sA1NgVkqxYpoX2qMtLz2UiRgWQ7wMg6pQujIxTkrvrEzAmyp1SqOTxkPCmHvlKq6tdSBOyVY9r_05oRowTnSlAygsKCcMryDB_7bOpwXZJ3RNmhxPHyoQRe3n703-TZw-OYvkzRdxqUYeAMZDj87F3x9fkt2Y2QWU8SvSq1BQ_TXZth-rWbO8aZkA35Pp8xeSSrov
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+transmission+in+genetic+regulatory+networks%3A+a+review&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Tka%C4%8Dik%2C+Ga%C5%A1per&rft.au=Walczak%2C+Aleksandra+M&rft.date=2011-04-20&rft.eissn=1361-648X&rft.volume=23&rft.issue=15&rft.spage=153102&rft_id=info:doi/10.1088%2F0953-8984%2F23%2F15%2F153102&rft_id=info%3Apmid%2F21460423&rft_id=info%3Apmid%2F21460423&rft.externalDocID=21460423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-648X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-648X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-648X&client=summon